Size: px
Start display at page:

Download ""

Transcription

1 2009 5

2

3 WinBUGS D/G () λ...50 i

4 7.2 pd σ µ µ Thinning µσthinning ii

5 PSA A PSA A A A A.4 PSA B B.1 NUCIA B B.3 NUCIA C D E PSA E.1 PSA E.2 PSA F PSA iii

6 () iv

7 1 PSA 13 PSA PSA 18 PSA PSA ( 2) 2 NUCIA [1] PSA [2] [3] EF 2 NUCIA PSA NUCIA PSA 1

8 NUCIA PSA NUCIA PSA PSA PSA A /

9 2 2.1 NUCIA PSA ABWR / PSA NUCIA NUCIA PSA XNUCIA Y NUCIA p Y Xp/ p X / (MCMC)

10 1, 1 2, 2 m, m 4 LogNorm( m, m ) 1 2 m Beta(,) p p 1 p 2 p m 1 X 1 Poisson( 1 T 1 Y 1 Bin(p 1, X X 2 Poisson( 2 T 2 Y 2 Bin(p 2, X 2 m m X m Poisson( m T m Y m Bin(p m, X m i i p i i T i i X i i Y i i ( µ, σ ) LogNorm Poisson (,T ) λ ( α, β ) Beta Bin ( p, X ) 2-1

11 /4 [h] 5 [] [1/h] 5% [1/h] [1/h] 95% [1/h] EF * E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E

12 /4 [h] 5 [] [1/h] 5% [1/h] [1/h] 95% [1/h] EF *6 6 BWR 0 3.6E E E E E E E E E E E E E E E E E E E E E E E E E (PWR) 0 2.2E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E / 1 3.4E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E * E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E / 0 1.9E E E E E () 0 1.9E E E E E E E E E E / 0 2.4E E E E E ( 0 2.4E E E E E E E E E E (BWR) 0 4.4E E E E E (PWR) 0 1.2E E E E E PLR MG E E E E E RPS,CRDM MG 0 1.3E E E E E (PLR) 2 6.7E E E E E E E E E E

13 /4 [h] 5 [] [1/h] 5% [1/h] [1/h] 95% [1/h] EF * E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E * E E E E E * E E E E E E E E E E E E E E E * E E E E E E E E E E * E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E / 3 4.4E E E E E E E E E E ( 4 2.4E E E E E E E E E E E E E E E E E E E E E E E E E / 4 5.9E E E E E E E E E E / 8 7.5E E E E E E E E E E / 2 3.0E E E E E E E E E E / 5 2.0E E E E E

14 /4 [h] 5 [] [1/h] 5% [1/h] [1/h] 95% [1/h] EF * E E E E E / 1 5.6E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E NUCIA() 6.EF 2 (= 7. µ WinBUGSµ

15 % 95% EF *2 *1 [1/d] [1/d] [1/d] [1/d] 9 DG E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E NUCIA() 2.EF 2 (=

16 ipsanuciap i PSAX i Y i Bin(p i,x i ) f i ( p, X ) Y ~ Bin yi xi yi ( y ; x, p ) = C p ( 1 p ) i i i i x i i y i i i (3.1) X i i Yi i pi i NUCIA PSA p i a) (10 ) [3] b) (16 ) [2]

17 3.1.2 p i p i p i Beta( α, β ) p i α β p i Z W V p i Beta( α, β ) 3-1 [2][3] 3-1 p i Z/W Beta( α, β ) Wp i W W=Vp i 0.4 Beta( α, β ) Beta ( 4, 6) Beta( 4, 6) (W) 10 (Z) Beta ( 4,6) Beta(4,6) W(=V)=513Z=201 Jeffreys 0.4 W 11

18 Beta(4,6) X i Y i directed graph p i Beta ( 4,6) 12

19 p i X i Y i i p i i X i i Y i i α,β i ( p X ) Y ~ Bin, i i

20 a) it i X i λ i X i ~ Poisson( λ T ) ( λiti ) f ( xi; λi, Ti ) = exp( λiti ) x! i i (3.2) i xi b) λ i µσ lnλ i f ( λi ) = exp (ln λ ) 2 i µ σλ 2π 2σ (3.3) i < i 0 λ < < µ < σ > 0 c) µσ (a µ,b µ )(a σ,b σ ), 1 f ( µ ) = aµ µ bµ (3.4) bµ aµ 1 f ( σ ) = aσ σ bσ (3.5) b a σ σ d)

21 b a a b i T i i X i i λ i i X i i T i i µ,σ- a,b X i ~ Poisson ( λ T ) i i

22 3.2.2 a) id i ix i pd i X f i ~ Bin ( pd, D ) i i xi Di xi ( x ; pd, D ) = C pd ( 1 pd ) i i i Di Xi i i (3.6) b) pd i NUREG/CR-6823 [4] µσlogit(p) logit( pdi ) µ ( ) = exp σ π ( ) f pd (3.7) i 2 pd 2 σ i 1 pdi logit( pd i ) = ln[ pd /( 1 pd )] < µ < σ > 0 i i c) µσ (3-4),(3-5) d)

23 a b a b c i pd i D i X i i pd i i X i i D i i µ,σ- a,b pd = logit 1 ( c) = e /(1 + e i i ( pd D ) X ~ Bin, i i c i c i )

24 a b a b p i T i i i X i Y i i p i i X i i Y i i λ i i T i i µ,σ- a,b α,β

25 µ σ E ( x) = ( b + a) / 2 2 Var( x) = ( b a) /12 a µ µ = E( µ ) b = E( µ ) + 3Var( µ ) 3Var( µ ) (3.8) a σ σ = E( σ ) b = E( σ ) + 3Var( σ ) 3Var( σ ) (3.9) µσ λ max λ min 90 E(σ)E(µ) [6] E( σ ) = ln( λ E( µ ) = ln λ max / λmin ) / max 1.645E( σ ) = ln λ max λ λ min λ max min (3.10) Var(µ)Var(µ) 10 5 Var(σ)(3.9)σa σ b σ a σ σ>0 σ(0.1,3)a σ =0.1, b σ =3 (EF)1.2 < EF <

26 a µ µ = E( µ ) b = E( µ ) + 3Var( µ ) 3Var( µ ) (3.11) E ( µ ) = ln λ λ Var ( µ ) = 10 max min a σ b σ = 0.1 = 3 (3.12) a µ b µ (3.8) pd max /(1 pdmax) E( σ ) = ( m n) /3.29= ln / 3.29 pdmin /(1 pdmin ) pd max pdmin E( µ ) = m 1.645E( σ ) = ln 1 pd max 1 pdmin (3.13) m = logit( pd ) = ln( pd /(1 pd )) n = logit( pd max min ) = ln( pd max min /(1 pd pd min pd max max min )) Var(µ) 10 a σ =0.1, b σ =3 a µ µ = E( µ ) b = E( µ ) + 3Var( µ ) 3Var( µ ) (3.14) E ( µ ) pd x pd 1 pdmax 1 pd = ma ln min min 20

27 Var ( µ ) = 10 aσ = 0.1 bσ = 3 (3.15) a) Y i Max( λi,mle) 0.5 p i p EXP,i Max(λi,MLE) i=my m X m = Ym / pexp, m X m λ max Beta( α, β ) α /( α + β ) Beta 4,6 ( ) p = E( Beta(4,6)) = 4 /(4 + 6) = 0. 4 ( 3.16) EXP, i m λ max λ max = Ym /( 0.4 T m ) = λm, MLE 2.5 (3.17) Y m m T m m λ m m,mle 21

28 b) Y i Min(λ i,mle ) 0.5 Min(λ i,mle )λ min λ min = Min( λ i, ) (3.18) MLE c) 1) µ f µ ) = b µ 1 a ( µ µ aµ µ b (3.19) i) a µ b µ = ln λ λ max = ln λ λ min max min λmax = Max( λ i, MLE) 2.5 ( i = 1,2, L, n) λ = Min( λ ( i = 1,2, L, n) min i,mle) λ : i i,mle ii) a µ b µ pd = ln pd 1 pd max = ln pd 1 pd max max max = Max( pd i, MLE pd 1 pd min min 30 pd min 30 1 pd min ) 2.5 ( i = 1,2, L, n) max + pd min = Min( pd i, MLE) ( i = 1,2, L, n) 22

29 pd, i MLE : i 2) σ f 1 a ( σ ) = aσ σ bσ bσ σ a 0.1, b = 3 (3.20) σ = σ 23

30 WinBUGS Ver [5] D/G 3.0E-7 [/h] 3.4E-11 [/h] 4.5E-4 [/d] 1.9E-6 [/d] 4.2 (3.19)(3.20) 4-2 D/G 4-2 a µ b µ a σ b σ 1.9E+1 8.5E E+1 1.4E E+1 9.9E E+1 3.0E

31 4.3 WinBUGS WinBUGS [5] 4-1~ 4-4 WinBUGS / 4-1~ [6] =1hr =1 =0 25

32 model { for(i in 1:N){ lambda[i] ~ dlnorm(mu,tau) nu[i] <- lambda[i]*t[i] x[i] ~ dpois(nu[i]) p[i] ~ dbeta(alpha,beta) y[i] ~ dbin(p[i],x[i]) } mu ~ dunif(amu,bmu) sigma ~ dunif(asigma,bsigma) tau <- 1/(sigma*sigma) total <- sum(x[1:n-1]) } list( # ******************************************* # set evidences # ******************************************** # hours list : last data is dummy t=c( , , , , , , , , , , , ,968142,868784, , , , , , , ,816102, , , , , , , , , , , , , , , , , , , , ,651150, , , , , , ,1), # events list : last data is dummy y=c( 1,3,0,3,0,1,3,1,1,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,3,3,0,0,0,0,2,1,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0), # ******************************************* # set paramters # ******************************************** # data collection probability parameters alpha=4, beta=6, # hyper parameters for failure rates amu=-1.9e+1, bmu=-8.5, asigma=0.1, bsigma=3, # the number fo plants N=50 ) #************************************************* # initial value for keep away compile error #************************************************* list( x=c( 2,4,1,4,1,2,4,2,2,1,1,1,1,1,1,1,3,1,1,1,1,1,1,1,4,4,1,1,1,1,3,2,2,1,1,1,1,2,1,1,1,1,1,1,1,1,1,1,1,1) ) 4-1 BUGS model { for(i in 1:N){ lambda[i] ~ dlnorm(mu,tau) nu[i] <- lambda[i]*t[i] x[i] ~ dpois(nu[i]) p[i] ~ dbeta(alpha,beta) y[i] ~ dbin(p[i],x[i]) } mu ~ dunif(amu,bmu) sigma ~ dunif(asigma,bsigma) tau <- 1/(sigma*sigma) total <- sum(x[1:n-1]) } list( # ******************************************* # set evidences # ******************************************** # hours list : last data is dummy t=c( , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,1), # events list : last data is dummy y=c( 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), # ******************************************* # set paramters # ******************************************** # data collection probability parameters alpha=4, beta=6, # hyper parameters for failure rates amu=-2.5e+1, bmu=-1.4e+1, asigma=0.1, bsigma=3, # the number fo plants N=50 ) #************************************************* # initial value for keep away compile error #************************************************* list( x=c( 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1) ) 4-2 BUGS 26

