æ

Size: px
Start display at page:

Download "æ"

Transcription

1 æ

2 First Objects III

3 Introduction Big bang nucleosynthesis Recombination Primordial chemistry Chemical reaction network (First Objects) 2 4. Cooling diagram Time scale H 2 abundance H 2 dissociation formation Cooling H 2 abundance Free-fall time cooling time Primordial chemistry... 9

4 7.2 First objects APPENDIX 28 A 28 B 32 C H H + 2 H 2 32 D Fastest time scale 33

5 3 Abstract A < 8... H 2 HD first objects. first objects. (λ) scale factor λ λ first objects. H 2 HD LiD 85 z=0000. first objects free fall cooling time scale. λ first objects.

6 4. Introduction Big bang.. I a (Vishwakarma 2000). baryon dark matter K (CMB). Big bang 00 He D Li H D He Li CMB. (Lepp & Shull 984 Puy & Signore 997 Stancil et al. 998 Galli & Pall 998). H 2 Saslow & Zipoy (976) Peelbes & Dicke (968). H 2 abundance H + 2 H H 2 first objects ( ) progenitor cooling. cooling first objects. First objects progenitor free-fall H 2 cooling (Palla et al.983 Mac Low & Shull 986 Lahav 986 Puy & Signore 996 ). Tegmark et al. (997) cold dark matter model (CDM) first objects CDM z M. Abel et al. (997) H 2 cooling M. Nishi et al. (998) Tegmark time scale H 2 abundance CDM

7 5 0 7 M. first objects 5000m 64 ALMA (Atacama Large Millimeter/submillimeter Array) (Nakai 2002).. first objects Λ=Λ +Λ 2 a m ( Özer 999 Vishwakarma 2000 Kimura et al. 200) Λ first objects.

8 Robertson-Walker Einstein d da [(ρ + ȧ 2 = 8πG 3 ρa2 + Λ 3 a2 k () Λ 8πG )a3 ]= 3(p Λ 8πG )a2 (2). H =ȧ/a (ȧ = da/dt) ρ p k. c = scale factor a 0 =( 0 ). () (2). () Λ (ρ v = p v =Λ/(8πG)). () (2) Ω. Ω λ Ω 0 λ 0 k. (3) (4) z. ȧ 2 = H0(Ωa λa 2 + Ω 0 λ 0 ) (3) d da [(Ω + λ)a3 ]= 3( p λ)a 2 ρ crit (4) Ω ρ λ Λ ρ crit H0 2 ρ crit 3H 0 2 8πG (5) k = H 2 0(Ω 0 + λ 0 ) (6) dz dt = H 0( + z) Ω+λ +( Ω 0 λ 0 )( + z) 2 (7) d dz [(Ω + λ)( +z )3 ]=3( p λ)( ρ crit +z )4 (8) 2.2. Ω=Ω γ +Ω ν +Ω e ± +Ω M (9). Ω γ Ω ν Ω e ± Ω M. Ω M a 3. Ω M cold dark matter baryonic matter.

9 K. Ω=Ω γ +Ω ν +Ω M (0). ρ r = ρ γ + ρ ν = a r T 4 γ N νa r T 4 ν () a r T γ T ν ( ) T ν0 4 /3 = (2) T γ0. ( ( ) ) 4 4/3 7 ρ r = + 8 N ν a r Tγ 4 (3) N ν () (3) (0) ( ( ) ) 4 4/3 7 Ω= + 8 N ar ν Tγ 4 +Ω M0 ( + z) 3 (4) ρ crit Ω M0 scale factor (Wage 993 Özer 999). (4) T γ λ = λ 0 + λ 20 a m (5) T γ = ρ crit ( ) ) 4/3 (Ω Ω M0 ( + z) a r (+ 3) 4 78 N ν 4 (6). p = 3 [ + ( ) 4 ] N ν a r Tγ 4 (7)

10 8 (8) (5) (7) dω dz = (6). 4Ω +z ( + z)2 Ω M0 mλ 0 ( + z) m (8) Kimura et al. (200) λ. λ 20 m 0.00 (9) λ 20 = m =.5 (Kimura et al. 200) m=.5 λ 0 = T(K) 00 0 λ 20 = λ 20 = z Fig..

11 Big bang nucleosynthesis Big bang. 0 0 K.. decoupling K. 0 9 K 00 D He Li Recombination Big bang. (T 0 4 K) (recombination). recombination. Helium recombination He. He recombination 2. z He 2+ He + He 2+ +e He + + hν (20) z 2700 He + He He + +e He + hν (2) Hydrogen recombination H (3.6 ev) T < 3.6 ev ( 0 5 K). H recombination H + +e H+hν (22)

12 0 H recombination.. H recombination Peebles et al. (968) (Matsuda et al. 97 Jones & Wyse 985 Sasaki & Takahara 993). Recombination 2 continuum 3. Continuum nc 2S Rc2 R2c 2P n2 S Π Ly α n Ground Fig. 2. Continuum n e (Jones & Wyse 985) dn e dt +K( n + R c2 n e n p ) = R c2 n e n p +K( n + n R 2c + R c2 n e n p ) R 2c n c e hν α k T +K n B +K[( +R 2c )n + R c2 n e n p ] (23) n p n n 2 n c ν α Lyman α ( Hz) 2S (8.227 s ) R c2 continuum R 2c continuum K time scale ( c3 ȧ 3πνα 3 a ) k B Lithium recombination Li recombination He Li (6.9 ev) recombination Li Li 3+ +e Li 2+ + hν (24) Li 2+ +e Li + + hν (25) Li + +e Li + hν (26)

13 3.3. Primordial chemistry Recombination (z 000). CMB H 2 HD first objects. H 2 chemistry H 2 H H H. a)h H+e H + hν (27) H +H H 2 +e (28) b)h + 2 H + +H H hν (29) H + 2 +H H 2 +H + (30) (z > 500) H 2 CMB. H + hν H+e (3) H hν H+ + H (32) HD chemistry HD H + +D D + + H (33) D + +H 2 H + + HD (34) HD dipole moment H+D HD + hν (35).

14 Chemical reaction network e H H + H D D + He He + He 2+ Li Li + Li H 2 H + 2 HD HD+ HeH + LiH LiH + H + 3 H 2D + 2. z. 85 (Galli & Palla 998) Big bang.. 2 dy i dt = j k j (T γ )y j + n l k lm (T m )y l y m (36) m y i i abundance ( n i n N y i = n i /n N ) k j k lm l m n N T γ T m t z (7) dz dt = H 0( + z) Ω 0 ( + z) 3 + λ (37). H 0 =00h km s Mpc. n N n N (z) =Ω b n cr ( + z) 3 (38). n cr = h 2 cm 3 Ω b = ρ b /ρ cr. (Peebles 968) dt m dt ȧ = 2T m a + 8σ T a r Tγ 4 y e (T γ T m ) (39) 3m e c σ T a r m e c y e y e = n e /n N CMB Compton.

15 3 (39) (3). dt m dt = 2T m H 0 ( + z) Ω 0 ( + z) 3 + λ + 8σ T a r T 4 γ 3m e c y e (T γ T m ) (40) 4. (First Objects) CMB z 5. Intergalactic medium (IGM) z>5 first objects.. virialize cooling. cooling diagram. 4.. Cooling diagram progenitor free-fall time cooling time. t cool t dis t rec t form time scale H 2 (abundance) Time scale H 2 abundance T<0 4 K cooling rate H 2 abundance. H 2. T y e T<0 4 K. 4 time scale t dis t form t cool t rec H 2 dissociation time formation time cooling time recombination time) H 2 abundance (Nishi et al. 998).

