Stanによるハミルトニアンモンテカルロ法を用いたサンプリングについて
|
|
|
- あやか かいて
- 6 years ago
- Views:
Transcription
1 Stan によるハミルトニアンモンテカルロ法を用いたサンプリングについて 10 月 22 日中村文士 1
2 目次 1.STANについて 2.RでSTANをするためのインストール 3.STANのコード記述方法 4.STANによるサンプリングの例 2
3 1.STAN について ハミルトニアンモンテカルロ法に基づいた事後分布からのサンプリングなどができる STAN の HP: mc-stan.org 3
4 由来 Stanislaw Ulam( モンテカルロ法の考案した人 ) の頭文字から 使い方 Stan のプログラミング言語でデータやモデルを記述することでサンプリング 特徴 Stan のコードを C++ に変換して C++ 上でコンパイル 実行をしている 自動で微分が行われる ( ハミルトニアンモンテカルロ法で微分が必要 ) いくつかのプログラミング言語から Stan のコードを呼びせる オープンソースソフト (GitHub) 4
5 事後分布からサンプリングしてやりたいことの例 学習データ x n = x 1,, x n 学習モデル p x w パラメータの事前分布 φ(w) n パラメータの事後分布 p w x n i=1 p x i w φ(w) w j ~p(w x n ) 予測分布 p x x n = p x w p w x n dw 1 L j=1 L p x w j クロスバリデーション n CV = 1 n i=1 1 log E w p(x i w) 1 n log n i=1 L 1 1 L p x j=1 i w j 予測損失 G = q x log E w p x w M 1 M m=1 q(x m ) log L 1 L j=1 p x w j など 5
6 Stan のコードが使えるプログラミング言語 1. コマンドライン (CmdStan) 2.R(RStan) 3.Python(PyStan) 4.Matlab(MatlabStan) 5.Julia(Stan.jl) 6.Stata(StataStan) 6
7 2.RStan のインストール 1.R をインストール CRAN( やそのミラーサイト ( など ) から対応する OS のインストーラをダウンロードする 7
8 2.RTools をインストール から最新バージョンをダウンロード インストーラ ( 丸の部分にチェックを入れる必要がある ) 8
9 3.Stan のパッケージをインストール R を起動して install.package( rstan, dependencies=true) と入力して R を再起動 9
10 3.STAN のコード記述方法 Stan のコードは 7 つのブロックからなる 1.functions{: 他のブロックで用いるユーザ定義の関数を記述する ) 2.data{: モデルに必要なデータやハイパーパラメータの型を宣言する 3.transformed data{: データの中で宣言以外の処理をしたいものの宣言と処理を行う 10
11 4.parameters{: サンプリングするパラメータの構造を宣言する 5.transformed parameters{: パラメータの中で宣言以外の処理をするものの宣言と処理を行う 6.model{: サンプリングしたい分布に対数を取ったものを記述する 7.generated quantities{: 各サンプリングで得られたパラメータ毎に計算することができるブロック 1 model ブロック以外は省略可 2 順番は 1~7 の順番で書く必要がある 11
12 データの型 int: 整数型 real: 実数型 real<lower=0,upper=1>: 最小値 0 最大値 1の実数 ( 他の型でも制約はつけることができる ) real a[n] : 変数 aに実数の要素数がnの配列を宣言 vector[n]:n 次元ベクトル ( 要素は実数 ) simplex[n]:n 次元ベクトルで総和が1 matrix[n,m]:n 行 M 列の行列 ( 要素は実数 ) cov_matrix[m]:m 行 M 列の分散共分散行列 など 12
13 4.STAN によるサンプリングの例 1. ベルヌーイ分布 STAN のコード p x p = p x 1 p 1 x, φ p p α 1 1 p β 1 data{ int<lower=0> n; int<lower=0, upper=1> x[n]; parameters{ real<lower=0, upper=1> theta; model{ increment_log_prob(beta_log(theta, 1,1)); for(i in 1:n) increment_log_prob(bernoulli_log(x[i], theta)); データとかハイパーパラメータとかの型宣言をするブロック サンプリングするパラメータの型宣言をするブロック log φ(w) + log p(x n w) を定義するブロック 13
14 R のコード library(rstan) rstan_options(auto_write=true) options(mc.cores = parallel::detectcores()) n <- 100 true_theta <- 0.2 x <- numeric(n) for(i in 1:n){ if(runif(1) < true_theta ) x[i] <- 1 else x[i] <- 0 learning_data <- list(n = n, x = x) fit <- stan(file = "bernoulli.stan", data = learning_data, iter = 2000, chains = 4) print(fit) traceplot(fit, warmup=t) post_theta <- extract(fit, permuted=t) plot(post_theta$theta, rep(0, length(post_theta$theta))) R で stan を実行するための関数 file:stan コードのファイル名 data:stan 上に渡すデータ iter: 合計繰り返し回数 ( デフォルトは iter/2 がバーンイン ) chains: 初期値を変える回数 14
