橡qc_report.PDF

Size: px
Start display at page:

Download "橡qc_report.PDF"

Transcription

1

2 () 4 () 5 -BB84 5 -a)bb84 5. BB84 5. BB BB BB84 -b)bb c) d)bb B9 36 -a)b b)b E9 47 -a)e b)e9 5

3 - 5 -a)gv GV (3) a) b) a) b) (4) a) b) a)

4 -b) a) b) (5)

5 () 4

6 ( BB84 BB84 BB84 BB84 BB84 One-Time Pad S. Wiesner Wiesner Bennett Brassard Bennett 98 BB BennettBessetteBrassardSalvailSmolin Experimentalquantum cryptography Journal of Cryptology 99 EPR E9 Ekert 99 B9 BB84 BB84 Exclusive OR(XOR) One-Time Pad 5

7

8

9 8

10 Alice Bob A Parity:(0) Parity:() B () () C () (0) D E ()- - a)-. 9

11 n m f Ζ a Ζ ( n > m) f m y f f ( y ) nm y x f ( x) = y Ρ(y) m y Ρ(y) m f x t x i = c L, x, i t = c t Ρ y x = c, L, x = c ) t i i t ( i i t x = c L, x, t = c f ( x) = y f x y, c, c,, c, L Ρ y x = c, L, x = c ) = Ρ( ) ( i t y it n x t f m f ( x) = y Ρ( y) = t f m m m f f t 0

12 m Ρ L ) = ( y xi = c,, x c i t = t n x t f n m xn n x n n x x n y = f (x) m m m t t m n t m m m m =,,3 f : Ζ n a Ζ t n f : Ζ a Ζ n

13 n t 3 f : Ζ a Ζ n 3 4n t n (mod 7) 7 4n t n = (mod 7) [] C. H. Bennett and G. Brassard, Quantum Cryptography: Public key Distribution and Coin Tossing, Proc. of IEEE int. Conf. On Comp. Sys. And Signal Proc., Bangalore, India, 984. [] C. H. Bennett, Quantum Cryptography Using Any Two Nonorthogonal States, Phys. Rev. Lett., Vol.68, No., 99. [3] C. H. Bennett, F. Bessette, G. Brassard, L. Salvail, J. Smolin, Experimental Quantum Cryptography, Journal of Cryptology, Vol.5, pp.3-8, 99. [4] A. K. Ekert, Quantum Cryptography Based on Bell s Theorem, Phys. Rev. Lett., Vol.67, No.6, 99.

14 [5] S. Wiesner, S., "Conjugate coding", Sigact News, vol. 5, no., 983, pp [6] C. H. Bennett, G. Brassard, S. Breidbart and S. Wiesner, "Quantum cryptography, or unforgeable subway tokens", Advances in Cryptology: Proceedings of Crypto 8, August 98, Plenum Press, pp [7] C. H. Bennett, G. Brassard and J-M. Robert, "Privacy amplification by public discussion", SIAM Journal on Computing, vol. 7, no., April 988, pp [8] G. Brassard and L. Salvail, "Secret-key reconciliation by public discussion", Advances in Cryptology Eurocrypt '93 Proceedings, May 993, to appear. [9] C. H. Bennett, G. Brassard, C. Crépeau and U. M. Maurer, "Generalized privacy amplification", to appear in IEEE Transactions on Information Theory, 995. [0] P. W. Shor, "Algorithms for Quantum Computation: Discrete Log and Factoring", Proc. of the 35th Annual IEEE Symposium on Foundations of Computer Science, 994. B. Chor, O. Goldreich, J. Hastad, J. Freidmann, S. Rudich and R. Smolensky, The bit extraction problem or t-resilient functions, 6th IEEE Symp. Foundations of Computer Science, 985,

15 4

16 5

17 i i E i i U 0, 90 E i U 90 E E0 0 E i U 0 E E 0 E ij i 6

18 7 i E ij ij E i 35, E 00 E E U i E 0 E E U i = E E E E E = E E E E E = E E E E E = E E E E E