16 4 time scale t dis n H 2 n ṅ dis = H2 H 2 i ki dis = n H2 n i t form n H 2 n ṅ form = H2 H 2 ij kform t cool T T = t rec n e ṅ e = i k dis i n i (4) y H2 = (42) ij n i n j ij kform ij n N n i n j 3k B T (43) n N m p Λ H2 y H2 n e k rec = n e n p k rec (44) n e n N n i i y i i abundance ki dis H 2 i H 2 k form ij i j H 2 k rec recombination Λ H2 H 2 cooling t dis t form. t dis (4) y H2 t form (42) y H2. 2 time scale t dis = t eq dis (45) t form = t eq y H2 formy eq (46) H 2 eq H 2 ((48) (49) ).. t eq dis = teq form (47) time scale t sys t dis t form. t sys t cool t rec. t sys y H2. ) y H2 >y eq H 2 dissociation formation. y H2 t dis. t dis y H2 t dis <t sys y H2 y eq H 2. 2) y H2 <y eq H 2 y H2 t form. y H2. t form. (42) t form y H2. t sys >t eq form (= t dis) t sys t form. ) 2) t dis t form t sys H 2.

17 H 2 dissociation formation H 2 Appendix C dn H2 = n 2 R 3 R 4 R 6 R 7 dt H[n e + n n H R 4 + n H +R 5 + R 2 /n H + ] N n H R 7 + n e R 8 + R 3 /n N R 9 R 8 n H2 [n H +n e + n n H R 7 + n e R 8 + R 3 /n H R 0 + n e R + R 4 /n N ] (48) N R n (Table 7). H 2 formation dissociation. dn H2 = 0(49) dt T y e n eq H Cooling H 2 H 2 H cooling. T<0000 K cooling H 2. cooling H H 2 H 2. H 2 abundance H 2 H 2. Martin et al. (996) Forrey et al. (997) (n 0.cm 3 ) cooling Λ H2 log 0 ( n H n H2 erg cm 3 s ) = log 0T m 48.05(log 0 T m ) (log 0 T m ) (log 0 T m ) 3 (50) H 2 abundance Time scale virial T vir y e H 2 abundance. T vir y e (4) (43) (44) y e T vir plane 3 (Fig 3). t rec = t dis t eq cool = t dis t eq cool t dis = t 2 rec (5) t eq cool yeq H 2 (43). (5) Appendix D.

18 6 0. t rec fastest t dis fastest 0.0 y e t cool fastest t rec =t dis t cool =t dis 0-5 t cool =t rec T(K) Fig. 3. y e T vir plane t dis t cool t rec Fig 3 3 y e T vir plane H 2 ) t dis <min(t cool t rec ) H 2. y H2 = y eq H 2 (52) 2) t rec <min(t cool t dis ) H 2. H 2 abundance recombination abundance t form = t rec. (4) (42) t form = y H2 /y eq H 2 t dis y H2 = y eq t rec H 2 (53) t dis 3) t cool <min(t rec t dis )

19 7 H 2. H 2 abundance t form = t cool. y H2. y H2 = y eq H 2 t eq cool /t dis (54) ) 2) 3) vilial Fig t cool =t rec t cool =t dis c c y H T vir (K) Fig. 4. virial H 2 abundance Free-fall time cooling time y e T vir H 2 abundance time scale. H 2 cooling time scale t cool

20 8 time scale t ff ( 0 ) time scale t H. time scale. t ff 3π ( ) /2 32Gρ vir (55) 3k B T vir n vir m p Λ H2 y H2 (56) t cool t H H (57) ρ vir 8π 2 Ωρ cr n vir Ω b ρ vir /m p ρ cr =3H 2 0/8πG ρ vir virial n vir virial m p 3 time scale ( + z vir ) T vir plane 3 (Fig ). ) t ff >t cool vilialize H 2 cooling. 2) t H >t cool >t ff cooling.. 3) t cool >t H vilialize. (baryon dark matter)m t ff t cool t H T vir (Blanchard et al. 992). T vir = 485h 2/3 ( M M ) 2/3 ( +z vir 00 ) (58) z vir virial

21 9 5. Table. 3. Table : Ω 0 λ 0 λ 20 m ( ) ( λ ) ( λ ) abundance H D Li He abundance Y e =0.24 ± (Peimbert et al. 2000) (D/H)=(3.0 ± 0.2) 0 5 (Burles et al. 200) (Li/H)= (Ryan et al. 2000) z=0000. H 0 ( ) 00h (km s Mpc ) h=0.67 T γ0 ( CMB ) (K) Ω b ( ) η 0 h 2 η 0 ( ) 5.5 N ν ( ) :3 Chemical network reaction Appendix A. First objects time scale Appendix B.

22 Primordial chemistry chemical reaction network. Fig z 000 He z 000 H D z<000 Li recombination. H H + D fractional abundance H 2 H + 2 H - fractional abundance D + HD + HD H H 2 D z +z He fractional abundance He + HeH + fractional abundance Li LiH Li + LiH 0-20 He Li z +z Fig. 5.. H( ) D ( ) He ( ) Li ( )

23 2 Fig 6 7 λ λ chemical reaction network. λ recombination. fractional abundance H H + H 2 H + 2 H - H z D fractional abundance D + HD H 2 D + HD z Fig. 6. λ ( ) λ ( ) H D

24 22 He fractional abundance He ++ He + HeH z fractional abundance Li Li + LiH LiH + Li z Fig. 7. λ ( ) λ ( ) He Li

25 23 Fig 8 λ λ 2 λ T r T(K) 0 λ 20 =0 0. λ 20 =0 0.0 λ 20 = λ 20 = T m z Fig. 8. λ ( ) λ ( ) Fig 9 H 2 HD abundance. H 2 HD H 2 H H. 2 H 2 HD abundance λ. H 2 HD cooling

26 24 first objects.. z = H 2 HD Table H 2 fractional abundance HD λ 20 = λ 20 = z Fig. 9. λ ( ) λ ( ) H 2 HD Table 2: z = H 2 HD abundance y e y H2 y HD ( ) ( λ ) ( λ )

27 First objects λ first objcets ( ). Fig 0 z = y H2. z =0 z =00 H 2 H H + 2 abundance z =200 H abundance. H 2. λ abundance z=0 00 abundance y H2 0-6 z=0 0-8 z=00 z= T vir (K) Fig. 0. z= H 2 abundance Fig z = 50 H 2 abundance 4..4 first objects. (t ff >t cool ) cooling time scale first objects. (t H >t cool >t ff ) cooling first objects. (t cool >t H )

28 26 time scale first objects t >t H >t >t cool ff t ff >t cool T vir (K) 3000 t cool >t >t H z vir Fig.. ( + z vir ) T vir plane first objects. Fig 2 λ first objects. λ. (58). first objects. 0 6 M λ cooling first objects.

29 t cool =t ff t cool =t =t H t =t cool-λ ff-λ t =t cool-λ H-λ t >t H >t cool >t ff t >t H-λ cool-λ >t ff-λ t >t ff-λ cool-λ T vir (K) 3000 t ff >t cool t cool >t >t H t >t cool-λ H-λ M 0 6 M 0 5 M z vir Fig. 2. ( + z vir ) T vir λ ( ) plane first objects. ( )

30 28 8. ) Kimura et al. (200) λ. 2) First objects H 2 λ. 3) Time scale first objects λ. ) 2) 3) λ. -Acknowledgement-.. ( ) ( ) ALMA.