15 実行結果の例 mean: サンプリングの平均 se_mean: 標準誤差 sd: 標準偏差 2.5~97.5: 分位点 n_eff: 有効サンプルサイズ Rhat:Gelman,Rubin の収束判定指標 lp : 対数事後分布の値 15
16 2. 正規分布 p x w = 1 2πσ 2 exp x μ 2 2σ 2, φ μ α exp μ , φ σ2 β 1, β 2 σ 2 (β 1+1) exp β 2 1 σ 2 data{ int<lower=1> n; vector[n] x; transformed data{ real<lower=0> alpha; //hyperparameter of center real<lower=0> beta1; //hyperparameter of variance real<lower=0> beta2; //hyperparameter of variance alpha <- 100; beta1 <- 5; beta2 <- 5; parameters{ real mu; //parameter of center real<lower=0> vari; //parameter of variance model{ mu ~ normal(0,alpha); vari ~ inv_gamma(beta1, beta2); x ~ normal(mu, sqrt(vari)); generated quantities{ real sigma; //stardard deviation sigma <- sqrt(vari); サンプリングステートメント (increment_log_prob(normal_log( )) と同じ ) ハイパーパラメータを最初から決めているため transformed dataブロックに記述 16
17 3. 線形回帰 data{ int<lower=0> n; //number of samples int<lower=0> N; //dimension of x int<lower=0> M; //dimension of y matrix[n,n] x; matrix[n,m] y; real lambda; //hyperparameter of A parameters{ matrix[n,m] A; transformed parameters{ real<lower=0> squared_error; squared_error <- 0; p y x, w = 1 2π M exp y Ax 2 2, φ A λ i,j exp λ A ij for(i in 1:n){ squared_error <- squared_error + dot_self(y[i]-x[i]*a); model{ for(i in 1:N){ for(j in 1:M){ increment_log_prob(-lambda*fabs(a[i][j]));// for lasso // increment_log_prob(-lambda*pow(a[i][j],2)); //for ridge increment_log_prob(-squared_error); 17
18 4. 混合正規分布 ( 一番簡単なやつ ) p x w = 1 a N x + an(x b), φ(w) a φ 1 1 a φ 1 exp functions{ real gmm_log(real x, vector ratio, vector mu){ vector[rows(ratio)] sum_term; int K; K <- rows(ratio); for(k in 1:K){ sum_term[k] <- log(ratio[k]) + normal_log(x, mu[k],1); return log_sum_exp(sum_term); real gmm_vector_log(vector x, vector ratio, vector mu){ vector[rows(ratio)] sum_term; real log_model; int K; int n; K <- rows(ratio); n <- rows(x); log_model <- 0; for(i in 1:n){ for(k in 1:K){ sum_term[k] <- log(ratio[k]) + normal_log(x[i], mu[k],1); log_model <- log_model + log_sum_exp(sum_term); return log_model; data{ int<lower=0> n; //number of samples vector[n] x; real<lower=0> phi; //hyperparameter for mixing ratio transformed data{ real<lower=0> beta; //hyperparameter for centers(unmodeled) beta <- 100; parameters{ simplex[2] ratio; //mixing ratio real mu; //center of component model{ vector[2] mu_dash; mu_dash[1] <- 0; mu_dash[2] <- mu; //priors ratio ~ beta(phi,phi); mu ~ normal(0,beta); for(i in 1:n){ x[i] ~ gmm(ratio, mu_dash); //increment_log_prob(gmm_log(x[i],...)) と同じ b2 18