33 model { for(i in 1:N){ m[i] ~ dnorm(mu,tau) p[i] <- exp(m[i])/(1+exp(m[i])) x[i] ~ dbin(p[i],n[i]) pd[i] ~ dbeta(alpha,beta) y[i] ~ dbin(pd[i],x[i]) } mu ~ dunif(amu,bmu) sigma ~ dunif(asigma,bsigma) tau <- 1/(sigma*sigma) total <- sum(x[1:n-1]) } list( # ******************************************* # set evidences # ******************************************** # demands list : last data is dummy n=c( 595,628,601,672,663,723,755,695,573,584, 638,474,359,324,508,419,477,554,346,414, 456,280,542,354,697,513,298,258,1015,1178, 1429,1358,1300,1149,1125,1612,1730,1120,984,1786, 1997,535,343,2038,1928,1944,1998,556,806, 1), # events list : last data is dummy y=c( 0,0,0,0,0,0,2,1,0,0, 2, 0,0,0,1,0,1,0,0,1, 0,0,0,0,0,2,0,0,0,0, 0, 0,0,1,0,2,0,0,3,0, 1,0,0,0,0,1,0,0,1,0), # ******************************************* # set paramters # ******************************************** # data collection probability parameters alpha=4, beta=6, # hyper parameters for failure rates amu=-1.2e+1, bmu=-9.9e-1, asigma=0.1, bsigma=3, # the number fo plants N=50) #************************************************* # initial value for keep away compile error #************************************************* list( x=c( 1,1,1,1,1,1,3,2,1,1, 3,1,1,1,2,1,2,1,1,2, 1,1,1,1,1,3,1,1,1,1, 1,1,1,2,1,3,1,1,4,1, 2,1,1,1,1,2,1,1,2,1) ) 4-3 D/G BUGS model { for(i in 1:N){ m[i] ~ dnorm(mu,tau) p[i] <- exp(m[i])/(1+exp(m[i])) x[i] ~ dbin(p[i],n[i]) pd[i] ~ dbeta(alpha,beta) y[i] ~ dbin(pd[i],x[i]) } mu ~ dunif(amu,bmu) sigma ~ dunif(asigma,bsigma) tau <- 1/(sigma*sigma) total <- sum(x[1:n-1]) } list( # ******************************************* # set evidences # ******************************************** # demands list : last data is dummy n=c( 5153,7310,7002,7819,7714,9043,9429,8686,7156,7300, 7976,5911,4489,4048,6354,10658,12219,6042,3785,3065, 7355,2483,9709,7953,6548,3174,1376,1202,2964,3122, 5432,5162,4941,3207,3098,5108,5462,3507,3080, 3621, 4037,2133,1358,3452,3254,4355,4498,2022,4560,1), # events list : last data is dummy y=c( 0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0), # ******************************************* # set paramters # ******************************************** # data collection probability parameters alpha=4, beta=6, # hyper parameters for failure rates amu=-1.4e+1, bmu=-3.0, asigma=0.1, bsigma=3, # the number fo plants N=50) #************************************************* # initial value for keep away compile error #************************************************* list( x=c( 1,1,1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1,1,1) ) 4-4 BUGS 27

34 % ) [7] D/G WinBUGSMC error 5% NUREG/CR-6823 [4] ~ 4-7 / )MC error5% 28

35 2 3 / 29

36 MCMC 3 MCMC

37 MCMC 3 MCMC

38 4-6 D/G 32 2 MCMC 3 MCMC

39 MCMC 3 MCMC

40 total sample: total sample: total sample: D/G total sample:

41 [2] EF 30 (5.1) [2] / / median mean T T = median = median T B 2 exp( σ / 2) = median T 1 ln EFT exp (5.1) medianb median T mean T EF T 30 35

42 5.2 D/G [2] D/G NUCIA21 D/G D/G D/G D/G

43 5-3 D/G 37

44 Plant 36Plant41 2 / 30 / D/G (NUCIA21 ) ( ) ( 2) () 0.5h h D/G No. [h] E E E E E E E E E E E f(t;θ) θ ( ) ( ) T F T; θ = T f t; θ dt (5.2) T R( T; θ ) 1 F( T;θ ) 0 = (5.3) L(θ) 38

45 l ( ) = f ( t ) L ;θ m θ i F( Tj; ) R( Tk ; θ ) i= 1 j = 1 n θ (5.4) k = 1 t i l T j m T k n 5-1 T LC T RC f F R ν ν () t = νλt 1 exp( λt ) ν () t = 1 exp( λt ) ν () t = exp( λt ) (ν, λ>0) (5.5) (5.6) (5.7) L(ν,λ) 39

46 11 ν ( ν, λ) νλ ( 1 ν L t exp λt ) = i i i ν [ ( )] 4 ν [ ( )] 4 ν [ ( )] ν 1 exp 0.5 λ 1 exp 2 λ exp 0.5 λ [ exp( 2 λ) ] 9224 (5.8) t i, i=1~ (5.8)(ν,λ) WinBUGS WinBUGS / R(t),F(t)WinBUGS zeros trick zeros trick I X00 ( I ) X 0 ~ Poisson (5.9) L zt (I) 0 zt ( I ) L = I 0 exp 0! ( I ) = exp ( I ) (5.10) I=-ln() (5.10) (5.6) T LC1 (=0.5h)N LC1 (=4)T LC2 (=2.0h)N LC2 (=4) I = ln = N NLC 1 NLC 2 ([ F( T )] [ F( T )] ) LC1 LC1 ln 1 LC 2 ν ν ( exp( λt )) N ln( 1 exp( λt )) LC1 LC 2 LC 2 (5.11) (5.7) T RC1 (=0.5h)N RC1 (=33090)T RC2 (=2.0h)N RC2 (=9224) 40

47 I N RC1 N RC ([ R( T )] [ R( T )] ) 2 = ln = N = N R C RC RC1 ν ν ( exp( T ) N ln( ( λt ) 1 ln exp ν RC1 1λT + N RC 2 λ RC1 RC 2 RC 2 ν RC 2λTRC 2 (5.12) λ( t) = νλ t ( ν 1) (5.13) τ λ 1 τ ( ν 1) ( τ ) λ() dt = λτ = τ 0 t (5.14) WinBUGS

48 model; { # Prior distributions for Weibull parameters v ~ dgamma(0.001,0.001) lambda ~ dgamma(0.001,0.001) # Likelihood for the complete data for( i in 1 : NCOM ) { TCOM[i] ~ dweib(v,lambda) } # Likelihood for the left censored data # zeros trick C < XLC <- 0 XLC ~ dpois(ilc) ILC <- C - NLC[1] * log( 1- exp( - lambda * pow(tcen[1],v) )) - NLC[2] * log( 1- exp( - lambda * pow(tcen[2],v) )) # Likelihood for the right censored data #zeros trick XRC <- 0 XRC ~ dpois(irc) IRC <- C + NRC[1] * lambda * pow(tcen[1],v) + NRC[2] * lambda * pow(tcen[2],v) # 24-hour mean failure rate FR24 <- lambda*pow(24,v-1) } DATA list( # Complete data TCOM = c(4.17e-3, 5.56E-3, 1.67E-2, 1.67E-2, 3.33E-2, 5.00E-2, 1.67E-1, 1.83E-1, 4.33E-1, 1.07,1.83), NCOM = 11, ) # Censoring data TCEN[] NLC[] NRC[] END INITS list(v=0.5,lambda=1.e-3) list(v=1.0,lambda=1.e-4) 5-2 WinBUGS D/G

49 % 5% 95% 97.5% EF E E E E E E (FR24) λ(lambda) 5.03E E E E E E-4 ν(v) E E E FR24 chains 1:2 sample: E E E E E lambda chains 1:2 sample: E v chains 1:2 sample: ν λ 5.49E E-4 24 [/h] 1.20E E WinBUGS 43

50 6 3 NUCIA PSA χ 2 90 B 44

51 /4 45 [h] 11 [1/h] [1/h] 90% [1/h] EF *5 6 [] 5% 95% [1/h] EF *7 [1/h] [1/h] 8 EF [1/h] E E E E E E E E % 434% E E E E E % 7% 2 6.2E E E E E E E E % 411% E E E E E E E E % 829% 2 3.7E E E E E E E E % 457% 1 1.8E E E E E E E E % 171% 2 9.7E E E E E E E E % 649% 1 3.1E E E E E E E E % 285% 6 6.8E E E E E E E E % 2221% 8 7.5E E E E E E E E % 227% 2 1.3E E E E E E E E % 102% E E % 100% 9 9.1E E E E E E E E % 3281% 0 9.1E E E E E E E % 72% 2 9.1E E E E E E E E % 375% 0 9.1E E E E E E E % 72% 1 9.1E E E E E E E E % 139% 0 3.4E E E E E E E % 58% 0 3.4E E E E E E E % 58% 0 3.4E E E E E E E % 58% 0 3.4E E E E E E E % 58% 0 3.4E E E E E E E % 58% E E E E E E E E % 418% E E E E E E E E % 1205% 1 4.9E E E E E E E E % 226% 1 4.9E E E E E E E E % 226% E E E E E E E E % 929% E E E E E E E E % 1031% 3 1.0E E E E E E E E % 573% 0 1.0E E E E E E E % 77% 0 1.0E E E E E E E % 77% 0 1.0E E E E E E E % 77% 1 6.5E E E E E E E E % 174% 4 6.5E E E E E E E E % 1328% 0 6.5E E E E E E E % 82% 1 6.5E E E E E E E E % 174% 3 1.5E E E E E E E E % 532% 4 1.5E E E E E E E E % 1043% 0 1.5E E E E E E E % 94% 1 1.5E E E E E E E E % 180% 0 1.7E E E E E E E % 64% 0 1.7E E E E E E E % 64% 0 1.7E E E E E E E % 64% 0 1.7E E E E E E E % 64% E E E E E E E E % 216%