31 29 9. APPENDIX A. Table 3: Reaction rates for Hydorgen species reaction rate (cm 3 s or s ) notes H + +e H+γ ( + z) 0.58 R 2c H + + γ H+e ( + z) T.5 γ exp( 39472/T γ) R c2 H+e H + γ Tm exp( T m /6200) H + γ H+e. 0 Tγ 2.3 exp( 8823/T γ ) H +H H 2 +e T m Tm 0.7 T m < 300 H +H + H + 2 +e Tm 0.35 T m Tm 0.9 T m < 8000 H +H + 2H Tm T 0.9 m T m H+H + H γ Tm.8exp( 20/T m) H γ H+H Tγ.59 exp( 82000/T γ ) T m exp( 32400/T γ ) H + 2 +H H 2 +H H + 2 +e 2H T 0.5 m H γ 2H+ +e T.48 γ exp( /T γ ) H + 2 +H 2 H + 3 +H H 2 +H + H + 2 +H exp( 2050/T m ) T m exp( 4000/T m ) T m > 0 4 H 2 +e H+H Tm.27 exp( 43000/T m ) H 2 +e 2H + e Tm 0.35exp( 02000/T m) H 2 + γ H + 2 +e Tγ 0.35 exp( 78500/T γ ) H + 3 +H H+ 2 +H exp( 7560/T m ) H + 3 +e H 2 +H Tm 0.65 H 2 +H + H γ.0 0 6

32 30 Table 4: Reaction rates for Deuterium species reaction rate (cm 3 s or s ) notes D + +e D+γ ( + z) 0.58 D+γ D + +e ( + z) Tγ.5 exp( 39472/T γ ) D+H + D + +H Tm 0.28exp( 43/T m) D + +H D+H Tm 0.28 D+H HD + γ D+H 2 H+HD exp( 3876/T m ) T m > 250 HD + +H H + +HD D + +H 2 H + +HD HD+H H 2 +D exp( 3624/T m ) T m > 200 HD+H + H 2 +D exp( 464/T m ) HD+H + 3 H 2 +H 2 D + (2. 0.4logT m ) 0 9 D+H + HD + + γ Tm.8 exp( 20/T m ) D + +H HD + + γ Tm.8exp( 20/T m) HD + + γ H+D exp( 32400/T γ ) HD + + γ H + +D exp( 32400/T γ ) HD + +e H+D Tm /2 HD + +H 2 H 2 D + +H HD + +H 2 H + 3 +D D+H + 3 H 2D + +H Tm H 2 D + +e H+H+D Tm / H 2 D + +e H 2 +D Tm / H 2 D + +e HD + H Tm / H 2 D + +H 2 H + 3 +HD exp( 25/T m ) T m 0 2 H 2 D + +H H + 3 +D T m > T m exp( 632/T m )

33 3 Table 5: Reaction rates for Helium species reaction rate (cm 3 s or s ) notes He ++ +e He + + γ.89 0 [ 0 Tm 9.37 ( + Tm 9.37 ) ( + Tm ).7524 ] He + + γ He ++ +e Tγ.63 exp( /T γ ) He + +e He + γ [ Tm 5.54 ( + Tm 5.54 )0.309 ( + Tm ).69 ] 7 He + γ He + +e Tγ.23 exp( /T γ ) He + H + He + +H Tm 4.74 He + +H He + H T 2.06 m He + H + HeH + + γ Tm [+9.9exp( 2570 )] He + H + He + + γ T 0.5 m T m T.06 m T m > 0 3 He + H + 2 HeH+ +H exp( 677/T m ) He + +H HeH + + γ Tm 0.33 T m T m > 4000 HeH + +H He + H HeH + +e He + H T 0.5 m HeH + +H 2 H + 3 +He HeH + + γ He + H T.5 γ exp( 22750/T γ ) He + γ He + +H T.2 γ exp( /T γ )

34 32 Table 6: Reaction rates for Lithium species reaction rate (cm 3 s or s ) notes Li + +e Li + γ [ T m /07.7 ( + T m /07.7) 0.62 ( + T m / ).388 ] Li + γ Li + +e Tγ.45 exp( 60500/T γ ) Li + +H Li + H Tm Tm T m Li + +H + Li+H Tm Tm 0.5 T m Li+e Li + γ Tm 0.58 exp( T m /7200) Li + γ Li + e Tγ.4 exp( 800/T γ ) Li+H + Li + +H Tm 7.9 exp( T m /20) Li+H + Li + +H+γ Tm 0.05 exp( T m /282000) Li+H LiH + γ ( Tm.5 Tm.2) LiH + γ Li + H Tγ 0.3 exp( 29000/T γ ) Li+H LiH + γ Tm 0.8 exp( T m /500) Li+H LiH + γ Tm 0.34 Li+H LiH+e Li +H LiH+e LiH + +H LiH + H exp( 67900/T m ) LiH+H + LiH + +H LiH+H Li+H LiH + +H LiH + + γ dex[ logT m 0.35(logT m ) 2 ] Li+H + LiH + + γ Tm 0.49 LiH+H + LiH + +H LiH+H + Li + +H LiH + +e Li+H Tm 0.47 LiH + +H Li + H exp( 66400/T m ) LiH + +H Li + +H LiH + + γ Li + +H exp( 900/T γ ) LiH + + γ Li+H T γ exp( 97000/T γ )

35 33 B. Table 7: H 2 abundance reaction R n rate (cm 3 s or s ) reference )H+e H + +2e Tm 0.5 ( + (T m /0 5 ) 0.5 ) exp( /T m ) HTL 2)H + +e H+γ Tm 0.7 (+(T m /0 6 ) 0.7 ) ) HTL 3)H+e H + γ Tm 0.93 exp( T m /6200) GP 4)H +H H 2 +e FC 5)H +H + 2H Tm 0.5 FC 6)H+H + H γ Tm.8 exp( 20/T m ) SLD 7)H + 2 +H H 2 +H GP 8)H + 2 +e 2H Tm 0.4 SLD 9)H 2 +H H H min( exp( 2050/T m ) GP exp( 4000/T m )) AAZN 0)H 2 +H 3H Tm 2.0 ( + (2.3T m /0 5 ) 3.5 ) AAZN exp( /T m ) GP )H 2 +e 2H + e Tm 0.35 exp( /T m ) GP 2)H + γ H+e. 0 Tγ 2.3 exp( 8823/T γ ) GP 3)H γ H+H exp( 32400/T γ ) GP 4)H 2 + γ H + 2 +e Tγ.56 exp( 78500/T γ ) GP AAZN: Abel et al. (997); FC: Fuller & Couchman (2000); GP: Galli & Pall (998); HTL: Haiman Thoul & Loeb (996); GP: Galli & Palla (998); SLD: Stancil Lepp & Dalgarno (998); C. H H + 2 H 2 H H H n H dn H dt dn H /dt 0 n H + 2 n H + 2 dt = n H n e R 3 n H [n H R 4 + n H +R 5 + R 2 /n N ] (C) n n H H n e R 3 n H R 4 + n H +R 5 + R 2 /n N (C2) = n H n H +R 6 + n H2 n H + n H + [n H R 7 + n e R 8 + R 3 /n N ] (C3) 2