19 5. 結論 1.STAN のインストール方法を紹介した 2.STAN を用いた事後分布からのサンプリングについていくつかの分布を用いて紹介した 是非 STAN を使ってみてください 19
20 補足 20
21 ハミルトニアンモンテカルロ法について 1.w (0) の初期値を決めて t = 0 とする 確率分布 p w x n exp H w からサンプリング 2. 補助変数を p~n(0,1) で発生させる 3.w 0 = w t, p 0 = p,ε を決めて次の漸化式を w = w (L) になるまで繰り返す p τ = p τ ε 2 w H w τ, w τ + 1 = w τ + εp τ + 1 2, p τ + 1 = p τ ε H w τ w 4.min 1, exp H w L, p L H w t, p (t) の確率で w (t+1) = w (L), そうでなければ w (t+1) = w (t) 5.t = t + 1 として t が欲しいサンプルの個数でなければ 2 に戻る H w, p = H w + p2 2 Lとεをいい感じに決めてくれるものとしてNo-U-Turn Sampler(NUTS) があり STANのデフォルトアルゴリズムは 21NUTSである
22 Stan の参考文献 岩波データサイエンス Vol.1 ( 特集 ) ベイズ推論と MCMC のフリーソフト ( 買ってないが 目次に Stan を紹介したところがある ) [ 特集 ] ベイズ推論と MCMC のフリーソフトのサポートページ ( インストールの仕方が載ってる ) ( 基礎からのベイズ統計学 : ハミルトニアンモンテカルロ法による実践的入門 ( 付録に Rstan の例が載っている ) Bayesian Data Analysis ( 付録に Rstan の例が載っている 開発者の方が書かれた本なので上のものより詳しい ) 22
Probit , Mixed logit
Probit, Mixed logit 2016/5/16 スタートアップゼミ #5 B4 後藤祥孝 1 0. 目次 Probit モデルについて 1. モデル概要 2. 定式化と理解 3. 推定 Mixed logit モデルについて 4. モデル概要 5. 定式化と理解 6. 推定 2 1.Probit 概要 プロビットモデルとは. 効用関数の誤差項に多変量正規分布を仮定したもの. 誤差項には様々な要因が存在するため,
ベイズ統計入門
ベイズ統計入門 条件付確率 事象 F が起こったことが既知であるという条件の下で E が起こる確率を条件付確率 (codtoal probablt) という P ( E F ) P ( E F ) P( F ) 定義式を変形すると 確率の乗法公式となる ( E F ) P( F ) P( E F ) P( E) P( F E) P 事象の独立 ある事象の生起する確率が 他のある事象が生起するかどうかによって変化しないとき
Microsoft PowerPoint - 資料04 重回帰分析.ppt
04. 重回帰分析 京都大学 加納学 Division of Process Control & Process Sstems Engineering Department of Chemical Engineering, Koto Universit [email protected] http://www-pse.cheme.koto-u.ac.jp/~kano/ Outline
Microsoft Word - 補論3.2
補論 3. 多変量 GARC モデル 07//6 新谷元嗣 藪友良 対数尤度関数 3 章 7 節では 変量の対数尤度を求めた ここでは多変量の場合 とくに 変量について対数尤度を求める 誤差項 は平均 0 で 次元の正規分布に従うとする 単純化のため 分散と共分散は時間を通じて一定としよう ( この仮定は後で変更される ) したがって ij から添え字 を除くことができる このとき と の尤度関数は
C プログラミング演習 1( 再 ) 2 講義では C プログラミングの基本を学び 演習では やや実践的なプログラミングを通して学ぶ
C プログラミング演習 1( 再 ) 2 講義では C プログラミングの基本を学び 演習では やや実践的なプログラミングを通して学ぶ 今回のプログラミングの課題 次のステップによって 徐々に難易度の高いプログラムを作成する ( 参照用の番号は よくわかる C 言語 のページ番号 ) 1. キーボード入力された整数 10 個の中から最大のものを答える 2. 整数を要素とする配列 (p.57-59) に初期値を与えておき
12/1 ( ) GLM, R MCMC, WinBUGS 12/2 ( ) WinBUGS WinBUGS 12/2 ( ) : 12/3 ( ) :? ( :51 ) 2/ 71
2010-12-02 (2010 12 02 10 :51 ) 1/ 71 GCOE 2010-12-02 WinBUGS [email protected] http://goo.gl/bukrb 12/1 ( ) GLM, R MCMC, WinBUGS 12/2 ( ) WinBUGS WinBUGS 12/2 ( ) : 12/3 ( ) :? 2010-12-02 (2010 12
様々なミクロ計量モデル†
担当 : 長倉大輔 ( ながくらだいすけ ) この資料は私の講義において使用するために作成した資料です WEB ページ上で公開しており 自由に参照して頂いて構いません ただし 内容について 一応検証してありますが もし間違いがあった場合でもそれによって生じるいかなる損害 不利益について責任を負いかねますのでご了承ください 間違いは発見次第 継続的に直していますが まだ存在する可能性があります 1 カウントデータモデル