19 U i j E E ij ij E ij E ij i i = Tr photon[( U E 90 )( U E = E00 E00 + E0 E i i 0 ρ ρ 0 = Tr photon[( U E 0 )( U E 0 = E0 E0 + E E i i ρ ρ 0 i ρ 0 ρ 8

20 9 i i ε )) ( )log ( log ( ε ε ε ε = n r

21 ε 0.9 r(x) []C. H. Bennett and G. Brassard, "Quantum cryptography: Public-key distribution and coin tossing", Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India, December 984, pp []C. H. Bennett, "Quantum cryptography using any two nonorthogonal 0

22 states", Physical Review Letters, vol. 68, no., 5 May 99, pp [3]E. Biham, M. Boyer, P. O. Boykin, T. Mor and V. Roychowdhury, A proof of the security of quantum key distribution, In Proc. of the Thirty-Second Annual ACM Symposium on Theory of Computing. ACM Press, New York, 999. arxiv:quant-ph/ [4]A. K. Ekert, Quantum Cryptography Based on Bell s Theorem, Phys. Rev. Lett., Vol.67, No.6, 99. [5]A. Peres, Quantum Theory: Concepts and Methods,Kluwer Academic Publishers, Boston, 993. [6]C. H. Bennett, F. Bessette, G. Brassard, L. Salvail and J. Smolin, "Experimental quantum cryptography", Journal of Cryptology, Vol. 5, pp. 3 8, 99. [7]C. H. Bennett, G. Brassard, S. Breidbart and S. Wiesner, Qunatum cryptography, or unforgeable subway tokens. In Advances in Cryptology: Proceedings of Crypto 8, pp , Plenum Press, 98. [8]C. H. Bennett, G. Brassard, S. Breidbart and S. Wiesner, "Eavesdrop-detecting quantum communications channel", IBM Technical Disclosure Bulletin, vol. 6, no. 8, January 984, pp [9]B. Chor, O. Goldreich, J. Hastad, J. Freidmann, S. Rudich and R. Smolensky, The bit extraction problem or t-resilient functions. In 6th IEEE Symp. Foundations of Computer Science, pp , 985. [0]C. H. Bennett, G. Brassard and J-M. Robert, "Privacy amplification by public discussion", SIAM Journal on Computing, vol. 7, no., April 988, pp []U. M. Maurer, Secret key agreement by public discussion from common information, IEEE Transactions on Information Theory, vol. 39, no. 3, May 993, pp []G. Brassard and L. Salvail, Secret-key reconciliation by public discussion. Advances in Cryptology, Eurocrypt '93 Proceedings, 993 [3]C. H. Bennett, G. Brassard, C. Crépeau and U. M. Maurer, "Generalized privacy amplification", IEEE Transactions on Information Theory, 995. [4]C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wooters, Phys. Rev. A. 54, pp (996) [5]D. Bouwmeester, A. Ekert and A. Zeilinger, editors. The Physics of Quantum Information, Springer, 000.

23 [6]H. K. Lo and H. F. Chau. Unconditional security of quantum key distribution over arbitrarily long distances., Science, Vol. 83, pp , 999. arxiv: quant-ph/ [7]D. Mayers. Unconditional security in quantum cryptography, arxiv: quant-ph/ [8]P. W. Shor and J. Preskill. Simple proof of security of the bb84 quantum key distribution protocol, arxiv: quant-ph/ , 000. [9]E. Biham, M. Boyer, G. Brassard, J. van de Graaf, and T. Mor, Security of quantum key distribution against all collective attacks, arxiv: quant-ph/9800, 998.