36 34 n H + /dt 0 2 n H + 2 n H n H + R 6 + n H2 n H +R 9 n H R 7 + n e R 8 + R 3 /n N (C4) n H2 n H2 dt = n H n H R 4 + n H n H + R 7 2 n H2 [n H +R 9 + n H R 0 + n e R + R 4 /n N ] (C5) (C6) (60) (62) = n H2 n e R 3 R 4 n H R 4 + n H +R 5 + R 2 /n N R 6 R 7 R 9 R 7 +n H2 n H + + n n H R 7 + n e R 8 + R 3 /n H n H2 n H + N n H R 7 + n e R 8 + R 3 /n N n H2 [n H +R 9 + n H R 0 + n e R + R 4 /n N ] (C7). D. Fastest time scale (5) 3 timescale. t rec = t dis t cool = t dis t cool = t rec (D) (D2) (D3) (4) (44) t rec t dis y H2 t rec = t dis (D4). t cool = t dis t dis <min(t rec t cool ) t cool = t eq cool (65) t eq cool = t dis (D5). t cool = t rec t rec <min(t cool t dis ) t form = t rec. t form = y H2 /y eq H 2 t dis y H2 = y eq H 2 (t rec /t dis ) 3kT t cool = n N m p Λ H2 y H2 (D6)

37 35 (62). t cool = 3kT n N m p Λ H2 y eq ( t dis )=t eq cool H 2 t ( t dis ) rec t rec t eq cool t dis = t 2 rec (D7) (D8)

38 36 REFERENCES Abel, T., Anninos, P., Zhang, Y., Norman, M. L., 997, NewA, 2, 8 Abel, T., Anninos, P., Norman, M. L., Zang, Y., 998, ApJ, 508, 58 Blanchard, A., Valls-Gabaud, D., & Mamon, G. A., 992, A&A, 264, 365 Burles, S., Nollett, K., Truran, J. W. & Turner, M. S. 999, Phys. Rev.A Lett., 8, 476 Forrey, R. C., Balakrishnan, N., Dalgarno, A., Lepp S., 997, ApJ, 489, 00 Fuller, T. & Couchman, H. M. P., 2000, ApJ, 553,47 Galli, D., Palla, F., 998, A&A, 335, 403 Hmaiman, Z., Thoul, A. A., Loeb, A., 996, ApJ, 464, 523 Hutchings, R. M., Santoro, F., Thomas, P. A., Couchman, H. M. P, 2000, astro -ph/0027 Jones, B. J. T., & Wyse, R. F. G., 985, 49, 44 Kimura, K., Hashimoto, M., Sakoda, K., Arai, K., 200, ApJL, 56, L9 Lahav, O., 986, MNRAS., 220, 259 Lepp, S., Shull, M., 984, ApJ, 280, 465 MacLow, M. M., Shull, J. M., 986, ApJ, 302, 585 Martin, P. G., Schwarz, D. H., Mandy, M. E., 996, ApJ, 46, 265 Matsuda, T., Sato, H., and Takeda, H., 97, Prog. Theor. Phys., 46, 46 Nakai. N., 2002, private communication Nishi, R., Susa, H., 999, ApJL, 523, 03 Nishi, R., Susa, H., Uehara, H., Yamada, M., Omukai, K., 998, astro-ph/98236 Özer, M, 999, ApJ, 520, 45 Palla, F., Galli, D., 995, ApJ, 45, 44 Palla, F., Salpeter, E. E. & Stahler, S. W., 983 ApJ, 27, 632 Peebles, P. J. E., 968, ApJ, 53, Peebles, P. J. E., Dicke, R. H., 968, ApJ, 54, 89

39 37 Peimbert, M., Pembert, A., & Ruiz, M. T., 2000, ApJ, 54, 688 Puy, D., Alecian G., Le Bourlot, J., Le Bourlot, J., Leorat, J., Pineau des Forets, l., 993, A&A 267, 337 Puy, D., Signore, M., 996, A&A, 305, 37 Puy, D., Signore, M., 997, New Ast, 2, 299 Puy, D., 999, astro-ph/99267 Puy, D., Signore, M., 999, New Ast.43, 223 Puy, D., Signore, M., 200, astro-ph/0057 Ryan, S. G., Beers, T. C., Olive, K. A., Fields, B. D. & Norris, J. E., 2000, ApJ, 530, L57 Sasaki, S., Takahara, F., 993, PASJ, 45, 655 Saslaw, W., & Zipoy, D., 967, Nature, 26, 967. Stancil, P. C., Lepp, S., Dalgarno, A., 996, ApJ, 485, 40 Susa, H., Uehara, H., Nishi, R., Yamada, M., 998, astro-ph/ Tegmark, M., Silk, J., Rees, M.J., Blanchard, A., Abel, T., Palla, F., 997, ApJ, 474, Vishwakarma, 2000, astro-ph/002492

paper02v.dvi

paper02v.dvi Monte Carlo Λ First Objects III 1 Contents 1 Introduction 4 2 VCT 7 2.1 VCT......................................... 7 2.2............................................... 8 2.2.1 1.................... 8

More information

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2 1 6 6.1 (??) (P = ρ rad /3) ρ rad T 4 d(ρv ) + PdV = 0 (6.1) dρ rad ρ rad + 4 da a = 0 (6.2) dt T + da a = 0 T 1 a (6.3) ( ) n ρ m = n (m + 12 ) m v2 = n (m + 32 ) T, P = nt (6.4) (6.1) d [(nm + 32 ] )a

More information

Big Bang Planck Big Bang 1 43 Planck Planck quantum gravity Planck Grand Unified Theories: GUTs X X W X 1 15 ev 197 Glashow Georgi 1 14 GeV 1 2

Big Bang Planck Big Bang 1 43 Planck Planck quantum gravity Planck Grand Unified Theories: GUTs X X W X 1 15 ev 197 Glashow Georgi 1 14 GeV 1 2 12 Big Bang 12.1 Big Bang Big Bang 12.1 1-5 1 32 K 1 19 GeV 1-4 time after the Big Bang [ s ] 1-3 1-2 1-1 1 1 1 1 2 inflationary epoch gravity strong electromagnetic weak 1 27 K 1 14 GeV 1 15 K 1 2 GeV

More information

2009 2 26 1 3 1.1.................................................. 3 1.2..................................................... 3 1.3...................................................... 3 1.4.....................................................

More information

Mathews Grant J. (University of Notre Dame) Boyd Richard N. (Lawrence Livermore National Laboratory) 2009/5/21

Mathews Grant J. (University of Notre Dame) Boyd Richard N. (Lawrence Livermore National Laboratory) 2009/5/21 Mathews Grant J. (University of Notre Dame) Boyd Richard N. (Lawrence Livermore National Laboratory) 2009/5/21 Abstract strongly interacting massive particles (SIMPs, X) Big Bang (BBN) X heavy colored

More information

1 ( ) Einstein, Robertson-Walker metric, R µν R 2 g µν + Λg µν = 8πG c 4 T µν, (1) ( ds 2 = c 2 dt 2 + a(t) 2 dr 2 ) + 1 Kr 2 r2 dω 2, (2) (ȧ ) 2 H 2

1 ( ) Einstein, Robertson-Walker metric, R µν R 2 g µν + Λg µν = 8πG c 4 T µν, (1) ( ds 2 = c 2 dt 2 + a(t) 2 dr 2 ) + 1 Kr 2 r2 dω 2, (2) (ȧ ) 2 H 2 1 ( ) Einstein, Robertson-Walker metric, R µν R 2 g µν + Λg µν = 8πG c 4 T µν, (1) ( ds 2 = c 2 dt 2 + a(t) 2 dr 2 ) + 1 Kr 2 r2 dω 2, (2) (ȧ ) 2 H 2 = 8πG a 3c 2 ρ Kc2 a 2 + Λc2 3 (3), ä a = 4πG Λc2 (ρ

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

中央大学セミナー.ppt

中央大学セミナー.ppt String Gas Cosmology References Brandenberger & Vafa, Superstrings in the early universe, Nucl.Phys.B316(1988) 391. Tseytlin & Vafa, Elements of string cosmology, Nucl.Phys.B372 (1992) 443. Brandenberger,