(1) プログラムの開始場所はいつでも main( ) メソッドから始まる 順番に実行され add( a,b) が実行される これは メソッドを呼び出す ともいう (2)add( ) メソッドに実行が移る この際 add( ) メソッド呼び出し時の a と b の値がそれぞれ add( ) メソッド
メソッド ( 教科書第 7 章 p.221~p.239) ここまでには文字列を表示する System.out.print() やキーボードから整数を入力する stdin.nextint() などを用いてプログラムを作成してきた これらはメソッドと呼ばれるプログラムを構成する部品である メソッドとは Java や C++ などのオブジェクト指向プログラミング言語で利用されている概念であり 他の言語での関数やサブルーチンに相当するが
コマンドラインから受け取った文字列の大文字と小文字を変換するプログラムを作成せよ 入力は 1 バイトの表示文字とし アルファベット文字以外は変換しない 1. #include <stdio.h> 2. #include <ctype.h> /*troupper,islower,isupper,tol
コマンドラインから受け取った文字列の大文字と小文字を変換するプログラムを作成せよ 入力は 1 バイトの表示文字とし アルファベット文字以外は変換しない 1. #include 2. #include /*troupper,islower,isupper,tolowerを使うため宣言*/ 3. 4. int get_n(char *); 5. void replace(char
プログラミング基礎
C プログラミング Ⅱ 演習 2-1(a) BMI による判定 文字列, 身長 height(double 型 ), 体重 weight (double 型 ) をメンバとする構造体 Data を定義し, それぞれのメンバの値をキーボードから入力した後, BMI を計算するプログラムを作成しなさい BMI の計算は関数化すること ( ) [ ] [ ] [ ] BMI = 体重 kg 身長 m 身長
kubo2015ngt6 p.2 ( ( (MLE 8 y i L(q q log L(q q 0 ˆq log L(q / q = 0 q ˆq = = = * ˆq = 0.46 ( 8 y 0.46 y y y i kubo (ht
kubo2015ngt6 p.1 2015 (6 MCMC [email protected], @KuboBook http://goo.gl/m8hsbm 1 ( 2 3 4 5 JAGS : 2015 05 18 16:48 kubo (http://goo.gl/m8hsbm 2015 (6 1 / 70 kubo (http://goo.gl/m8hsbm 2015 (6 2 /
医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.
医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987
演習2
神戸市立工業高等専門学校電気工学科 / 電子工学科専門科目 数値解析 2017.6.2 演習 2 山浦剛 ([email protected]) 講義資料ページ h t t p://clim ate.aic s. riken. jp/m embers/yamaura/num erical_analysis. html 曲線の推定 N 次多項式ラグランジュ補間 y = p N x = σ N x x
4 月 東京都立蔵前工業高等学校平成 30 年度教科 ( 工業 ) 科目 ( プログラミング技術 ) 年間授業計画 教科 :( 工業 ) 科目 :( プログラミング技術 ) 単位数 : 2 単位 対象学年組 :( 第 3 学年電気科 ) 教科担当者 :( 高橋寛 三枝明夫 ) 使用教科書 :( プロ
4 東京都立蔵前工業高等学校平成 30 年度教科 ( 工業 ) 科目 ( プログラミング技術 ) 年間授業計画 教科 :( 工業 ) 科目 :( プログラミング技術 ) 単位数 : 2 単位 対象学年組 :( 第 3 学年電気科 ) 教科担当者 :( 高橋寛 三枝明夫 ) 使用教科書 :( プログラミング技術 工業 333 実教出版 ) 共通 : 科目 プログラミング技術 のオリエンテーション プログラミング技術は
Microsoft PowerPoint - H17-5時限(パターン認識).ppt
パターン認識早稲田大学講義 平成 7 年度 独 産業技術総合研究所栗田多喜夫 赤穂昭太郎 統計的特徴抽出 パターン認識過程 特徴抽出 認識対象から何らかの特徴量を計測 抽出 する必要がある 認識に有効な情報 特徴 を抽出し 次元を縮小した効率の良い空間を構成する過程 文字認識 : スキャナ等で取り込んだ画像から文字の識別に必要な本質的な特徴のみを抽出 例 文字線の傾き 曲率 面積など 識別 与えられた未知の対象を
PowerPoint プレゼンテーション
非線形カルマンフィルタ ~a. 問題設定 ~ 離散時間非線形状態空間表現 x k + 1 = f x k y k = h x k + bv k + w k f : ベクトル値をとるx k の非線形関数 h : スカラ値をとるx k の非線形関数 v k システム雑音 ( 平均値 0, 分散 σ v 2 k ) x k + 1 = f x k,v k w k 観測雑音 ( 平均値 0, 分散 σ w
ビジネス統計 統計基礎とエクセル分析 正誤表
ビジネス統計統計基礎とエクセル分析 ビジネス統計スペシャリスト エクセル分析スペシャリスト 公式テキスト正誤表と学習用データ更新履歴 平成 30 年 5 月 14 日現在 公式テキスト正誤表 頁場所誤正修正 6 知識編第 章 -3-3 最頻値の解説内容 たとえば, 表.1 のデータであれば, 最頻値は 167.5cm というたとえば, 表.1 のデータであれば, 最頻値は 165.0cm ということになります
ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.