24 ()--c) ()--c)-. BB84 [] [ ] [ ] Si-APD APD(Si, Ge, InGaAs) ()--c)-. 3dB/km 0.3dB/km % 0, 3

25 [ ] / 3/ ()--c) / 0 / 4

26 ()--c) / ()--c)-3. Alice 0,45,90,35 Bob Alice 4 0,45,90,35 Bob =8 Alice 0 Bob Bob 0-90 Alice Bob

27 Bob 0 Alice 0 Bob Bob Alice Bob or 35 Bob / BB Bob Bob BB84 Alice Bob OK NG NG OK OK NG OK OK 0 0 ()--c)-4. BB84 6

28 ()--c)-3. Mach-Zehnder Mirror 0 Beam Splitter Beam Splitter φ Mirror ()--c)-5. Mach-Zehnder 0 Beam Splitter /3/ / 7

29 Mach-Zehnder BB84 Mirror Alice Bob φ B 0, / Beam Splitter φ A Beam Splitter 0, /,,3/ Mirror ()--c)-6. Mach-Zehnder BB84 [Mach-Zehnder BB84 ]. Alice Bob 0,. Alice Bob 3. Alice bit 0 / 3/ / 3/ 4. Bob bit 0 / Bob Beam Splitter 0 6. Alice Alice (0, )(/, 3/) Bob Bob 0 / Alice 0 8

30 BB84 Alice Bob A φ A φ B ()--c)-7. BB84 S-S S-L L-S L-L t AliceBob Alice Bob 4 []C.H.Bennett, G.Brassard: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, Indiea(IEEE, New York, 984) 75. 9

31 30

32 3

33 3

34 33 Path i Path u + =

35 u = e iφ Path + i Path []C. H. Bennett and G. Brassard, Quantum Cryptography: Public key Distribution and Coin Tossing, Proc. of IEEE int. Conf. On Comp. Sys. And Signal Proc., Bangalore, India, 984. []C. H. Bennett, Quantum Cryptography Using Any Two Nonorthogonal States, Phys. Rev. Lett., Vol.68, No., 99. [3]A. K. Ekert, Quantum Cryptography Based on Bell s Theorem, Phys. Rev. Lett., Vol.67, No.6, 99. [4]L. Goldenberg and L. Vaidman, Quantum Cryptography Based on Orthogonal States, Phys. Rev. Lett., Vol.75, No.7, 995. [5]B. Huttner, N. Imoto, N. Gisin and T.Mor, Quantum cryptography with coherent states, Phys. Rev. A, Vol.5, No.3, 995. [6]M. Koashi and N. Imoto, Quantum Cryptography Based on Split Transmission of One-Bit Information in Two Steps, Phys. Rev. Lett., 34

36 Vol.79, No., 997. [7]K. Shimizu and N. Imoto, Quantum Cryptography Based on Split Transmission of One-Bit Information in Two Steps, Phys. Rev. Lett. Vol.79, p.383, 997. [9]T. Hirano, T. Konishi and R. Namiki, Quantum cryptography using balanced homodyne detection, quant-ph/ ,

37 ()-B9 ()--a)b9 ()--a) BB84 [] 989 [] EPR E9 [3] BB84 Bennet BB84 E9 4 B9 Alice Bob Alice Bob Alice Bob ()--a)- B9 Alice u, u 0 [5] ( ) u, u 0 36

38 u 0 u0 u u, u0 u,, u u u 0 u0 = u u = u 0 u = u u0 0 * 0 0 u0 u Bob POMV( ) P 0 u u, P u u [ P 0, P ] 0 P 0 u = 0, P u0 = P0 u P u 0 P0 u 0 u0 P0 P0 u0 = u0 u < 0 P0 u u0 37

39 u 0 P ()--a)-..alice 0 u0 u Bob u u 0 u u u 0 u u 0 u 0 u 0 u. Bob 0 P0 P P 0 P 0 P 0 P P 0 P P P 0 P P 3. Bob Alice Alice Bob ()--a)-3. ( :=0. ) ( ) 0,,, K 38

40 ( 0 0 ) α( α ) α α / = e n= 0 α n n! n α 0 + α α + + O( α 3 ) ( α << ) [6] α α 0. α 0 α, α α α = exp( α ) 0 ()--a)- 4. [4] Alice Bob Mirror Mirror Mirror Mirror PSA PSB UBS A UBS B UBS UBS ()--a)-. B9 UBS PSAPSB UBS Alice Bob PSAPSB 4 PSAPSB 39