More information

LLG-R8.Nisus.pdf

LLG-R8.Nisus.pdf d M d t = γ M H + α M d M d t M γ [ 1/ ( Oe sec) ] α γ γ = gµ B h g g µ B h / π γ g = γ = 1.76 10 [ 7 1/ ( Oe sec) ] α α = λ γ λ λ λ α γ α α H α = γ H ω ω H α α H K K H K / M 1 1 > 0 α 1 M > 0 γ α γ =

More information

総研大恒星進化概要.dvi

総研大恒星進化概要.dvi The Structure and Evolution of Stars I. Basic Equations. M r r =4πr2 ρ () P r = GM rρ. r 2 (2) r: M r : P and ρ: G: M r Lagrange r = M r 4πr 2 rho ( ) P = GM r M r 4πr. 4 (2 ) s(ρ, P ) s(ρ, P ) r L r T

More information

untitled

untitled --- = ---- 16 Z 8 0 8 8 0 Big Bang 8 8 s-process 50 r-process 8 50 N r-process s-process Hydrogen 71% Helium 8% Others 1.9% Heay 4-4% lements(>ni p-process (γ process? r-process s-process Big Bang H,He

More information

The Physics of Atmospheres CAPTER :

The Physics of Atmospheres CAPTER : The Physics of Atmospheres CAPTER 4 1 4 2 41 : 2 42 14 43 17 44 25 45 27 46 3 47 31 48 32 49 34 41 35 411 36 maintex 23/11/28 The Physics of Atmospheres CAPTER 4 2 4 41 : 2 1 σ 2 (21) (22) k I = I exp(

More information

( )

( ) 1. 2. 3. 4. 5. ( ) () http://www-astro.physics.ox.ac.uk/~wjs/apm_grey.gif http://antwrp.gsfc.nasa.gov/apod/ap950917.html ( ) SDSS : d 2 r i dt 2 = Gm jr ij j i rij 3 = Newton 3 0.1% 19 20 20 2 ( ) 3 3

More information

( ) Note Ω m = 1 Ω m : ( ) r-process α 1: 2 32T h(t 1/2 = y) 2 38U(t 1/2 = y) 2 35U(t 1/2 = 7.038

( ) Note Ω m = 1 Ω m : ( ) r-process α 1: 2 32T h(t 1/2 = y) 2 38U(t 1/2 = y) 2 35U(t 1/2 = 7.038 ( ) Note 4 19 11 22 6 6.1 1 Ω m = 1 Ω m.3 6.1.1 : ( ) r-process α 1: 2 32T h(t 1/2 = 1.45 1 1 y) 2 38U(t 1/2 = 4.468 1 9 y) 2 35U(t 1/2 = 7.38 1 8 y) 2 44Pu(t 1/2 = 8.26 1 7 y) β / (J.A.Johnson and M.Bolte:

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

( ) ,

( ) , II 2007 4 0. 0 1 0 2 ( ) 0 3 1 2 3 4, - 5 6 7 1 1 1 1 1) 2) 3) 4) ( ) () H 2.79 10 10 He 2.72 10 9 C 1.01 10 7 N 3.13 10 6 O 2.38 10 7 Ne 3.44 10 6 Mg 1.076 10 6 Si 1 10 6 S 5.15 10 5 Ar 1.01 10 5 Fe 9.00

More information

1/2 ( ) 1 * 1 2/3 *2 up charm top -1/3 down strange bottom 6 (ν e, ν µ, ν τ ) -1 (e) (µ) (τ) 6 ( 2 ) 6 6 I II III u d ν e e c s ν µ µ t b ν τ τ (2a) (

1/2 ( ) 1 * 1 2/3 *2 up charm top -1/3 down strange bottom 6 (ν e, ν µ, ν τ ) -1 (e) (µ) (τ) 6 ( 2 ) 6 6 I II III u d ν e e c s ν µ µ t b ν τ τ (2a) ( August 26, 2005 1 1 1.1...................................... 1 1.2......................... 4 1.3....................... 5 1.4.............. 7 1.5.................... 8 1.6 GIM..........................

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

23 1 Section ( ) ( ) ( 46 ) , 238( 235,238 U) 232( 232 Th) 40( 40 K, % ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4

23 1 Section ( ) ( ) ( 46 ) , 238( 235,238 U) 232( 232 Th) 40( 40 K, % ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4 23 1 Section 1.1 1 ( ) ( ) ( 46 ) 2 3 235, 238( 235,238 U) 232( 232 Th) 40( 40 K, 0.0118% ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4 2 ( )2 4( 4 He) 12 3 16 12 56( 56 Fe) 4 56( 56 Ni)

More information

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π . 4cm 6 cm 4cm cm 8 cm λ()=a [kg/m] A 4cm A 4cm cm h h Y a G.38h a b () y = h.38h G b h X () S() = π() a,b, h,π V = ρ M = ρv G = M h S() 3 d a,b, h 4 G = 5 h a b a b = 6 ω() s v m θ() m v () θ() ω() dθ()

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x Compton Scattering Beaming exp [i k x ωt] k λ k π/λ ω πν k ω/c k x ωt ω k α c, k k x ωt η αβ k α x β diag + ++ x β ct, x O O x O O v k α k α β, γ k γ k βk, k γ k + βk k γ k k, k γ k + βk 3 k k 4 k 3 k

More information

a L = Ψ éiγ c pa qaa mc ù êë ( - )- úû Ψ 1 Ψ 4 γ a a 0, 1,, 3 {γ a, γ b } η ab æi O ö æo ö β, σ = ço I α = è - ø çèσ O ø γ 0 x iβ γ i x iβα i

a L = Ψ éiγ c pa qaa mc ù êë ( - )- úû Ψ 1 Ψ 4 γ a a 0, 1,, 3 {γ a, γ b } η ab æi O ö æo ö β, σ = ço I α = è - ø çèσ O ø γ 0 x iβ γ i x iβα i 解説 4 matsuo.mamoru jaea.go.jp 4 eizi imr.tohoku.ac.jp 4 maekawa.sadamichi jaea.go.jp i ii iii i Gd Tb Dy g khz Pt ii iii Keywords vierbein 3 dreibein 4 vielbein torsion JST-ERATO 1 017 1. 1..1 a L = Ψ

More information

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i 1. A. M. Turing [18] 60 Turing A. Gierer H. Meinhardt [1] : (GM) ) a t = D a a xx µa + ρ (c a2 h + ρ 0 (0 < x < l, t > 0) h t = D h h xx νh + c ρ a 2 (0 < x < l, t > 0) a x = h x = 0 (x = 0, l) a = a(x,

More information

Report10.dvi

Report10.dvi [76 ] Yuji Chinone - t t t = t t t = fl B = ce () - Δθ u u ΔS /γ /γ observer = fl t t t t = = =fl B = ce - Eq.() t ο t v ο fl ce () c v fl fl - S = r = r fl = v ce S =c t t t ο t S c = ce ce v c = ce v

More information

= hυ = h c λ υ λ (ev) = 1240 λ W=NE = Nhc λ W= N 2 10-16 λ / / Φe = dqe dt J/s Φ = km Φe(λ)v(λ)dλ THBV3_0101JA Qe = Φedt (W s) Q = Φdt lm s Ee = dφe ds E = dφ ds Φ Φ THBV3_0102JA Me = dφe ds M = dφ ds

More information

B 1 B.1.......................... 1 B.1.1................. 1 B.1.2................. 2 B.2........................... 5 B.2.1.......................... 5 B.2.2.................. 6 B.2.3..................