24(2012) (1 C106) 4 11 (2 C206) 4 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 (). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5... 6.. 7.,,. 8.,. 1. (75%)
NLMIXED プロシジャを用いた生存時間解析 伊藤要二アストラゼネカ株式会社臨床統計 プログラミング グループグルプ Survival analysis using PROC NLMIXED Yohji Itoh Clinical Statistics & Programming Group, A
NLMIXED プロシジャを用いた生存時間解析 伊藤要二アストラゼネカ株式会社臨床統計 プログラミング グループグルプ Survival analysis using PROC NLMIXED Yohji Itoh Clinical Statistics & Programming Group, AstraZeneca KK 要旨 : NLMIXEDプロシジャの最尤推定の機能を用いて 指数分布 Weibull
Microsoft PowerPoint - 14回パラメータ推定配布用.pptx
パラメータ推定の理論と実践 BEhavior Study for Transportation Graduate school, Univ. of Yamanashi 山梨大学佐々木邦明 最尤推定法 点推定量を求める最もポピュラーな方法 L n x n i1 f x i 右上の式を θ の関数とみなしたものが尤度関数 データ (a,b) が得られたとき, 全体の平均がいくつとするのがよいか 平均がいくつだったら
プログラミング実習I
プログラミング実習 I 05 関数 (1) 人間システム工学科井村誠孝 [email protected] 関数とは p.162 数学的には入力に対して出力が決まるもの C 言語では入出力が定まったひとまとまりの処理 入力や出力はあるときもないときもある main() も関数の一種 何かの仕事をこなしてくれる魔法のブラックボックス 例 : printf() 関数中で行われている処理の詳細を使う側は知らないが,
研修コーナー
l l l l l l l l l l l α α β l µ l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l
チュートリアル:ノンパラメトリックベイズ
{ x,x, L, xn} 2 p( θ, θ, θ, θ, θ, } { 2 3 4 5 θ6 p( p( { x,x, L, N} 2 x { θ, θ2, θ3, θ4, θ5, θ6} K n p( θ θ n N n θ x N + { x,x, L, N} 2 x { θ, θ2, θ3, θ4, θ5, θ6} log p( 6 n logθ F 6 log p( + λ θ F θ
cp-7. 配列
cp-7. 配列 (C プログラムの書き方を, パソコン演習で学ぶシリーズ ) https://www.kkaneko.jp/cc/adp/index.html 金子邦彦 1 本日の内容 例題 1. 月の日数配列とは. 配列の宣言. 配列の添え字. 例題 2. ベクトルの内積例題 3. 合計点と平均点例題 4. 棒グラフを描く配列と繰り返し計算の関係例題 5. 行列の和 2 次元配列 2 今日の到達目標
2009 5 1...1 2...3 2.1...3 2.2...3 3...10 3.1...10 3.1.1...10 3.1.2... 11 3.2...14 3.2.1...14 3.2.2...16 3.3...18 3.4...19 3.4.1...19 3.4.2...20 3.4.3...21 4...24 4.1...24 4.2...24 4.3 WinBUGS...25 4.4...28
FORTRAN( と C) によるプログラミング 5 ファイル入出力 ここではファイルからデータを読みこんだり ファイルにデータを書き出したりするプログラムを作成してみます はじめに テキスト形式で書かれたデータファイルに書かれているデータを読みこんで配列に代入し 標準出力に書き出すプログラムを作り
FORTRAN( と C) によるプログラミング 5 ファイル入出力 ここではファイルからデータを読みこんだり ファイルにデータを書き出したりするプログラムを作成してみます はじめに テキスト形式で書かれたデータファイルに書かれているデータを読みこんで配列に代入し 標準出力に書き出すプログラムを作ります FORTRAN の場合 OPEN 文でファイルを開いた後 標準入力の場合と同様に READ 文でデータを読みこみます
一般演題(ポスター)
6 5 13 : 00 14 : 00 A μ 13 : 00 14 : 00 A β β β 13 : 00 14 : 00 A 13 : 00 14 : 00 A 13 : 00 14 : 00 A β 13 : 00 14 : 00 A β 13 : 00 14 : 00 A 13 : 00 14 : 00 A β 13 : 00 14 : 00 A 13 : 00 14 : 00 A