52 /4 46 [h] 11 [1/h] [1/h] 90% [1/h] EF *5 6 [] BWR 0 3.6E E E E E E E % 122% 0 3.6E E E E E E E % 122% 0 3.6E E E E E E E % 122% 0 3.6E E E E E E E % 122% 0 3.6E E E E E E E % 122% (PWR) 0 2.2E E E E E E E % 114% 6 1.3E E E E E E E E % 757% E E E E E E E E % 222% 0 1.3E E E E E E E % 66% 1 1.3E E E E E E E E % 125% 1 1.3E E E E E E E E % 125% / 1 3.4E E E E E E E E % 172% 7 6.0E E E E E E E E % 1559% E E % 104% 1 3.9E E E E E E E E % 138% 0 3.9E E E E E E E % 67% 0 3.9E E E E E E E % 67% 0 3.9E E E E E E E % 67% 0 3.9E E E E E E E % 67% * E E E E E E E E % 128% E E E E E E E % 143% 2 1.6E E E E E E E E % 695% 0 6.5E E E E E E E % 96% 0 6.5E E E E E E E % 96% 0 5.4E E E E E E E % 94% 0 5.4E E E E E E E % 94% 0 5.4E E E E E E E % 94% / 0 1.9E E E E E E E % 93% () 0 1.9E E E E E E E % 93% 0 1.9E E E E E E E % 93% / 0 2.4E E E E E E E % 101% ( 0 2.4E E E E E E E % 101% 2 2.4E E E E E E E E % 464% (BWR) 0 4.4E E E E E E E % 107% (PWR) 0 1.2E E E E E E E % 125% PLR MG E E E E E E E E % 381% RPS,CRDM MG 0 1.3E E E E E E E % 81% (PLR) 2 6.7E E E E E E E E % 561% 1 1.9E E E E E E E E % 162% [1/h] 5% [1/h] [1/h] 95% [1/h] EF *7 8 EF 9

53 /4 [h] 11 [1/h] [1/h] 90% [1/h] EF *5 6 [] 9 7.1E E E E E E E E % 1379% E E E E E E E E % 329% 1 7.1E E E E E E E E % 186% 5 6.2E E E E E E E E % 514% 0 3.4E E E E E E E % 78% 1 3.4E E E E E E E E % 167% * E E E E E E E E % 581% * E E E E E E E % 78% 1 1.5E E E E E E E E % 168% 3 1.5E E E E E E E E % 520% * E E E E E E E % 90% 0 3.7E E E E E E E % 90% * E E E E E E E E % 440% 0 8.3E E E E E E E % 66% E E E E E E E E % 1476% E E E E E E E E % 1330% 0 6.9E E E E E E E % 60% 0 6.9E E E E E E E % 60% 0 4.4E E E E E E E % 67% / 3 4.4E E E E E E E E % 471% E E E E E E E % 198% ( 4 2.4E E E E E E E E % 980% 0 1.3E E E E E E E % 98% 3 1.3E E E E E E E E % 636% 3 2.4E E E E E E E E % 592% 1 5.9E E E E E E E E % 175% / 4 5.9E E E E E E E E % 473% 0 7.5E E E E E E E % 84% / 8 7.5E E E E E E E E % 448% 0 3.0E E E E E E E % 76% / 2 3.0E E E E E E E E % 398% 0 2.0E E E E E E E % 82% [1/h] / 5 2.0E E E E E E E E % 1027% 5% [1/h] [1/h] 95% [1/h] EF*7 8 EF 9

54 /4 [h] 11 [1/h] E E E E E E E / E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E % 100% E E % 100% E E % 100% EF 2 ( = 0EF= % EF *5 5% [1/h] 6 [] [1/h] [1/ h] [1/ h] [1/h] 7.EF 2 ( = 8. 9.EFEF 10. µ WinBUGSµ % [1/h] EF * % 410% 507% 507% 497% 338% 580% 320% 784% 432% 401% 681% 332% 734% 342% 622% 926% 543% EF 9 94% 227% 73% 73% 145% 2021% 154% 1067% 76% 900% 531% 157% 320% 68% 102% 209% 100% 100%

55 *1 [1/d] 90% [1/d] [1/d] EF *2 *3 [1/d] 5% [1/d] 95% [1/d] [ 1/d] EF *4 *5 EF E E E E E E % 131% DG E E E E E E E % 580% E E E E E E E % 550% E E E E E E E % 2328% E E E E E E E % 103% E E E E E E E % 144% E E E E E E E % 2583% E E E E E E E % 206% E E E E E E E % 80% E E E E E E E % 1946% E E E E E E E % 504% E E E E E E % 75% E E E E E E % 83% E E E E E E E % 103% E E E E E E E % 169% E E E E E E E % 94% E E E E E E % 136% E E E E E E % 102% E E E E E E % 101% E E E E E E E % 334% E E E E E E E % 184% E E E E E E E % 587% E E E E E E E % 191% E E E E E E % 91% ( 2.EF = 0EF= EF 2 (= 5. 6.EFEF

56 7 () () 7.1 λ λ ( µ σ ) λ ~ Lognormal, (λ,µ,σ>0) (7.1) µlogλσlogλ µ ex p( µ)=λµλ σ ex p (1.645σ)=λEF=(λ 95%)/(λ)σ λ 95% 7.2 pd pd ( µ,σ ) logit( pd ) ~ Normal 0<pd<1, µ,σ> 0 (7.2) pd logit( pd) = log 1 pd µlogit( pd)σ logit(pd) pd logit( pd) r = 1 pd ( ) µ,σ r ~ Lognormal (7.3) µlog r σlog r pd << 1 r pd pd ( µ,σ ) pd ~ Lognormal (7.4) 50

57 µlog pd σlog pd a) µ exp(µ)=pdµpd σ exp(1.645σ)=pdef=(pd 95%)/(pd) σ pd 95% µσ/ EF µ/ µ (/hr) E E E E E E E E E E E E E E E E-05 µ DG E E E E E E E E E E E E E E E E-01 51

58 7-2 σ EF () σ EF σ σ σµ Unif a b = 1 b + a (b a) 2 ( σ µ ) ~ (, ) = (7.5) b a 2 12 σ Unif ( 0.1,3) σ EF Unif 0.1, ~139 ( ) 1 ( 0.01,1.5 ) 2 ( 1,3.3) Unif ~12 Unif ~228 Unif ~228 3 ( 0.01,3.3) WinBUGS C 52

59 7-4(1) 1 53

60 7-4(2) 1 54

61 7-4(3) D/G 1 55

62 7-4(4) 1 56

63 7-5(1) 2 57

64 7-5(2) 2 58

65 7-5(3) D/G 2 59

66 7-5(4) 2 60

67 61 7-6(1) 3

68 7-6(2) 3 62

69 7-6(3) D/G 3 63

70 7-6(4) 3 64

71 7.3.4 a) σ σ 1 σ b) 1 1) λ i ) 0-65

72 c) 2-1 d) σ σ - σ σ 66

73 sigma sample: sigma sample: sigma sample: sigma sample: D/G 7-2(1) σ 67

74 sigma sample: sigma sample: sigma sample: sigma sample: D/G 7-2(2) 1 σ 68

75 sigma sample: sigma sample: sigma sample: sigma sample: D/G 7-2(3) 2 σ 69

76 sigma sample: sigma sample: sigma sample: sigma sample: D/G 7-2(4) 3 σ 70

77 7.4 µ µ 4 D/G µσ Unif a b = 1 b + a ( b a) ( µ σ ) ~ (, ) = b a (7.6) µ µ 3/4 20%

78 7-7 µ DG Unif(-19,-8.5) Unif(-25,-14) Unif(-12,-0.99) Unif(-14,-3.0) 1 Unif(-25,-14.5) Unif(-27.8,-16.8)* Unif(-18.0,-6.99) Unif(-16,-5.0) 2 Unif(-15.5,-5.0) Unif(-23,-12) Unif(-8.0,3.01) Unif(-12,-1.0) 3 Unif(-21.6,-5.9) Unif(-27.6,-11) Unif(-14.8,1.81) Unif(-16.8,-0.2) ) WinBUGS WinBUGS C 72

79 7-8(1) 1 73

80 7-8(2) 1 74

81 75 7-8(3) D/G 1

82 7-8(4) 1 76

83 77 7-9(1) 2

84 7-9(2) 2 78

85 79 7-9(3) D/G 2

86 7-9(4) 2 80

87 (1) 3

88 7-10(2) 3 82

89 7-10(3) D/G 3 83

90 7-10(4) 3 84

91 7.4.4 a) 1) µµµ mu sample: mu s ample: DG µ 2) µµµ µ 0 mu sample: mu s ample: µ b) 1 1) % 5% EF EF 7-5 µ σ 7-6 σσ σ EF σ

92 0 mu sample: mu sample: DG µ µσ 2) 0 EF 7-7 µ 7-4 µ µµ µ EF 86

93 mu sample: mu sample: µ 1 b) 2 1) 1 EF 7-8 µ (1)µ µµ EF mu sample: mu sample: DG µ 2 2) 0 EF 7-8 µ 7-4 µ µµ µef 87

94 mu sample: mu sample: µ 2 c) 3 1) 1 µ 7-10 µ EF 1 µ1 µ µ mu sample: mu sample: DG µ 3 2) 0 µ 7-11 µµ EF 0 µ 88

95 mu sample: mu sample: µ µ 0 µ 0.5 µ 2 µ a) NRCNUREG/CR-6928 [8] 1998~2002 NRCPRAstandardized plant analysis risk(spar)nureg/cr-6928 µ 1) NUREG/CR-6928 NUREG/CR-6928 EPIX Jeffreys 6.53E-10 [/h][/h/ft] EF 18.8 LLLower allowable limit 1.30E-5[/d] EF ) 7-12 µ µ

96 µ µ µ 7-11 NUREG/CR-6928 EF 6.53E E [/h] [/h] 1.30E E [/d] [/h] -2 µ µ 19.0µ E-9λ[/h]2.0E µ E-11λ[/h]8.3E-7 D/G 12.0µ E-6pd[/d]3.7E µ E-7pd[/d]5.0E-2 90

97 7-12 µ NUREG/CR-6928 b) µ µ 7-13 µ- lnλa µ b µ λ max λ min E(µ) Var(µ) µλ max λ min 0.5 λ max λ min λ min λ min λ min Feasibility Study λ max 91

98 µλ max λ min - µ µ PSA 92

99 - λi µ- λj µ ln λ Var(µ) =10 a µ b µ aµ = E(µ) 3Var( µ ) b µ = E( µ ) + 3Var( µ ) a µ E(µ) bµ µ λ 5-5%95% E(µ) E( σ ) = ln(95% / 5% ) / 3.29 E( µ ) = ln95% 1.645E( σ ) 5% E(µ) ln(λ min ) 5% 95% 95% ln λ ln(λ max /p exp ) 95% p exp 0.4 T Y [hour] =Y/T [/hour] E+6 1.0E-7 λ min E+5 4.0E-5 λ max : E+5 5.0E-6 Y= µ 93