More information

Outline I. Introduction: II. Pr 2 Ir 2 O 7 Like-charge attraction III.

Outline I. Introduction: II. Pr 2 Ir 2 O 7 Like-charge attraction III. Masafumi Udagawa Dept. of Physics, Gakushuin University Mar. 8, 16 @ in Gakushuin University Reference M. U., L. D. C. Jaubert, C. Castelnovo and R. Moessner, arxiv:1603.02872 Outline I. Introduction:

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

Q & A Q A p

Q & A Q A p Q & A 2004.12 1 Q1. 12 2 A1. 11 3 p.1 1.1 2 Q2. A2. < > [ ] 10 5 15 (p.138) (p.150) (p.176) (p.167 ) 3 1. 4 1.6 1.6.1 (2) (p.6) Q3. 5 1 1:1.0 12 2 1:0.6 1:1.0 1:1.0 1:0.6 1:0.6 1:0.6 1:1.0 1:0.6 ( ) 1:1.0

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

Microsoft Word - 11問題表紙(選択).docx

Microsoft Word - 11問題表紙(選択).docx A B A.70g/cm 3 B.74g/cm 3 B C 70at% %A C B at% 80at% %B 350 C γ δ y=00 x-y ρ l S ρ C p k C p ρ C p T ρ l t l S S ξ S t = ( k T ) ξ ( ) S = ( k T) ( ) t y ξ S ξ / t S v T T / t = v T / y 00 x v S dy dx

More information

A

A A04-164 2008 2 13 1 4 1.1.......................................... 4 1.2..................................... 4 1.3..................................... 4 1.4..................................... 5 2

More information

IA

IA IA 31 4 11 1 1 4 1.1 Planck.............................. 4 1. Bohr.................................... 5 1.3..................................... 6 8.1................................... 8....................................

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

cm λ λ = h/p p ( ) λ = cm E pc [ev] 2.2 quark lepton u d c s t b e 1 3e electric charge e color charge red blue green qq

cm λ λ = h/p p ( ) λ = cm E pc [ev] 2.2 quark lepton u d c s t b e 1 3e electric charge e color charge red blue green qq 2007 2007 7 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 2007 2 4 5 6 6 2 2.1 1: KEK Web page 1 1 1 10 16 cm λ λ = h/p p ( ) λ = 10 16 cm E pc [ev] 2.2 quark lepton 2 2.2.1 u d c s t b + 2 3 e 1 3e electric charge

More information

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co 16 I ( ) (1) I-1 I-2 I-3 (2) I-1 ( ) (100 ) 2l x x = 0 y t y(x, t) y(±l, t) = 0 m T g y(x, t) l y(x, t) c = 2 y(x, t) c 2 2 y(x, t) = g (A) t 2 x 2 T/m (1) y 0 (x) y 0 (x) = g c 2 (l2 x 2 ) (B) (2) (1)

More information

4 19

4 19 I / 19 8 1 4 19 : : f(e, J), f(e) Phase mixing Landau Damping, violent relaxation : 2 2 : ( ) http://antwrp.gsfc.nasa.gov/apod/ap950917.html ( ) http://www-astro.physics.ox.ac.uk/~wjs/apm_grey.gif

More information

: 8.2: A group (i.e. a very small cluster) of galaxies superimposed on a x-ray image from the ROSAT satellite

: 8.2: A group (i.e. a very small cluster) of galaxies superimposed on a x-ray image from the ROSAT satellite 1 8 8.1 8.1.1 8.1: ( Ω = ρ/ρ c ) (Fukugita, M. et al., APJ 503 (1998) 518) ( 15%) (z 0 ) 1.................. 0.0026 h 1 0.0043 h 1 0.0014 h 1 A 2..................... 0.00086 h 1 0.00129 h 1 0.00051 h

More information

untitled

untitled 20 11 1 KEK 2 (cosmological perturbation theory) CMB R. Durrer, The theory of CMB Anisotropies, astro-ph/0109522; A. Liddle and D. Lyth, Cosmological Inflation and Large-Scale Structure (Cambridge University

More information

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [ 3 3. 3.. H H = H + V (t), V (t) = gµ B α B e e iωt i t Ψ(t) = [H + V (t)]ψ(t) Φ(t) Ψ(t) = e iht Φ(t) H e iht Φ(t) + ie iht t Φ(t) = [H + V (t)]e iht Φ(t) Φ(t) i t Φ(t) = V H(t)Φ(t), V H (t) = e iht V (t)e

More information

: , 2.0, 3.0, 2.0, (%) ( 2.

: , 2.0, 3.0, 2.0, (%) ( 2. 2017 1 2 1.1...................................... 2 1.2......................................... 4 1.3........................................... 10 1.4................................. 14 1.5..........................................

More information

1 2 2 (Dielecrics) Maxwell ( ) D H

1 2 2 (Dielecrics) Maxwell ( ) D H 2003.02.13 1 2 2 (Dielecrics) 4 2.1... 4 2.2... 5 2.3... 6 2.4... 6 3 Maxwell ( ) 9 3.1... 9 3.2 D H... 11 3.3... 13 4 14 4.1... 14 4.2... 14 4.3... 17 4.4... 19 5 22 6 THz 24 6.1... 24 6.2... 25 7 26

More information

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1) 1 9 v..1 c (216/1/7) Minoru Suzuki 1 1 9.1 9.1.1 T µ 1 (7.18) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1) E E µ = E f(e ) E µ (9.1) µ (9.2) µ 1 e β(e µ) 1 f(e )

More information

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat / Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiation and the Continuing Failure of the Bilinear Formalism,

More information

Formation process of regular satellites on the circumplanetary disk Hidetaka Okada Department of Earth Sciences, Undergraduate school of Scie

Formation process of regular satellites on the circumplanetary disk Hidetaka Okada Department of Earth Sciences, Undergraduate school of Scie Formation process of regular satellites on the circumplanetary disk Hidetaka Okada 22060172 Department of Earth Sciences, Undergraduate school of Science, Hokkaido University Planetary and Space Group

More information

chap9.dvi

chap9.dvi 9 AR (i) (ii) MA (iii) (iv) (v) 9.1 2 1 AR 1 9.1.1 S S y j = (α i + β i j) D ij + η j, η j = ρ S η j S + ε j (j =1,,T) (1) i=1 {ε j } i.i.d(,σ 2 ) η j (j ) D ij j i S 1 S =1 D ij =1 S>1 S =4 (1) y j =

More information

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin 2 2.1 F (t) 2.1.1 mẍ + kx = F (t). m ẍ + ω 2 x = F (t)/m ω = k/m. 1 : (ẋ, x) x = A sin ωt, ẋ = Aω cos ωt 1 2-1 x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

i 18 2H 2 + O 2 2H 2 + ( ) 3K

i 18 2H 2 + O 2 2H 2 + ( ) 3K i 18 2H 2 + O 2 2H 2 + ( ) 3K ii 1 1 1.1.................................. 1 1.2........................................ 3 1.3......................................... 3 1.4....................................

More information

,,.,,.,.,,,.,.,.,..,.,,.,.,,..,, CMB

,,.,,.,.,,,.,.,.,..,.,,.,.,,..,, CMB ,,.,,.,.,,,.,.,.,..,.,,.,.,,..,,. 1 3 2 3 2.1............................................. 3 2.2 CMB............................................... 5 2.3........................................... 7 2.4.............................................