3/4/8:9 { } { } β β β α β α β β
α β : α β β α β α, [ ] [ ] V, [ ] α α β [ ] β 3/4/8:9 3/4/8:9 { } { } β β β α β α β β [] β [] β β β β α ( ( ( ( ( ( [ ] [ ] [ β ] [ α β β ] [ α ( β β ] [ α] [ ( β β ] [] α [ β β ] ( / α α [ β β ] [ ] 3
0 部分的最小二乗回帰 Partial Least Squares Regression PLS 明治大学理 学部応用化学科 データ化学 学研究室 弘昌
0 部分的最小二乗回帰 Parial Leas Squares Regressio PLS 明治大学理 学部応用化学科 データ化学 学研究室 弘昌 部分的最小二乗回帰 (PLS) とは? 部分的最小二乗回帰 (Parial Leas Squares Regressio, PLS) 線形の回帰分析手法の つ 説明変数 ( 記述 ) の数がサンプルの数より多くても計算可能 回帰式を作るときにノイズの影響を受けにくい
Variational Auto Encoder
Variational Auto Encoder nzw 216 年 12 月 1 日 1 はじめに 深層学習における生成モデルとして Generative Adversarial Nets (GAN) と Variational Auto Encoder (VAE) [1] が主な手法として知られている. 本資料では,VAE を紹介する. 本資料は, 提案論文 [1] とチュートリアル資料 [2]
meiji_resume_1.PDF
β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E
スライド 1
暫定版修正 加筆の可能性あり ( 付録 ) デルタ関数. ローレンツ関数. ガウス関数 3. Sinc 関数 4. Sinc 関数 5. 指数関数 6. 量子力学 : デルタ関数 7. プレメリの公式 8. 電磁気学 : デルタ関数 9. デルタ関数 : スケール 微分 デルタ関数 (delta function) ( ) δ ( ) ( ), δ ( ), δ ( ), δ ( ) f x x dx
「統 計 数 学 3」
関数の使い方 1 関数と引数 関数の構造 関数名 ( 引数 1, 引数 2, 引数 3, ) 例 : マハラノビス距離を求める関数 mahalanobis(data,m,v) 引数名を指定して記述する場合 mahalanobis(x=data, center=m, cov=v) 2 関数についてのヘルプ 基本的な関数のヘルプの呼び出し? 関数名 例 :?mean 例 :?mahalanobis 指定できる引数を確認する関数
統計学 - 社会統計の基礎 - 正規分布 標準正規分布累積分布関数の逆関数 t 分布正規分布に従うサンプルの平均の信頼区間 担当 : 岸 康人 資料ページ :
統計学 - 社会統計の基礎 - 正規分布 標準正規分布累積分布関数の逆関数 t 分布正規分布に従うサンプルの平均の信頼区間 担当 : 岸 康人 資料ページ : https://goo.gl/qw1djw 正規分布 ( 復習 ) 正規分布 (Normal Distribution)N (μ, σ 2 ) 別名 : ガウス分布 (Gaussian Distribution) 密度関数 Excel:= NORM.DIST
分析のステップ Step 1: Y( 目的変数 ) に対する値の順序を確認 Step 2: モデルのあてはめ を実行 適切なモデルの指定 Step 3: オプションを指定し オッズ比とその信頼区間を表示 以下 このステップに沿って JMP の操作をご説明します Step 1: Y( 目的変数 ) の
JMP によるオッズ比 リスク比 ( ハザード比 ) の算出と注意点 SAS Institute Japan 株式会社 JMP ジャパン事業部 2011 年 10 月改定 1. はじめに 本文書は JMP でロジスティック回帰モデルによるオッズ比 比例ハザードモデルによるリスク比 それぞれに対する信頼区間を求める操作方法と注意点を述べたものです 本文書は JMP 7 以降のバージョンに対応しております
読めば必ずわかる 分散分析の基礎 第2版
2 2003 12 5 ( ) ( ) 2 I 3 1 3 2 2? 6 3 11 4? 12 II 14 5 15 6 16 7 17 8 19 9 21 10 22 11 F 25 12 : 1 26 3 I 1 17 11 x 1, x 2,, x n x( ) x = 1 n n i=1 x i 12 (SD ) x 1, x 2,, x n s 2 s 2 = 1 n n (x i x)
68 A mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1
67 A Section A.1 0 1 0 1 Balmer 7 9 1 0.1 0.01 1 9 3 10:09 6 A.1: A.1 1 10 9 68 A 10 9 10 9 1 10 9 10 1 mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1 A.1. 69 5 1 10 15 3 40 0 0 ¾ ¾ É f Á ½ j 30 A.3: A.4: 1/10
‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í
Markov 2009 10 2 Markov 2009 10 2 1 / 25 1 (GA) 2 GA 3 4 Markov 2009 10 2 2 / 25 (GA) (GA) L ( 1) I := {0, 1} L f : I (0, ) M( 2) S := I M GA (GA) f (i) i I Markov 2009 10 2 3 / 25 (GA) ρ(i, j), i, j I
y = x x R = 0. 9, R = σ $ = y x w = x y x x w = x y α ε = + β + x x x y α ε = + β + γ x + x x x x' = / x y' = y/ x y' =
y x = α + β + ε =,, ε V( ε) = E( ε ) = σ α $ $ β w ( 0) σ = w σ σ y α x ε = + β + w w w w ε / w ( w y x α β ) = α$ $ W = yw βwxw $β = W ( W) ( W)( W) w x x w x x y y = = x W y W x y x y xw = y W = w w
PowerPoint プレゼンテーション
復習 ) 時系列のモデリング ~a. 離散時間モデル ~ y k + a 1 z 1 y k + + a na z n ay k = b 0 u k + b 1 z 1 u k + + b nb z n bu k y k = G z 1 u k = B(z 1 ) A(z 1 u k ) ARMA モデル A z 1 B z 1 = 1 + a 1 z 1 + + a na z n a = b 0
日本製薬工業協会シンポジウム 生存時間解析の評価指標に関する最近の展開ー RMST (restricted mean survival time) を理解するー 2. RMST の定義と統計的推測 2018 年 6 月 13 日医薬品評価委員会データサイエンス部会タスクフォース 4 生存時間解析チー
日本製薬工業協会シンポジウム 生存時間解析の評価指標に関する最近の展開ー RMST (restricted mean survival time) を理解するー 2. RMST の定義と統計的推測 2018 年 6 月 13 日医薬品評価委員会データサイエンス部会タスクフォース 4 生存時間解析チーム 日本新薬 ( 株 ) 田中慎一 留意点 本発表は, 先日公開された 生存時間型応答の評価指標 -RMST(restricted
JavaプログラミングⅠ
Java プログラミング Ⅰ 11 回目多次元配列 今日の講義で学ぶ内容 2 次元配列とその使い方 不規則な 2 次元配列.length 修飾子 2 次元配列 1 次元配列配列要素が直線的に並ぶ配列です次のように考えると分かりやすいでしょう 2 次元配列配列要素が平面的に並ぶ配列です次のように考えると分かりやすいでしょう 2 次元以上の配列のことを多次元配列といいます 2 次元配列の利用 2 次元配列の利用手順配列変数の宣言
メソッドのまとめ
メソッド (4) 擬似コードテスト技法 http://java.cis.k.hosei.ac.jp/ 授業の前に自己点検以下のことがらを友達に説明できますか? メソッドの宣言とは 起動とは何ですか メソッドの宣言はどのように書きますか メソッドの宣言はどこに置きますか メソッドの起動はどのようにしますか メソッドの仮引数 実引数 戻り値とは何ですか メソッドの起動にあたって実引数はどのようにして仮引数に渡されますか
gengo1-11
関数の再帰定義 自然数 n の階乗 n! を計算する関数を定義してみる 引数は整数 返却値も整数 n! = 1*2*3*... * (n 1)*n である ただし 0! = 1 とする int factorial(int n) int i, tmp=1; if( n>0 ) for(i=1; i
10:30 12:00 P.G. vs vs vs 2
1 10:30 12:00 P.G. vs vs vs 2 LOGIT PROBIT TOBIT mean median mode CV 3 4 5 0.5 1000 6 45 7 P(A B) = P(A) + P(B) - P(A B) P(B A)=P(A B)/P(A) P(A B)=P(B A) P(A) P(A B) P(A) P(B A) P(B) P(A B) P(A) P(B) P(B
第9回 配列(array)型の変数
第 12 回 配列型の変数 情報処理演習 ( テキスト : 第 4 章, 第 8 章 ) 今日の内容 1. 配列の必要性 2. 配列の宣言 3. 配列変数のイメージ 4. 配列変数を使用した例 5. 範囲を超えた添字を使うと? 6. 多次元配列変数 7. 多次元配列変数を使用した例 8. データのソーティング 9. 今日の練習問題 多数のデータ処理 1. 配列の必要性 ( テキスト 31 ページ )