100 µ 1 0 µ µ µ 1/2 µ 1 WinBUGS µ 94

101 8 8.1 p i PSAFFFFp i NUCIAPSAFF ipsaffx i y i NUCIA y ~ Binomial i ( p, x ) yi xi yi f ( y ) = C p ( 1 p ) i x i y i i i i 0 y x x i,y i 0 p 1 (8.1) i i < i p i ( 4,6) p i ~ Beta (8.2) 8-1 f ( p ) i 1 4 = p 1 1 i i B ( 4,6) ( p ) 6 1 B(4,6) (8.3) dbeta(x, 4, 6) p pd( ) 8-1 PSA NUCIA PSA

102 , y i =0 x i 0 x i ( x, y, p λ,θ t) f ( θ ) ( p ) f ( θ ) f ( x λ,t ) f ( y p, x ) f, f i λ i i i i i i i (8.4) i i i i () () x i xx i y i ( NUCIA) yy i p i pp i λi λλ i θ i t i ( ) tt i i ix i pifull conditional distribution( fcd ) (8.4)x i p i (8.5) f ( x, p y,, θ, t ) f ( x λ, t ) f ( y p, x ) f ( p ) i i i λ (8.5) i i i i i i i i i (8.5) 3 (8.6) (8.7) (8.8) f ( λ, ) = Poisson( x ; λ t ) xi ( λ i t ) exp( λ t ) i i i x i i t i i i i = (8.6) xi 96

103 xi y f ( y i p i, x i ) ial ( y i ;, x i ) = p x i i yi = Binom pi i ( 1 pi ) (8.7) yi f p i = Beta i = i i (8.8) B 4,6 ( ) ( p ;4,6) ( p ) 4 1 ( 1 p ) xi (8.6)(8.7) x i (8.6)t i = 2E6[h] λ i =5E-7[ /h] x i 8-2 (8..11)y i =0 x i 8-3 ( 8.8) p i ~Beta (4,6) 8-2 (8.6)x i λ i t i =5E-7[ 1/h] 2E 6 [h] =1 8-3 (8.7)x i y i =0, pi~beta(4,6) 97

104 p 8.4 (8.5)x i p i λit i=5e-7 [1/h] 2E6 [h] = 1y i =0pi~Beta( 4,6) ( 8.5)x i pi 0 0~ piyixi ip i full conditional dist ribution, (fcd)(8.4) p i (8.9) f ( p x,,, θ ) f ( ) f ( y p, x ) i i y i i,t i p i i λ (8.9) i i (8.9) 2 f f 4-1 ( ) = Beta( ;4,6) ( 1 p ) 6 i i 1 p (8.10) p i p i yi xi yi ( y p, ) = Binomial ( ; p, x ) p ( 1 p ) i (8.11) i x i y i i i i i (8.12) p i ( 8.9)(8.13) 98

105 f yi xi yi ( p x, y,, θ, t ) ( 1 p ) f i i i λ (8.12) i i p i ( p x,,, θ, t ) Beta( p ; y + 4, y + 6) i i y i i i = i i x i i i λ (8.13) WinBUGSp i (8.13)fcdx i p i (8.13)p i (yi+4)/(x i + 10) y 0 0 x i i p i 0.4 y i 0 y i x i y i /xi 0.4 p i p i y i p i / D/ G 4 p i

106 8-1 5% 95% y i y i + xi p[1] p[2] p[3] p[4] p[5] p[6] p[7] p[8] p[9] p[10] p[11] p[12] p[13] p[14] p[15] p[16] p[17] p[18] p[19] p[20] p[21] p[22] p[23] p[24] p[25] p[26] p[27] p[28] p[29] p[30] p[31] p[32] p[33] p[34] p[35] p[36] p[37] p[38] p[39] p[40] p[41] p[42] p[43] p[44] p[45] p[46] p[47] p[48] p[49] x i ( 4 ) ( +10) 100

107 8-2 5% 95% y i y i + xi p[1] p[2] p[3] p[4] p[5] p[6] p[7] p[8] p[9] p[10] p[11] p[12] p[13] p[14] p[15] p[16] p[17] p[18] p[19] p[20] p[21] p[22] p[23] p[24] p[25] p[26] p[27] p[28] p[29] p[30] p[31] p[32] p[33] p[34] p[35] p[36] p[37] p[38] p[39] p[40] p[41] p[42] p[43] p[44] p[45] p[46] p[47] p[48] p[49] x i ( 4 ) ( +10) 101

108 8-3 DG 5% 95% y i y i + xi p[1] p[2] p[3] p[4] p[5] p[6] p[7] p[8] p[9] p[10] p[11] p[12] p[13] p[14] p[15] p[16] p[17] p[18] p[19] p[20] p[21] p[22] p[23] p[24] p[25] p[26] p[27] p[28] p[29] p[30] p[31] p[32] p[33] p[34] p[35] p[36] p[37] p[38] p[39] p[40] p[41] p[42] p[43] p[44] p[45] p[46] p[47] p[48] p[49] x i ( 4 ) ( +10) 102

109 8-4 5% 95% y i y i + xi p[1] p[2] p[3] p[4] p[5] p[6] p[7] p[8] p[9] p[10] p[11] p[12] p[13] p[14] p[15] p[16] p[17] x i ( 4 ) ( +10) p[18] p[19] p[20] p[21] p[22] p[23] p[24] p[25] p[26] p[27] p[28] p[29] p[30] p[31] p[32] p[33] p[34] p[35] p[36] p[37] p[38] p[39] p[40] p[41] p[42] p[43] p[44] p[45] p[46] p[47] p[48] p[49]

110 8.3 pi Beta(4,6)pi Beta( 4,6) Beta 4, ( ) 1 Beta ( 120,180) Beta ( 7,3) Beta ( 37,13)

111 1 Beta( 120,180) Beta( 7,3) Beta( 37,13)

112 a µ b µ (1) 2 D/G a µ b µ 2.0E+1 8.7E+0 2.5E+1 1.4E+1 1.2E+1 1.2E+0 1.4E+1 3.3E+0 8-6(2) 3 D/G a µ b µ 2.0E+1 8.8E+0 2.5E+1 1.4E+1 1.2E+1 1.3E+0 1.4E+1 3.3E

113 8-7(1) 1 107

114 8-7(2) 1 108

115 8-7(3) D/G 1 109

116 8-7(4) 1 110

117 8-8(1) 2 111

118 8-8(2) 2 112

119 8-8(3) D/G 2 113

120 8-8(4) 2 114

121 8-9(1) 3 115

122 8-9(2) 3 116

123 8-9(3) D/G 3 117

124 8-9(4) 3 118

125 /EF 2 / 6 7 EF 3 2 // // a) 1 / / EF / EF / EF Y X Y=0 Y=3 X D / / 1) / EF / EF 2) / EF / EF Y=3 b) 2 D/G EF 6 / 119

126 / 7 EF 8-8 X EF c) / d) / 120

127 8-6 X Y=3 8-7 X Y=0 121

128 9 9.1 MCMC 3 a) 1) Brooks Gelman Rubin WinBUGS ) Geweke (e.g. 5%) b) 0 2 thinning over-relaxing 9-1 thinning BUGS µ µ0,µ1, µ2, µ3, µ4, µ5, µ6, µ7, µ8, µ9, µ10, µ11, µ12, µ13, µ14, µ15, µ16, µ17, µ18, thinning=5 thinning µ0, µ5, µ10, µ15, µ1, µ6, µ11, µ16, µ2, µ7, µ12, µ17, µ3, µ8, µ13, µ18, 5%95% etc. c) 5%95% etc. MC 5% 122

129 alpha0 chains 1: iteration (a) alpha0 chains 1: iteration (b) 9-1 [WINBUGS Manual] (a) 9-2 (b) 9.2 WinBUGS MCMC a) 7 D/G 5 Gelman and Rubin (1992) Brooks and Gelman (1998) 123

130 WinBUGS bgr-diag chain 5 1) 9-3(1)µσλ BGR pooledchain withinchain R R chain R mu chains 1: sigma chains 1:5 iteration iteration mu chains 1: sigma chains 1:5 iteration iteration lambda[50] chains 1: lambda[50] chains 1: iteration iteration 9-3(1) µσλ BGR (2) 124

131 mu lambda[50] lag sigma lag lag 9-3(2) 2) µσλ BGR 9-3(3) mu chains 1: iteration sigma chains 1: iteration lambda[50] chains 1: iteration mu chains 1: sigma chains 1:5 iteration iteration lambda[50] chains 1: iteration 9-3(3) µσλ BGR 125

132 (4) mu lag sigma lag lambda[50] lag 9-3(4) 3) D/G D/G µσλ(p) BGR 9-3(5) 126

133 mu chains 1: iteration sigma chains 1: iteration mu chains 1: sigma chains 1:5 iteration iteration p[50] chains 1: p[50] chains 1: iteration iteration 9-3(5) D/G µσλ BGR (6) D/G mu lag sigma lag p[50] lag 9-3(6) D/G 127

134 4) µσλ(p) BGR 9-3(7) mu chains 1: sigma chains 1:5 iteration p[50] chains 1:5 iteration iteration mu chains 1: sigma chains 1:5 iteration p[50] chains 1:5 iteration iteration 9-3(7) µσλ BGR (8) 128

135 mu lag sigma lag p[50] lag 9-3(8) b) R D/G µσµσ Thinning thinning thinning Thinning D/G 4 thinning1 thinning=10 µ σ a) µ(mu)σ(sigma) λ(lambda) thinning=1 thinning= (1) 129

136 mu sigma lag lag mu lag sigma lag lambda[50] lag lambda[50] lag thinning=1 thinning=10 9-4(1) thinning thinning=1 thinning=10 9-4(1) thinning 130

137 9-4(1) 131

138 b) µ(mu)σ(sigma)λ(lambda) thinning=1 thinning=10 9-4(2) mu sigma lag lambda[50] lag lag mu lag sigma lag lambda[50] lag thinning=1 thinning=10 9-4(2) thinning thinning=1 thinning=10 9-4(2) thinning 132

139 9-4(2) 133

140 c) D/G D/G µ(mu)σ(sigma) thinning=1 thinning=10 9-4(3) sigma lag mu lag sigma lag mu lag p[50] lag p[50] lag thinning=1 thinning=10 9-4(3) thinning D/G D/G thinning=1 thinning=10 9-4(3) thinning 134

141 9-4(3) D/G 135

142 d) µ(mu)σ(sigma) thinning=1 thinning=10 9-4(4) mu lag mu lag sigma lag sigma lag p[50] lag p[50] lag thinning=1 thinning=10 9-4(4) thinning thinning=1 thinning=10 9-4(4) thinning 136

143 9-4(4) 137

144 9.3.2 µσ thinning Thinning µσ thinning thinning=1 thinning= MC error thinning 9-5 µσ thinning thinning 10 µσ (λ,p)thinning thinning thinning=