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

1 a b cc b * 1 Helioseismology * * r/r r/r a 1.3 FTD 9 11 Ω B ϕ α B p FTD 2 b Ω * 1 r, θ, ϕ ϕ * 2 *

1 a b cc b * 1 Helioseismology * * r/r r/r a 1.3 FTD 9 11 Ω B ϕ α B p FTD 2 b Ω * 1 r, θ, ϕ ϕ * 2 * 448 8542 1 e-mail: ymasada@auecc.aichi-edu.ac.jp 1. 400 400 1.1 10 1 1 5 1 11 2 3 4 656 2015 10 1 a b cc b 22 5 1.2 * 1 Helioseismology * 2 6 8 * 3 1 0.7 r/r 1.0 2 r/r 0.7 3 4 2a 1.3 FTD 9 11 Ω B ϕ α B

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

(5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b)

(5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b) (5) 74 Re, bondar laer (Prandtl) Re z ω z = x (5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b) (5) 76 l V x ) 1/ 1 ( 1 1 1 δ δ = x Re x p V x t V l l (1-1) 1/ 1 δ δ δ δ = x Re p V x t V

More information

1 1. x 1 (1) x 2 + 2x + 5 dx d dx (x2 + 2x + 5) = 2(x + 1) x 1 x 2 + 2x + 5 = x + 1 x 2 + 2x x 2 + 2x + 5 y = x 2 + 2x + 5 dy = 2(x + 1)dx x + 1

1 1. x 1 (1) x 2 + 2x + 5 dx d dx (x2 + 2x + 5) = 2(x + 1) x 1 x 2 + 2x + 5 = x + 1 x 2 + 2x x 2 + 2x + 5 y = x 2 + 2x + 5 dy = 2(x + 1)dx x + 1 . ( + + 5 d ( + + 5 ( + + + 5 + + + 5 + + 5 y + + 5 dy ( + + dy + + 5 y log y + C log( + + 5 + C. ++5 (+ +4 y (+/ + + 5 (y + 4 4(y + dy + + 5 dy Arctany+C Arctan + y ( + +C. + + 5 ( + log( + + 5 Arctan

More information

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz 1 2 (a 1, a 2, a n ) (b 1, b 2, b n ) A (1.1) A = a 1 b 1 + a 2 b 2 + + a n b n (1.1) n A = a i b i (1.2) i=1 n i 1 n i=1 a i b i n i=1 A = a i b i (1.3) (1.3) (1.3) (1.1) (ummation convention) a 11 x

More information

廃棄物処理施設生活環境影響調査指針

廃棄物処理施設生活環境影響調査指針 - - 0.04ppm 0.1ppm 10ppm 0ppm 0.10mg/m 3 0.0 mg/m 3 0.06ppm 0.04ppm 0.06ppm 0.003 mg/m 3 0. mg/m 3 0. mg/m 3 0.15 mg/m 3 - -1 - 0.6pg-TEQ/m 3 53 3 1 0.10.ppm 0.0ppm 5 6 16 136 0.0ppm 7 15 7 31 0.04g-Hg/m

More information

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n 003...............................3 Debye................. 3.4................ 3 3 3 3. Larmor Cyclotron... 3 3................ 4 3.3.......... 4 3.3............ 4 3.3...... 4 3.3.3............ 5 3.4.........

More information

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a 1 2 2.1 (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a) L ( ) ) * 2) W Z 1/2 ( - ) d u + e + ν e 1 1 0 0

More information

km2 km2 km2 km2 km2 22 4 H20 H20 H21 H20 (H22) (H22) (H22) L=600m L=430m 1 H14.04.12 () 1.6km 2 H.14.05.31 () 3km 3 4 5 H.15.03.18 () 3km H.15.06.20 () 1.1km H.15.06.30 () 800m 6 H.15.07.18

More information

B

B B07557 0 0 (AGN) AGN AGN X X AGN AGN Geant4 AGN X X X (AGN) AGN AGN X AGN. AGN AGN Seyfert Seyfert Seyfert AGN 94 Carl Seyfert Seyfert Seyfert z < 0. Seyfert I II I 000 km/s 00 km/s II AGN (BLR) (NLR)

More information

1 r 8, , 238 N, Z 28, 50, 82, 126 r cm cm 3 1,000 1 s s slow s 8 s 2 2 s s * 1 * 2 * 3 1 N 50, 82, s * r

1 r 8, , 238 N, Z 28, 50, 82, 126 r cm cm 3 1,000 1 s s slow s 8 s 2 2 s s * 1 * 2 * 3 1 N 50, 82, s * r r 181 8588 2 21 1 e-mail: shinya.wanajo@nao.ac.jp r r r r r 1. r r r r r 1.1 r 1 10 107 1 7 1 r 8,000 300 232 235, 238 N, Z 28, 50, 82, 126 r 10 7 10 11 cm 3 10 25 cm 3 1,000 1 s s slow s 8 s 2 2 s s *

More information

スケーリング理論とはなにか? - --尺度を変えて見えること--

スケーリング理論とはなにか?  - --尺度を変えて見えること-- ? URL: http://maildbs.c.u-tokyo.ac.jp/ fukushima mailto:hukusima@phys.c.u-tokyo.ac.jp DEX-SMI @ 2006 12 17 ( ) What is scaling theory? DEX-SMI 1 / 40 Outline Outline 1 2 3 4 ( ) What is scaling theory?

More information

輻射の量子論、選択則、禁制線、許容線

輻射の量子論、選択則、禁制線、許容線 Radiative Processes in Astrophysics 005/8/1 http://wwwxray.ess.sci.osaka- u.ac.jp/~hayasida Semi-Classical Theory of Radiative Transitions r r 1/ 4 H = ( cp ea) m c + + eφ nonrelativistic limit, Coulomb

More information

Lagrange.dvi

Lagrange.dvi Lagrange 1 2006.2.10 1 Introduction CfA survey 2dF SDSS high-z Euler Lagrange Lagrange CDM Lagrange Lagrange 2 Newton Friedmann Newton Newton Newton [1,2,3,4,5] ρ + r ρu = 0, 1 t r u +u r u = 1 t r ρ rp

More information

I

I I 6 4 10 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

µµ InGaAs/GaAs PIN InGaAs PbS/PbSe InSb InAs/InSb MCT (HgCdTe)

µµ InGaAs/GaAs PIN InGaAs PbS/PbSe InSb InAs/InSb MCT (HgCdTe) 1001 µµ 1.... 2 2.... 7 3.... 9 4. InGaAs/GaAs PIN... 10 5. InGaAs... 17 6. PbS/PbSe... 18 7. InSb... 22 8. InAs/InSb... 23 9. MCT (HgCdTe)... 25 10.... 28 11.... 29 12. (Si)... 30 13.... 33 14.... 37

More information

1. : 1.5 2. ( ): 2.5 3. : 1 ( ) / minimum solar nebula model ( ) http://antwrp.gsfc.nasa.gov/apod/ap950917.html ( ) http://www-astro.physics.ox.ac.uk/~wjs/apm_grey.gif ( ) SDSS : d 2 r i dt 2 ÿ j i

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes ) ( 3 7 4 ) 2 2 ) 8 2 954 2) 955 3) 5) J = σe 2 6) 955 7) 9) 955 Statistical-Mechanical Theory of Irreversible Processes 957 ) 3 4 2 A B H (t) = Ae iωt B(t) = B(ω)e iωt B(ω) = [ Φ R (ω) Φ R () ] iω Φ R (t)

More information

2 R U, U Hausdorff, R. R. S R = (S, A) (closed), (open). (complete projective smooth algebraic curve) (cf. 2). 1., ( ).,. countable ( 2 ) ,,.,,