講義のーと : データ解析のための統計モデリング. 第2回
Title 講義のーと : データ解析のための統計モデリング Author(s) 久保, 拓弥 Issue Date 2008 Doc URL http://hdl.handle.net/2115/49477 Type learningobject Note この講義資料は, 著者のホームページ http://hosho.ees.hokudai.ac.jp/~kub ードできます Note(URL)http://hosho.ees.hokudai.ac.jp/~kubo/ce/EesLecture20
Microsoft PowerPoint - 09.pptx
情報処理 Ⅱ 第 9 回 2014 年 12 月 22 日 ( 月 ) 関数とは なぜ関数 関数の分類 自作関数 : 自分で定義する. ユーザ関数 ユーザ定義関数 などともいう. 本日のテーマ ライブラリ関数 : 出来合いのもの.printf など. なぜ関数を定義するのか? 処理を共通化 ( 一般化 ) する プログラムの見通しをよくする 機能分割 ( モジュール化, 再利用 ) 責任 ( あるいは不具合の発生源
Microsoft PowerPoint - 時系列解析(11)_講義用.pptx
時系列解析 () ボラティリティ 時変係数 AR モデル 東京 学数理 情報教育研究センター 北川源四郎 概要. 分散 定常モデル : 線形化 正規近似. 共分散 定常モデル : 時変係数モデル 3. 線形 ガウス型状態空間モデル 分散 共分散 定常 3 地震波 経 5 定常時系列のモデル 4. 平均 定常 トレンド, 季節調整. 分散 定常 線形 ガウスモデル ( カルマンフィルタ ) で推定するためには
PowerPoint プレゼンテーション
プログラミング初級 第 7 回 2017 年 5 月 29 日 配列 ( 復習 )~ 文字列 1 配列とは 2 配列 : 複数の変数をグループとしてまとめて扱うもの 配列 変数 int data[10]; 整数型の配列 同種のデータ型を連続して確保したものを配列とよぶ = 整数がそれぞれにひとつずつ入る箱を 10 個用意したようなもの int data; 整数型の変数 = 整数がひとつ入る dataという名前の箱を用意したようなもの
Part () () Γ Part ,
Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35
みっちりGLM
2015/3/27 12:00-13:00 日本草地学会若手 R 統計企画 ( 信州大学農学部 ) R と一般化線形モデル入門 山梨県富士山科学研究所 安田泰輔 謝辞 : 日本草地学会若手の会の皆様 発表の機会を頂き たいへんありがとうございます! 茨城大学 学生時代 自己紹介 ベータ二項分布を用いた種の空間分布の解析 所属 : 山梨県富士山科学研究所 最近の研究テーマ 近接リモートセンシングによる半自然草地のモニタリング手法開発
Microsoft PowerPoint - program.ppt [互換モード]
プログラミング演習 バージョン 1 担当教員 : 綴木馴 プログラムの決まりについて学ぶ おすすめする参考書 ザ C 戸川隼人サイエンス社 本日の予定 1. 授業の説明. 2. コンパイラーのインストール. プログラムの決まりについて学ぶ,P31 /* The most in C */ /* hello.c */ printf("hello,world n"); プログラムの決まり ( コメント )
LLG-R8.Nisus.pdf
d M d t = γ M H + α M d M d t M γ [ 1/ ( Oe sec) ] α γ γ = gµ B h g g µ B h / π γ g = γ = 1.76 10 [ 7 1/ ( Oe sec) ] α α = λ γ λ λ λ α γ α α H α = γ H ω ω H α α H K K H K / M 1 1 > 0 α 1 M > 0 γ α γ =
Java講座
~ 第 1 回 ~ 情報科学部コンピュータ科学科 2 年竹中優 プログラムを書く上で Hello world 基礎事項 演算子 構文 2 コメントアウト (//, /* */, /** */) をしよう! インデントをしよう! 変数などにはわかりやすい名前をつけよう! 要するに 他人が見て理解しやすいコードを書こうということです 3 1. Eclipse を起動 2. ファイル 新規 javaプロジェクト
memo
数理情報工学特論第一 機械学習とデータマイニング 4 章 : 教師なし学習 3 かしまひさし 鹿島久嗣 ( 数理 6 研 ) [email protected].~ DEPARTMENT OF MATHEMATICAL INFORMATICS 1 グラフィカルモデルについて学びます グラフィカルモデル グラフィカルラッソ グラフィカルラッソの推定アルゴリズム 2 グラフィカルモデル 3 教師なし学習の主要タスクは
診療ガイドライン外来編2014(A4)/FUJGG2014‐01(大扉)
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