145 10 21 FF EF ) EF ) EF 1 EF 3 1 D/G a) =4.8E-08/hEF=60.0 =2.9E-06/hEF=4.3 b) 4.7E-05/dEF=51.7 D/G 1.5E-03EF= NUCIA

146 PSA RISKMAN

147 a) b) c) D/G d)

148 a) b) c) D/G d) a) b) c) D/G d)

149 10.3 EF EF EF EF=60. EF= EF EF 5 EF EF / 3 PSA 10 EF EF

150 11 21 (CDF)BWRPSA PWR CDFBWRPWR 1982 ~ [2 ] [3] EF 11.1 BWR PWR CDF CDF CDF a) BWR 21 CDF TQUV CDF 21 D/G CDF ,000 CDF 1 CDF 10-6 CDF b) PWR 21 CDF TRIP CDF TRIP ATWS

151 TQUX TQUV LOCA LOCA TB TW TC 11-1 BWR 145

152 RECIRC INJ ISO SUP TRIP SPRAY HEAT ECCS ECCS PWR 146

153 TQUX TQUV LOCA LOCA TB TW TC 11-3 BWR 147

154 RECIRC INJ ISO SUP TRIP SPRAY HEAT ECCS ECCS PWR 148

155 10, BWR 149

156 11-1 BWR 10,

157 10, BWR 151

158 12 PSA PSA A.3 A PSA NUCIA PSA 20 function failure, FFFF PSA FF NUCIA PSA PSA E FF PSAFF JEAC FF FF 2 CDF 1 PSA FF PSA 12.2 FF PSA 152

159 a), PSA b) D/G c) = 153

160 NUCIA PSA 154

161 13 NUCIA PSA PSA PSA 155

162 [1] [2] ( ) 13 2, P00001,() [3] PSA 9 3, [4] C.L.Atwood, et al., Handbook of Parameter Est imation for Probabil istic Risk Assessment, NUREG/CR-6823, USNRC, September [5] su.cam.ac.uk/bugs/ [6] Meng Yue, Tsong-Lun Chu, Estimation offailure Rates of Digital Components Using a Hierarchical Bayesian Method, PSAM-8th, May [7] [8] S.A.Eide, et al, Industry-Average PerformancEFor Components and Initiating Events at U.S. Commercial Nuclear Power Plants, NUREG/CR-6928, US NRC, February

163 A PSA A.1 A.2 A.3 3 A.4 PSA 157

164 A PSA PSA PSA 18 PSA PSA PSA PSA 19 PSA PSA PSA PSA 3. a. NUREG/CR-6823, Handbook of Parameter Estimation for PRA,NRC, 158

165 2002 ASME, St andard for PRA for Nuclear Power Plant Applications, ASME RA-Sb-2005 b. PSA 1PSA PSA 4. ( ) 1-2 PSA PSA PSA H20.10 H20.11 H20.12 CDF 159

166 A () ( ) FBR GE ) 2 2

167 A.3 3 PSA :2518:15 ( ) ()JAEA)(), NELJAEA,TEPSYS, GE (JNES) 17 MHI()JAEA CTINELJAEA 1-1 PSA 1-2 PSA 1-3 PSA 1-4 C() 1-5 E() (1) (2)

168 1-3 (3) C() PSA P13SC Xi λi Beta(4,6) Pi SPAR EF SPAR (4) E() PSA P13SC (5) 1-4,

169 2 PSA :3016:30 () ()JAEA)(), NELJAEA,TEPSYS, GE MHI 17 ()JAEA CTIJAEATEPSYS 2-1 PSA 2-2 PSA µ σ PSA C() (1) (2) 163

170 (3) 2-3 pd pd (4) µ 2-4-1µ µ µ µ µ 0.5 µ 0.5 µ (5) σ 2-4-2σ σ σ 2-3 Y=0 X 5 Y=0 X

171 1/ (6) 2-5 (7) PSA 2-6 PSA PSA PSA FF (8) 2-8 / (9)

172 EF EF CDF BWR CDF (10) 1 166

173 PSA :3016:30 ( ) ()JAEA)(), NEL)TEPSYS, () GE ()MHI 16 ()JAEAJAEA CTIJAEA 3-1 PSA () pd () µ (1) (2) (3)

174 14 19 FF (4) pd () 3-3 pd () pd (5) 3-4 (6) µ 3-5 µ µ µ EPIX µ

175 (7) 3-6 PWR (8) 3-7 Winbugs DG (9) 3-8 FF 169

176 FF WEB (10) 170

177 A.4 PSA - ), - 0 µ,σ µ, σ 0 SPAR NUREG/CR EF SPAR L07005, 20 6 NUREG/CR

178 8.1 Y i X i p i λ i 2-3 X i Y i X i Y i =0 X i 5 Y i =0 X i X i λ i T i λ i =1/1000T i =1000Y i =0 X i p i ~Beta(4,6) = NUCIA 1 9 PSA 172

179 X Y NUCIA X Y, PSA PSA

180 µ µ 0.5 b) Beta(4,6)[ 0.4] µ µ µ µ µ µ a) µ 0.5 µ PSA FF FF CDF 1 EF EF EF PSA EF 5.2 D/G CDF 174

181 CDF BWR CDF EDG EDG 3-7 D/G D/G 175

182 FF 3-8 PSA PSA 176

183 B B.1 NUCIA NUCIA PSA NUCIA P SA NUCIA NUCIA NUCIA PSA MPFF FF NUCIA NUCIA NUCIA B.2 B.2.1 PSA PSA a) 6.2 NUREG/CR

184 B.2.2 ASME PRA ASMEPRAPSA ASME HLR-DA-B Grouping components into a homogeneous population for parameter estimation shall consider both the design, environmental, and service condition of the components in the as-built and as-operated plant. DA-B2 DO NOT INCLUDE outliers in the definition of a group (e.g. do not group valves that are never tested and unlikely to be operated with those that are tested or otherwise manipulated frequently) DA-B2 Category When warranted by sufficient data, USE appropriate hypothesis tests to ensure that data from grouped components are from compatible population. B.2.3 NRC PSA SPAR NUREG/CR-6928 NUREG/CR-6928Industry-Average Performance for Components and Initiating Events at U.S. Commercial Nuclear Power Plants U.S. NRC February 2007 NUREG/CR-6928 PSA EPIX 95% EF 178

185 NUREG/CR-6928 a) NUCIA NUCIA Positive Displacement Pump Emergency Diesel Generator Combustion Turbine Generator Hydro Turbine Generator Cooling Tower Fan Circuit Breaker b) NUREG/CR-6928 Service Water System Non-Service Water System d) NUREG/CR-6928 (standby)/(running/alternating) BWR RCIC HPCI HPCS PSA FT 179

186 B.3 NUCIA NUCIA PSA B-1 B.2 PSA NUCIA B.3.1 a) PSA NUREG/CR-6928 BWR Positive Displacement Pump NUCIA NUCIA NUCIA MG NUREG/CR-6928 b) NUCIA B-2 NUCIA B-2 B-1 PSA c) NUCIA 180

187 4 PSA B.3.2 B.3.1 a) b) 1) NUCIA 2) PSA 3) c) 1) 4 2) 3) 181

188 B-1 NUCIA PSA 182

189 B-2(1) NUCIA BWR 183

190 B-2(2) NUCIA PWR 184

191 C C-1 4 (µ,σ) (WinBUGS dflat())µ-σ µ-σ (µ,σ) C-1 0 C-1 0 / C-1 0 / =0 (µ,σ) MCMC 185

192 ( 0) (=0) DG ( 0) (=0) C-1 186

193 D Y X p Y ~ Bin f ( Y; p, X ) ( p, X ) Y X Y = X CYp (1 p) (D.1) p Beta ( 4,6) p=0.5 Y 3 X g( X p, Y ) f ( Y p, X ) g( X ) (D.2) p=0.5y=3 g( X p = 0.5, Y = 3) X 3 X 3 C 30.5 (1 0.5) g( X ) (D.3) g(x) X D-1 Y 3 p X D-2 D-2 D-1 p X MCMC p p MCMCD-2 Beta p i ( 4,6) p0.1~0.9 PY=3 (i=1,2,,9)p 1 =0.1p 2 =0.2p 3 =0.3 p 9 =0.9 P i [X] i D-3 D-3 Beta( 4,6) D-2 p=0.3~0.6 (p 3 ~p 6 ) D-3 D-4 187

194 P i [ X ] i (D.4) D-4 Beta( 4,6) Y=3 X 1 Beta( 120,180) p D-4 X D-2 p=0.4 1 X D-5 D-5 Y=0 X D-6 188

195 D-1 p=0.5y=3 X D-2 p=0.10.9y=3 X 189

196 D-3 p i =0.10.9Y=3 P [ X] i i D-4 Beta(4,6) X Y=3 190

197 D-5 X Y=3 D-6 X Y=0 191

198 E PSA E.1 2 PSA PSA E.2 1 PSA E.1 PSA E.2 PSA 192

199 E.1 PSA 193

200 194

201 195

202 196

203 197

204 198

205 199

206 200

207 E.2 PSA 201

untitled

untitled 18 1 2,000,000 2,000,000 2007 2 2 2008 3 31 (1) 6 JCOSSAR 2007pp.57-642007.6. LCC (1) (2) 2 10mm 1020 14 12 10 8 6 4 40,50,60 2 0 1998 27.5 1995 1960 40 1) 2) 3) LCC LCC LCC 1 1) Vol.42No.5pp.29-322004.5.