2 R U, U Hausdorff, R. R. S R = (S, A) (closed), (open). (complete projective smooth algebraic curve) (cf. 2). 1., ( ).,. countable ( 2 ) ,,.,, 15, pp.1-13 1 1.1,. 1.1. C ( ) f = u + iv, (, u, v f ). 1 1. f f x = i f x u x = v y, u y = v x.., u, v u = v = 0 (, f = 2 f x + 2 f )., 2 y2 u = 0. u, u. 1,. 1.2. S, A S. (i) A φ S U φ C. (ii) φ A U φ

More information

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1 QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1 (vierbein) QCD QCD 1 1: QCD QCD Γ ρ µν A µ R σ µνρ F µν g µν A µ Lagrangian gr TrFµν F µν No. Yes. Yes. No. No! Yes! [1] Nash & Sen [2] Riemann

More information

0 s T (s) /CR () v 2 /v v 2 v = T (jω) = + jωcr (2) = + (ωcr) 2 ω v R=Ω C=F (b) db db( ) v 2 20 log 0 [db] (3) v R v C v 2 (a) ω (b) : v o v o =

0 s T (s) /CR () v 2 /v v 2 v = T (jω) = + jωcr (2) = + (ωcr) 2 ω v R=Ω C=F (b) db db( ) v 2 20 log 0 [db] (3) v R v C v 2 (a) ω (b) : v o v o = RC LC RC 5 2 RC 2 2. /sc sl ( ) s = jω j j ω [rad/s] : C L R sc sl R 2.2 T (s) ( T (s) = = /CR ) + scr s + /CR () 0 s T (s) /CR () v 2 /v v 2 v = T (jω) = + jωcr (2) = + (ωcr) 2 ω v R=Ω C=F (b) db db(

More information

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional 19 σ = P/A o σ B Maximum tensile strength σ 0. 0.% 0.% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional limit ε p = 0.% ε e = σ 0. /E plastic strain ε = ε e

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2 Hanbury-Brown Twiss (ver. 1.) 24 2 1 1 1 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 3 3 Hanbury-Brown Twiss ( ) 4 3.1............................................

More information

Microsoft Word - 章末問題

Microsoft Word - 章末問題 1906 R n m 1 = =1 1 R R= 8h ICP s p s HeNeArXe 1 ns 1 1 1 1 1 17 NaCl 1.3 nm 10nm 3s CuAuAg NaCl CaF - - HeNeAr 1.7(b) 2 2 2d = a + a = 2a d = 2a 2 1 1 N = 8 + 6 = 4 8 2 4 4 2a 3 4 π N πr 3 3 4 ρ = = =

More information

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence Hanbury-Brown Twiss (ver. 2.) 25 4 4 1 2 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 4 3 Hanbury-Brown Twiss ( ) 5 3.1............................................

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

放射線化学, 92, 39 (2011)

放射線化学, 92, 39 (2011) V. M. S. V. 1 Contents of the lecture note by Prof. V. M. Byakov and Dr. S. V. Stepanov (Institute of Theoretical and Experimental Physics, Russia) are described in a series of articles. The first article

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

all.dvi

all.dvi I 1 Density Matrix 1.1 ( (Observable) Ô :ensemble ensemble average) Ô en =Tr ˆρ en Ô ˆρ en Tr  n, n =, 1,, Tr  = n n  n Tr  I w j j ( j =, 1,, ) ˆρ en j w j j ˆρ en = j w j j j Ô en = j w j j Ô j emsemble

More information

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K 2 2 T c µ T c 1 1.1 1911 Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 1 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K τ 4.2K σ 58 213 email:takada@issp.u-tokyo.ac.jp 1933 Meissner Ochsenfeld λ = 1 5 cm B = χ B =

More information

( ) 2 self-consistent 1 3) ( ) 2.1 ( ) ( 1 kpc 10 8 M 10 4 K) 1024 2 4096 2 100 1680 ( 1) 10 K 10 4 5 K tangled-web model ( ) 2

( ) 2 self-consistent 1 3) ( ) 2.1 ( ) ( 1 kpc 10 8 M 10 4 K) 1024 2 4096 2 100 1680 ( 1) 10 K 10 4 5 K tangled-web model ( ) 2 Numerical Modeling of the Interstellar Medium WADA Keiichi (National Astronomical Observatory of Japan) Abstract The interstellar medium in galaxies has a complicated multi-phase structure. However, in

More information

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j 6 6.. [, b] [, d] ij P ij ξ ij, η ij f Sf,, {P ij } Sf,, {P ij } k m i j m fξ ij, η ij i i j j i j i m i j k i i j j m i i j j k i i j j kb d {P ij } lim Sf,, {P ij} kb d f, k [, b] [, d] f, d kb d 6..

More information

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100 positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) 0.5 1.5MeV : thermalization 10 100 m psec 100psec nsec E total = 2mc 2 + E e + + E e Ee+ Ee-c mc

More information

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i July 8, 4. H H H int H H H int H int (x)d 3 x Schrödinger Picture Ψ(t) S e iht Ψ H O S Heisenberg Picture Ψ H O H (t) e iht O S e iht Interaction Picture Ψ(t) D e iht Ψ(t) S O D (t) e iht O S e ih t (Dirac

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â 0 = Tr Âe βĥ0 Tr e βĥ0 = dγ e βh 0(p,q) A(p, q) dγ e βh 0(p,q) (5.2) e βĥ0

5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â 0 = Tr Âe βĥ0 Tr e βĥ0 = dγ e βh 0(p,q) A(p, q) dγ e βh 0(p,q) (5.2) e βĥ0 5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â = Tr Âe βĥ Tr e βĥ = dγ e βh (p,q) A(p, q) dγ e βh (p,q) (5.2) e βĥ A(p, q) p q Â(t) = Tr Â(t)e βĥ Tr e βĥ = dγ() e βĥ(p(),q())

More information

1. ( ) 1.1 t + t [m]{ü(t + t)} + [c]{ u(t + t)} + [k]{u(t + t)} = {f(t + t)} (1) m ü f c u k u 1.2 Newmark β (1) (2) ( [m] + t ) 2 [c] + β( t)2

1. ( ) 1.1 t + t [m]{ü(t + t)} + [c]{ u(t + t)} + [k]{u(t + t)} = {f(t + t)} (1) m ü f c u k u 1.2 Newmark β (1) (2) ( [m] + t ) 2 [c] + β( t)2 212 1 6 1. (212.8.14) 1 1.1............................................. 1 1.2 Newmark β....................... 1 1.3.................................... 2 1.4 (212.8.19)..................................

More information

³ÎΨÏÀ

³ÎΨÏÀ 2017 12 12 Makoto Nakashima 2017 12 12 1 / 22 2.1. C, D π- C, D. A 1, A 2 C A 1 A 2 C A 3, A 4 D A 1 A 2 D Makoto Nakashima 2017 12 12 2 / 22 . (,, L p - ). Makoto Nakashima 2017 12 12 3 / 22 . (,, L p

More information

土地税制の理論的・計量的分析

土地税制の理論的・計量的分析 126 312 1 126 312... 2... 4 I...12...12...12...14...14...16...16...17...20...22...22...24...25 II...31...33...33...33...36...36...38 2...41...41...42...50...50...51 III...54...54...54...54...55...55...57...57...58...60...60...60...63...65...67...67

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c)   yoshioka/education-09.html pdf 1 2009 1 ( ) ( 40 )+( 60 ) 1 1. 2. Schrödinger 3. (a) (b) (c) http://goofy.phys.nara-wu.ac.jp/ yoshioka/education-09.html pdf 1 1. ( photon) ν λ = c ν (c = 3.0 108 /m : ) ɛ = hν (1) p = hν/c = h/λ (2) h

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................

More information