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

JMP V4 による生存時間分析

JMP V4 による生存時間分析 V4 1 SAS 2000.11.18 4 ( ) (Survival Time) 1 (Event) Start of Study Start of Observation Died Died Died Lost End Time Censor Died Died Censor Died Time Start of Study End Start of Observation Censor

More information

12/1 ( ) GLM, R MCMC, WinBUGS 12/2 ( ) WinBUGS WinBUGS 12/2 ( ) : 12/3 ( ) :? ( :51 ) 2/ 71

12/1 ( ) GLM, R MCMC, WinBUGS 12/2 ( ) WinBUGS WinBUGS 12/2 ( ) : 12/3 ( ) :? ( :51 ) 2/ 71 2010-12-02 (2010 12 02 10 :51 ) 1/ 71 GCOE 2010-12-02 WinBUGS kubo@ees.hokudai.ac.jp http://goo.gl/bukrb 12/1 ( ) GLM, R MCMC, WinBUGS 12/2 ( ) WinBUGS WinBUGS 12/2 ( ) : 12/3 ( ) :? 2010-12-02 (2010 12

More information

waseda2010a-jukaiki1-main.dvi

waseda2010a-jukaiki1-main.dvi November, 2 Contents 6 2 8 3 3 3 32 32 33 5 34 34 6 35 35 7 4 R 2 7 4 4 9 42 42 2 43 44 2 5 : 2 5 5 23 52 52 23 53 53 23 54 24 6 24 6 6 26 62 62 26 63 t 27 7 27 7 7 28 72 72 28 73 36) 29 8 29 8 29 82 3

More information

10:30 12:00 P.G. vs vs vs 2

10:30 12:00 P.G. vs vs vs 2 1 10:30 12:00 P.G. vs vs vs 2 LOGIT PROBIT TOBIT mean median mode CV 3 4 5 0.5 1000 6 45 7 P(A B) = P(A) + P(B) - P(A B) P(B A)=P(A B)/P(A) P(A B)=P(B A) P(A) P(A B) P(A) P(B A) P(B) P(A B) P(A) P(B) P(B

More information

1 Tokyo Daily Rainfall (mm) Days (mm)

1 Tokyo Daily Rainfall (mm) Days (mm) ( ) r-taka@maritime.kobe-u.ac.jp 1 Tokyo Daily Rainfall (mm) 0 100 200 300 0 10000 20000 30000 40000 50000 Days (mm) 1876 1 1 2013 12 31 Tokyo, 1876 Daily Rainfall (mm) 0 50 100 150 0 100 200 300 Tokyo,

More information

,, Poisson 3 3. t t y,, y n Nµ, σ 2 y i µ + ɛ i ɛ i N0, σ 2 E[y i ] µ * i y i x i y i α + βx i + ɛ i ɛ i N0, σ 2, α, β *3 y i E[y i ] α + βx i

,, Poisson 3 3. t t y,, y n Nµ, σ 2 y i µ + ɛ i ɛ i N0, σ 2 E[y i ] µ * i y i x i y i α + βx i + ɛ i ɛ i N0, σ 2, α, β *3 y i E[y i ] α + βx i Armitage.? SAS.2 µ, µ 2, µ 3 a, a 2, a 3 a µ + a 2 µ 2 + a 3 µ 3 µ, µ 2, µ 3 µ, µ 2, µ 3 log a, a 2, a 3 a µ + a 2 µ 2 + a 3 µ 3 µ, µ 2, µ 3 * 2 2. y t y y y Poisson y * ,, Poisson 3 3. t t y,, y n Nµ,

More information

untitled

untitled 2 : n =1, 2,, 10000 0.5125 0.51 0.5075 0.505 0.5025 0.5 0.4975 0.495 0 2000 4000 6000 8000 10000 2 weak law of large numbers 1. X 1,X 2,,X n 2. µ = E(X i ),i=1, 2,,n 3. σi 2 = V (X i ) σ 2,i=1, 2,,n ɛ>0

More information

基礎数学I

基礎数学I I & II ii ii........... 22................. 25 12............... 28.................. 28.................... 31............. 32.................. 34 3 1 9.................... 1....................... 1............

More information

k2 ( :35 ) ( k2) (GLM) web web 1 :

k2 ( :35 ) ( k2) (GLM) web   web   1 : 2012 11 01 k2 (2012-10-26 16:35 ) 1 6 2 (2012 11 01 k2) (GLM) kubo@ees.hokudai.ac.jp web http://goo.gl/wijx2 web http://goo.gl/ufq2 1 : 2 2 4 3 7 4 9 5 : 11 5.1................... 13 6 14 6.1......................

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

k3 ( :07 ) 2 (A) k = 1 (B) k = 7 y x x 1 (k2)?? x y (A) GLM (k

k3 ( :07 ) 2 (A) k = 1 (B) k = 7 y x x 1 (k2)?? x y (A) GLM (k 2012 11 01 k3 (2012-10-24 14:07 ) 1 6 3 (2012 11 01 k3) kubo@ees.hokudai.ac.jp web http://goo.gl/wijx2 web http://goo.gl/ufq2 1 3 2 : 4 3 AIC 6 4 7 5 8 6 : 9 7 11 8 12 8.1 (1)........ 13 8.2 (2) χ 2....................

More information

「産業上利用することができる発明」の審査の運用指針(案)

「産業上利用することができる発明」の審査の運用指針(案) 1 1.... 2 1.1... 2 2.... 4 2.1... 4 3.... 6 4.... 6 1 1 29 1 29 1 1 1. 2 1 1.1 (1) (2) (3) 1 (4) 2 4 1 2 2 3 4 31 12 5 7 2.2 (5) ( a ) ( b ) 1 3 2 ( c ) (6) 2. 2.1 2.1 (1) 4 ( i ) ( ii ) ( iii ) ( iv)

More information

I II III IV V

I II III IV V I II III IV V N/m 2 640 980 50 200 290 440 2m 50 4m 100 100 150 200 290 390 590 150 340 4m 6m 8m 100 170 250 µ = E FRVβ β N/mm 2 N/mm 2 1.1 F c t.1 3 1 1.1 1.1 2 2 2 2 F F b F s F c F t F b F s 3 3 3

More information

6.1 (P (P (P (P (P (P (, P (, P.

6.1 (P (P (P (P (P (P (, P (, P. (011 30 7 0 ( ( 3 ( 010 1 (P.3 1 1.1 (P.4.................. 1 1. (P.4............... 1 (P.15.1 (P.16................. (P.0............3 (P.18 3.4 (P.3............... 4 3 (P.9 4 3.1 (P.30........... 4 3.

More information

tokei01.dvi

tokei01.dvi 2. :,,,. :.... Apr. - Jul., 26FY Dept. of Mechanical Engineering, Saga Univ., JAPAN 4 3. (probability),, 1. : : n, α A, A a/n. :, p, p Apr. - Jul., 26FY Dept. of Mechanical Engineering, Saga Univ., JAPAN

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc2.com/ 1 6 3 6.1................................ 3 6.2.............................. 4 6.3................................ 5 6.4.......................... 6 6.5......................

More information

一般化線形 (混合) モデル (2) - ロジスティック回帰と GLMM

一般化線形 (混合) モデル (2) - ロジスティック回帰と GLMM .. ( ) (2) GLMM kubo@ees.hokudai.ac.jp I http://goo.gl/rrhzey 2013 08 27 : 2013 08 27 08:29 kubostat2013ou2 (http://goo.gl/rrhzey) ( ) (2) 2013 08 27 1 / 74 I.1 N k.2 binomial distribution logit link function.3.4!

More information

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i July 8, 4. H H H int H H H int H int (x)d 3 x Schrödinger Picture Ψ(t) S e iht Ψ H O S Heisenberg Picture Ψ H O H (t) e iht O S e iht Interaction Picture Ψ(t) D e iht Ψ(t) S O D (t) e iht O S e ih t (Dirac

More information

60 (W30)? 1. ( ) 2. ( ) web site URL ( :41 ) 1/ 77

60 (W30)? 1. ( ) 2. ( ) web site URL ( :41 ) 1/ 77 60 (W30)? 1. ( ) kubo@ees.hokudai.ac.jp 2. ( ) web site URL http://goo.gl/e1cja!! 2013 03 07 (2013 03 07 17 :41 ) 1/ 77 ! : :? 2013 03 07 (2013 03 07 17 :41 ) 2/ 77 2013 03 07 (2013 03 07 17 :41 ) 3/ 77!!

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc2.com/ 1 30 3 30.1.............. 3 30.2........................... 4 30.3...................... 5 30.4........................ 6 30.5.................................. 8 30.6...............................

More information

6.1 (P (P (P (P (P (P (, P (, P.101

6.1 (P (P (P (P (P (P (, P (, P.101 (008 0 3 7 ( ( ( 00 1 (P.3 1 1.1 (P.3.................. 1 1. (P.4............... 1 (P.15.1 (P.15................. (P.18............3 (P.17......... 3.4 (P................ 4 3 (P.7 4 3.1 ( P.7...........

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

( ) 2002 1 1 1 1.1....................................... 1 1.1.1................................. 1 1.1.2................................. 1 1.1.3................... 3 1.1.4......................................

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

80 X 1, X 2,, X n ( λ ) λ P(X = x) = f (x; λ) = λx e λ, x = 0, 1, 2, x! l(λ) = n f (x i ; λ) = i=1 i=1 n λ x i e λ i=1 x i! = λ n i=1 x i e nλ n i=1 x

80 X 1, X 2,, X n ( λ ) λ P(X = x) = f (x; λ) = λx e λ, x = 0, 1, 2, x! l(λ) = n f (x i ; λ) = i=1 i=1 n λ x i e λ i=1 x i! = λ n i=1 x i e nλ n i=1 x 80 X 1, X 2,, X n ( λ ) λ P(X = x) = f (x; λ) = λx e λ, x = 0, 1, 2, x! l(λ) = n f (x i ; λ) = n λ x i e λ x i! = λ n x i e nλ n x i! n n log l(λ) = log(λ) x i nλ log( x i!) log l(λ) λ = 1 λ n x i n =

More information

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) = 1 9 8 1 1 1 ; 1 11 16 C. H. Scholz, The Mechanics of Earthquakes and Faulting 1. 1.1 1.1.1 : - σ = σ t sin πr a λ dσ dr a = E a = π λ σ πr a t cos λ 1 r a/λ 1 cos 1 E: σ t = Eλ πa a λ E/π γ : λ/ 3 γ =

More information

基礎から学ぶトラヒック理論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

基礎から学ぶトラヒック理論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 基礎から学ぶトラヒック理論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/085221 このサンプルページの内容は, 初版 1 刷発行時のものです. i +α 3 1 2 4 5 1 2 ii 3 4 5 6 7 8 9 9.3 2014 6 iii 1 1 2 5 2.1 5 2.2 7

More information

kubostat2017e p.1 I 2017 (e) GLM logistic regression : : :02 1 N y count data or

kubostat2017e p.1 I 2017 (e) GLM logistic regression : : :02 1 N y count data or kubostat207e p. I 207 (e) GLM kubo@ees.hokudai.ac.jp https://goo.gl/z9ycjy 207 4 207 6:02 N y 2 binomial distribution logit link function 3 4! offset kubostat207e (https://goo.gl/z9ycjy) 207 (e) 207 4

More information

kubostat2015e p.2 how to specify Poisson regression model, a GLM GLM how to specify model, a GLM GLM logistic probability distribution Poisson distrib

kubostat2015e p.2 how to specify Poisson regression model, a GLM GLM how to specify model, a GLM GLM logistic probability distribution Poisson distrib kubostat2015e p.1 I 2015 (e) GLM kubo@ees.hokudai.ac.jp http://goo.gl/76c4i 2015 07 22 2015 07 21 16:26 kubostat2015e (http://goo.gl/76c4i) 2015 (e) 2015 07 22 1 / 42 1 N k 2 binomial distribution logit

More information

2 1,2, , 2 ( ) (1) (2) (3) (4) Cameron and Trivedi(1998) , (1987) (1982) Agresti(2003)

2 1,2, , 2 ( ) (1) (2) (3) (4) Cameron and Trivedi(1998) , (1987) (1982) Agresti(2003) 3 1 1 1 2 1 2 1,2,3 1 0 50 3000, 2 ( ) 1 3 1 0 4 3 (1) (2) (3) (4) 1 1 1 2 3 Cameron and Trivedi(1998) 4 1974, (1987) (1982) Agresti(2003) 3 (1)-(4) AAA, AA+,A (1) (2) (3) (4) (5) (1)-(5) 1 2 5 3 5 (DI)

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

untitled

untitled MCMC 2004 23 1 I. MCMC 1. 2. 3. 4. MH 5. 6. MCMC 2 II. 1. 2. 3. 4. 5. 3 I. MCMC 1. 2. 3. 4. MH 5. 4 1. MCMC 5 2. A P (A) : P (A)=0.02 A B A B Pr B A) Pr B A c Pr B A)=0.8, Pr B A c =0.1 6 B A 7 8 A, :

More information

II III II 1 III ( ) [2] [3] [1] 1 1:

II III II 1 III ( ) [2] [3] [1] 1 1: 2015 4 16 1. II III II 1 III () [2] [3] 2013 11 18 [1] 1 1: [5] [6] () [7] [1] [1] 1998 4 2008 8 2014 8 6 [1] [1] 2 3 4 5 2. 2.1. t Dt L DF t A t (2.1) A t = Dt L + Dt F (2.1) 3 2 1 2008 9 2008 8 2008

More information

st.dvi

st.dvi 9 3 5................................... 5............................. 5....................................... 5.................................. 7.........................................................................

More information

こんにちは由美子です

こんにちは由美子です 1 2 . sum Variable Obs Mean Std. Dev. Min Max ---------+----------------------------------------------------- var1 13.4923077.3545926.05 1.1 3 3 3 0.71 3 x 3 C 3 = 0.3579 2 1 0.71 2 x 0.29 x 3 C 2 = 0.4386

More information

2 1 1 α = a + bi(a, b R) α (conjugate) α = a bi α (absolute value) α = a 2 + b 2 α (norm) N(α) = a 2 + b 2 = αα = α 2 α (spure) (trace) 1 1. a R aα =

2 1 1 α = a + bi(a, b R) α (conjugate) α = a bi α (absolute value) α = a 2 + b 2 α (norm) N(α) = a 2 + b 2 = αα = α 2 α (spure) (trace) 1 1. a R aα = 1 1 α = a + bi(a, b R) α (conjugate) α = a bi α (absolute value) α = a + b α (norm) N(α) = a + b = αα = α α (spure) (trace) 1 1. a R aα = aα. α = α 3. α + β = α + β 4. αβ = αβ 5. β 0 6. α = α ( ) α = α

More information

gr09.dvi

gr09.dvi .1, θ, ϕ d = A, t dt + B, t dtd + C, t d + D, t dθ +in θdϕ.1.1 t { = f1,t t = f,t { D, t = B, t =.1. t A, tdt e φ,t dt, C, td e λ,t d.1.3,t, t d = e φ,t dt + e λ,t d + dθ +in θdϕ.1.4 { = f1,t t = f,t {

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

読めば必ずわかる 分散分析の基礎 第2版

読めば必ずわかる 分散分析の基礎 第2版 2 2003 12 5 ( ) ( ) 2 I 3 1 3 2 2? 6 3 11 4? 12 II 14 5 15 6 16 7 17 8 19 9 21 10 22 11 F 25 12 : 1 26 3 I 1 17 11 x 1, x 2,, x n x( ) x = 1 n n i=1 x i 12 (SD ) x 1, x 2,, x n s 2 s 2 = 1 n n (x i x)

More information

kubostat2017c p (c) Poisson regression, a generalized linear model (GLM) : :

kubostat2017c p (c) Poisson regression, a generalized linear model (GLM) : : kubostat2017c p.1 2017 (c), a generalized linear model (GLM) : kubo@ees.hokudai.ac.jp http://goo.gl/76c4i 2017 11 14 : 2017 11 07 15:43 kubostat2017c (http://goo.gl/76c4i) 2017 (c) 2017 11 14 1 / 47 agenda

More information

K E N Z U 2012 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.2................................... 4 1.2.1..................................... 4 1.2.2.................................... 5................................

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

確率論と統計学の資料

確率論と統計学の資料 5 June 015 ii........................ 1 1 1.1...................... 1 1........................... 3 1.3... 4 6.1........................... 6................... 7 ii ii.3.................. 8.4..........................

More information

AR(1) y t = φy t 1 + ɛ t, ɛ t N(0, σ 2 ) 1. Mean of y t given y t 1, y t 2, E(y t y t 1, y t 2, ) = φy t 1 2. Variance of y t given y t 1, y t

AR(1) y t = φy t 1 + ɛ t, ɛ t N(0, σ 2 ) 1. Mean of y t given y t 1, y t 2, E(y t y t 1, y t 2, ) = φy t 1 2. Variance of y t given y t 1, y t 87 6.1 AR(1) y t = φy t 1 + ɛ t, ɛ t N(0, σ 2 ) 1. Mean of y t given y t 1, y t 2, E(y t y t 1, y t 2, ) = φy t 1 2. Variance of y t given y t 1, y t 2, V(y t y t 1, y t 2, ) = σ 2 3. Thus, y t y t 1,

More information

診療ガイドライン外来編2014(A4)/FUJGG2014‐01(大扉)

診療ガイドライン外来編2014(A4)/FUJGG2014‐01(大扉) !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

More information

研究シリーズ 第34号

研究シリーズ 第34号 personal income distribution 64 life stage 4134 (R.E.Mouer) 21 38 32 1 30 2 37 44 45 3 65 1 30 1. 12 3 4 5 4 8 5 2 28 1 37 38 5 1 41 34 2 30 4 2 5 38 66 38 2 40 38 6 1 1 5 3 34 67 12 3 31 3 52 8 3 1 1

More information

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n 003...............................3 Debye................. 3.4................ 3 3 3 3. Larmor Cyclotron... 3 3................ 4 3.3.......... 4 3.3............ 4 3.3...... 4 3.3.3............ 5 3.4.........

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

chap9.dvi

chap9.dvi 9 AR (i) (ii) MA (iii) (iv) (v) 9.1 2 1 AR 1 9.1.1 S S y j = (α i + β i j) D ij + η j, η j = ρ S η j S + ε j (j =1,,T) (1) i=1 {ε j } i.i.d(,σ 2 ) η j (j ) D ij j i S 1 S =1 D ij =1 S>1 S =4 (1) y j =

More information

untitled

untitled 3 3. (stochastic differential equations) { dx(t) =f(t, X)dt + G(t, X)dW (t), t [,T], (3.) X( )=X X(t) : [,T] R d (d ) f(t, X) : [,T] R d R d (drift term) G(t, X) : [,T] R d R d m (diffusion term) W (t)

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

講義のーと : データ解析のための統計モデリング. 第3回

講義のーと :  データ解析のための統計モデリング. 第3回 Title 講義のーと : データ解析のための統計モデリング Author(s) 久保, 拓弥 Issue Date 2008 Doc URL http://hdl.handle.net/2115/49477 Type learningobject Note この講義資料は, 著者のホームページ http://hosho.ees.hokudai.ac.jp/~kub ードできます Note(URL)http://hosho.ees.hokudai.ac.jp/~kubo/ce/EesLecture20

More information

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ± 7 7. ( ) SU() SU() 9 ( MeV) p 98.8 π + π 0 n 99.57 9.57 97.4 497.70 δm m 0.4%.% 0.% 0.8% π 9.57 4.96 Σ + Σ 0 Σ 89.6 9.46 K + K 0 49.67 (7.) p p = αp + βn, n n = γp + δn (7.a) [ ] p ψ ψ = Uψ, U = n [ α

More information

t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ

t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ 4 5 ( 5 3 9 4 0 5 ( 4 6 7 7 ( 0 8 3 9 ( 8 t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ S θ > 0 θ < 0 ( P S(, 0 θ > 0 ( 60 θ

More information

chap10.dvi

chap10.dvi . q {y j } I( ( L y j =Δy j = u j = C l ε j l = C(L ε j, {ε j } i.i.d.(,i q ( l= y O p ( {u j } q {C l } A l C l

More information

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g( 06 5.. ( y = x x y 5 y 5 = (x y = x + ( y = x + y = x y.. ( Y = C + I = 50 + 0.5Y + 50 r r = 00 0.5Y ( L = M Y r = 00 r = 0.5Y 50 (3 00 0.5Y = 0.5Y 50 Y = 50, r = 5 .3. (x, x = (, u = = 4 (, x x = 4 x,

More information

t χ 2 F Q t χ 2 F 1 2 µ, σ 2 N(µ, σ 2 ) f(x µ, σ 2 ) = 1 ( exp (x ) µ)2 2πσ 2 2σ 2 0, N(0, 1) (100 α) z(α) t χ 2 *1 2.1 t (i)x N(µ, σ 2 ) x µ σ N(0, 1

t χ 2 F Q t χ 2 F 1 2 µ, σ 2 N(µ, σ 2 ) f(x µ, σ 2 ) = 1 ( exp (x ) µ)2 2πσ 2 2σ 2 0, N(0, 1) (100 α) z(α) t χ 2 *1 2.1 t (i)x N(µ, σ 2 ) x µ σ N(0, 1 t χ F Q t χ F µ, σ N(µ, σ ) f(x µ, σ ) = ( exp (x ) µ) πσ σ 0, N(0, ) (00 α) z(α) t χ *. t (i)x N(µ, σ ) x µ σ N(0, ) (ii)x,, x N(µ, σ ) x = x+ +x N(µ, σ ) (iii) (i),(ii) z = x µ N(0, ) σ N(0, ) ( 9 97.

More information

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,. 24(2012) (1 C106) 4 11 (2 C206) 4 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 (). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5... 6.. 7.,,. 8.,. 1. (75%)

More information

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n . X {x, x 2, x 3,... x n } X X {, 2, 3, 4, 5, 6} X x i P i. 0 P i 2. n P i = 3. P (i ω) = i ω P i P 3 {x, x 2, x 3,... x n } ω P i = 6 X f(x) f(x) X n n f(x i )P i n x n i P i X n 2 G(k) e ikx = (ik) n

More information

( 28 ) ( ) ( ) 0 This note is c 2016, 2017 by Setsuo Taniguchi. It may be used for personal or classroom purposes, but not for commercial purp

( 28 ) ( ) ( ) 0 This note is c 2016, 2017 by Setsuo Taniguchi. It may be used for personal or classroom purposes, but not for commercial purp ( 28) ( ) ( 28 9 22 ) 0 This ote is c 2016, 2017 by Setsuo Taiguchi. It may be used for persoal or classroom purposes, but ot for commercial purposes. i (http://www.stat.go.jp/teacher/c2epi1.htm ) = statistics

More information

151021slide.dvi

151021slide.dvi : Mac I 1 ( 5 Windows (Mac Excel : Excel 2007 9 10 1 4 http://asakura.co.jp/ books/isbn/978-4-254-12172-8/ (1 1 9 1/29 (,,... (,,,... (,,, (3 3/29 (, (F7, Ctrl + i, (Shift +, Shift + Ctrl (, a i (, Enter,

More information

/22 R MCMC R R MCMC? 3. Gibbs sampler : kubo/

/22 R MCMC R R MCMC? 3. Gibbs sampler :   kubo/ 2006-12-09 1/22 R MCMC R 1. 2. R MCMC? 3. Gibbs sampler : kubo@ees.hokudai.ac.jp http://hosho.ees.hokudai.ac.jp/ kubo/ 2006-12-09 2/22 : ( ) : : ( ) : (?) community ( ) 2006-12-09 3/22 :? 1. ( ) 2. ( )

More information

chap1.dvi

chap1.dvi 1 1 007 1 e iθ = cos θ + isin θ 1) θ = π e iπ + 1 = 0 1 ) 3 11 f 0 r 1 1 ) k f k = 1 + r) k f 0 f k k = 01) f k+1 = 1 + r)f k ) f k+1 f k = rf k 3) 1 ) ) ) 1+r/)f 0 1 1 + r/) f 0 = 1 + r + r /4)f 0 1 f

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

: , 2.0, 3.0, 2.0, (%) ( 2.

: , 2.0, 3.0, 2.0, (%) ( 2. 2017 1 2 1.1...................................... 2 1.2......................................... 4 1.3........................................... 10 1.4................................. 14 1.5..........................................

More information

分布

分布 (normal distribution) 30 2 Skewed graph 1 2 (variance) s 2 = 1/(n-1) (xi x) 2 x = mean, s = variance (variance) (standard deviation) SD = SQR (var) or 8 8 0.3 0.2 0.1 0.0 0 1 2 3 4 5 6 7 8 8 0 1 8 (probability

More information

L A TEX ver L A TEX LATEX 1.1 L A TEX L A TEX tex 1.1 1) latex mkdir latex 2) latex sample1 sample2 mkdir latex/sample1 mkdir latex/sampl

L A TEX ver L A TEX LATEX 1.1 L A TEX L A TEX tex 1.1 1) latex mkdir latex 2) latex sample1 sample2 mkdir latex/sample1 mkdir latex/sampl L A TEX ver.2004.11.18 1 L A TEX LATEX 1.1 L A TEX L A TEX tex 1.1 1) latex mkdir latex 2) latex sample1 sample2 mkdir latex/sample1 mkdir latex/sample2 3) /staff/kaede work/www/math/takase sample1.tex

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l

1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l 1 1 ϕ ϕ ϕ S F F = ϕ (1) S 1: F 1 1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l : l r δr θ πrδr δf (1) (5) δf = ϕ πrδr

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

kubostat2017j p.2 CSV CSV (!) d2.csv d2.csv,, 286,0,A 85,0,B 378,1,A 148,1,B ( :27 ) 10/ 51 kubostat2017j (http://goo.gl/76c4i

kubostat2017j p.2 CSV CSV (!) d2.csv d2.csv,, 286,0,A 85,0,B 378,1,A 148,1,B ( :27 ) 10/ 51 kubostat2017j (http://goo.gl/76c4i kubostat2017j p.1 2017 (j) Categorical Data Analsis kubo@ees.hokudai.ac.jp http://goo.gl/76c4i 2017 11 15 : 2017 11 08 17:11 kubostat2017j (http://goo.gl/76c4i) 2017 (j) 2017 11 15 1 / 63 A B C D E F G

More information

第Ⅱ編/労働移動と地域の発展

第Ⅱ編/労働移動と地域の発展 Introduction Introduction 京都大学森知也先生講義 空間経済学 HP より転載 Thu nen Fig. Thu nen rings Introduction Thu nen 第 4 章 独占的競争のディクシット = スティグリッツのモデルとその空間経済への拡張 U = M μ A 1'μ (4.1) M: 工業品の消費を示す合成指数 μ: 工業品への支出割合を表す定数 A:

More information

講義のーと : データ解析のための統計モデリング. 第5回

講義のーと :  データ解析のための統計モデリング. 第5回 Title 講義のーと : データ解析のための統計モデリング Author(s) 久保, 拓弥 Issue Date 2008 Doc URL http://hdl.handle.net/2115/49477 Type learningobject Note この講義資料は, 著者のホームページ http://hosho.ees.hokudai.ac.jp/~kub ードできます Note(URL)http://hosho.ees.hokudai.ac.jp/~kubo/ce/EesLecture20

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

II (No.2) 2 4,.. (1) (cm) (2) (cm) , (

II (No.2) 2 4,.. (1) (cm) (2) (cm) , ( II (No.1) 1 x 1, x 2,..., x µ = 1 V = 1 k=1 x k (x k µ) 2 k=1 σ = V. V = σ 2 = 1 x 2 k µ 2 k=1 1 µ, V σ. (1) 4, 7, 3, 1, 9, 6 (2) 14, 17, 13, 11, 19, 16 (3) 12, 21, 9, 3, 27, 18 (4) 27.2, 29.3, 29.1, 26.0,

More information

(pdf) (cdf) Matlab χ ( ) F t

(pdf) (cdf) Matlab χ ( ) F t (, ) (univariate) (bivariate) (multi-variate) Matlab Octave Matlab Matlab/Octave --...............3. (pdf) (cdf)...3.4....4.5....4.6....7.7. Matlab...8.7.....9.7.. χ ( )...0.7.3.....7.4. F....7.5. t-...3.8....4.8.....4.8.....5.8.3....6.8.4....8.8.5....8.8.6....8.9....9.9.....9.9.....0.9.3....0.9.4.....9.5.....0....3

More information

kubostat7f p GLM! logistic regression as usual? N? GLM GLM doesn t work! GLM!! probabilit distribution binomial distribution : : β + β x i link functi

kubostat7f p GLM! logistic regression as usual? N? GLM GLM doesn t work! GLM!! probabilit distribution binomial distribution : : β + β x i link functi kubostat7f p statistaical models appeared in the class 7 (f) kubo@eeshokudaiacjp https://googl/z9cjy 7 : 7 : The development of linear models Hierarchical Baesian Model Be more flexible Generalized Linear

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

2 36 41 41 42 44 44 1 2 16 17 18 19 20 25 26 27 28 29 4 4.12 32 4.2 4.2.1 36 4.2.2 41 4.2.3 41 4.2.4 42 4.3 4.3.1 44 4.3.2 44 31 1 32 33 < 2 x 1 x x 2 < x 1 x1x 2 x1x 2 34 36 4.2 (1) (4) (1)

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) 4 4 ) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) a b a b = 6i j 4 b c b c 9) a b = 4 a b) c = 7

More information

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: sin 6 5 ζ a, b Z: Q: R: C: 3 3 7 4 sin 6 5 ζ 9 6 6............................... 6............................... 6.3......................... 4 7 6 8 8 9 3 33 a, b a bc c b a a b 5 3 5 3 5 5 3 a a a a p > p p p, 3,

More information

講義のーと : データ解析のための統計モデリング. 第2回

講義のーと :  データ解析のための統計モデリング. 第2回 Title 講義のーと : データ解析のための統計モデリング Author(s) 久保, 拓弥 Issue Date 2008 Doc URL http://hdl.handle.net/2115/49477 Type learningobject Note この講義資料は, 著者のホームページ http://hosho.ees.hokudai.ac.jp/~kub ードできます Note(URL)http://hosho.ees.hokudai.ac.jp/~kubo/ce/EesLecture20

More information

5 Armitage x 1,, x n y i = 10x i + 3 y i = log x i {x i } {y i } 1.2 n i i x ij i j y ij, z ij i j 2 1 y = a x + b ( cm) x ij (i j )

5 Armitage x 1,, x n y i = 10x i + 3 y i = log x i {x i } {y i } 1.2 n i i x ij i j y ij, z ij i j 2 1 y = a x + b ( cm) x ij (i j ) 5 Armitage. x,, x n y i = 0x i + 3 y i = log x i x i y i.2 n i i x ij i j y ij, z ij i j 2 y = a x + b 2 2. ( cm) x ij (i j ) (i) x, x 2 σ 2 x,, σ 2 x,2 σ x,, σ x,2 t t x * (ii) (i) m y ij = x ij /00 y

More information

ACLI-EBC-CLHIA Interim Proposal _J_ June Final.PDF

ACLI-EBC-CLHIA Interim Proposal _J_ June Final.PDF / ACLI-EBC-CLHIA 2 5800 2004 3 3 1 2004 3 55 7 ACLI EBC / CLHIA 3 3 20047 CTE 3 ACLI-EBC-CLHIA 3 CTE CTE CTE60 CTE 1) CTE(60) CTE(80) CTE(90) 2) 100 3) 8) 3 Mercer Oliver Wyman Actuarial Consulting ACLI-EBC-CLHIA

More information

統計的データ解析

統計的データ解析 ds45 xspec qdp guplot oocalc (Error) gg (Radom Error)(Systematc Error) x, x,, x ( x, x,..., x x = s x x µ = lm = σ µ x x = lm ( x ) = σ ( ) = - x = js j ( ) = j= ( j) x x + xj x + xj j x + xj = ( x x

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0 9 O y O ( O ) O (O ) 3 y O O v t = t = 0 ( ) O t = 0 t r = t P (, y, ) r = + y + (t,, y, ) (t) y = 0 () ( )O O t (t ) y = 0 () (t) y = (t ) y = 0 (3) O O v O O v O O O y y O O v P(, y,, t) t (, y,, t )

More information

(JAIST) (JSPS) PD URL:

(JAIST) (JSPS) PD URL: (JAIST) (JSPS) PD URL: http://researchmap.jp/kihara Email: kihara.takayuki.logic@gmail.com 2012 9 5 ii 2012 9 4 7 2012 JAIST iii #X X X Y X

More information

c 2009 i

c 2009 i I 2009 c 2009 i 0 1 0.0................................... 1 0.1.............................. 3 0.2.............................. 5 1 7 1.1................................. 7 1.2..............................

More information

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P 1 1.1 (population) (sample) (event) (trial) Ω () 1 1 Ω 1.2 P 1. A A P (A) 0 1 0 P (A) 1 (1) 2. P 1 P 0 1 6 1 1 6 0 3. A B P (A B) = P (A) + P (B) (2) A B A B A 1 B 2 A B 1 2 1 2 1 1 2 2 3 1.3 A B P (A

More information