41 t ()--a)-3. PSA 0 PSB 0 ()--a)-. PSA PSB 0 u 0 0 P 0 0 u 0 u P - 0 P 0 - u P

42 []C. H. Bennett and G. Brassard, in Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India (IEEE, New York, 984), pp.75. []C. H. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. Smolin, J. Cryptology 5 (99), pp.3. [3]A. Ekert, Phys. Rev. Lett. 67,(99)pp.66. [4]C. H. Bennett, Phys. Rev. 68,(99)pp.3. [5] -3 (983). [6] (996). 4

43 ()--b)b9 ()--b)- no-cloning [] BB84 []E9 [3] no-cloning B9 [4] B9 BB84 B9 ()--a)b Eve Bob Alice Alice Bob Alice Eve Mirror Mirror Mirror Mirror PSA PSE UBS A UBS UBS E UBS Bob Mirror Mirror Mirror Mirror PSE PSB UBS E UBS UBS ()--b)-. B9 Eve B UBS Eve Alice (<0.) 4

44 0 µ P( 0 ) = P( ) = µ Eve Alice / Eve P ( ) = µ << Eve µ P ( 0 ) + = µ ( + µ ) ( µ ) µ ( µ ) Eve Alice Bob Eve Bob Alice Bob Eve B9 no-cloning ( ) no-cloning u 0 u < 43

45 no-cloning u u 0 ()--b)-. ()--b)- B9 BB84 0 B9 0 ()--b)- R [5] R = qµνη η t d q / ν Hz ηt ηd R B9 BB84 44

46 µ = 0. [6] B9 η d n dark ( 00%) 830nm 50% 550nm APD( ) % n dark B9 Alice Bob (Visibility) 0.5% [6] 45

47 []W. K. Wooters and W. H. ZurekNature 99, (98),pp.80. []C. H. Bennett and G. Brassard, in Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India (IEEE, New York, 984), pp.75. [3]A. Ekert, Phys. Rev. Lett. 67,(99)pp.66. [4]C. H. Bennett, Phys. Rev. 68,(99)pp.3. [5]H. Zbinden, H. Bechmann-Pasquinucci, N. Gisin, G. Ribordy, Appl. Phys. B67, (998),pp.743. [6]H. Zbinden, J. D. Gautier, N. Gisin, B. Huttner, A. Muller, and, W. Tittel, Electron Lett. 33,(997), pp

48 ()-E9 ()--a)e9 ()--a)-. E9 EPR Einstein-Podolsky-Rosen EPR Source Alice Bob 0 0 EPR Alice Bob 47

49 [ ] EPR φ = ( b b ) Alice Bob EPR Source ()--a)-. EPR E9 E9 [E9 ] ) source (pair of entangled photons) ) Alice Bob 3) Alice Bob 4) 5) 6) tampering 7) Alice Bob 8) base 9) BB84 privacy amplification 48

50 ()--a)-. E9 φ = ( b b ) [ ] step. source Alice Bob step. 3 Alice Bob a a a Alice z φ = 0 φ = π / 4 φ 3 = π / 8 b Bob z = 0 b b φ φ = π / 8 φ 3 = π/ 8 a b E( φ, φ ) i j Alice φ a i Bob φ b j a b a b a b a b E( φ i, φj ) = P+ + ( φi, φj ) + P ( φi, φj ) P+ ( φi, φ j ) P + ( φ a i, φ b j ) E( φ a i, φ b j a b ) = cos[( φ φ )] i j step3. S Alice Bob a b a b a b a b S = E φ, φ ) + E( φ, φ ) + E( φ, φ ) E( φ, φ ) ( 3 3 S Clauser, Horne, Shimony, Holt Bell S CHSH inequality S = step4. Alice Bob 49

51 step5. first group second group step7. Alice Bob step8. Alice Bob first group step9. Alice Bob S disturb S = step0. (legitimate users)second grou (anti-correlated) privacy amplification []A.K.Ekert: Phys. Rev. Lett. 67 (99) 66. []C.H.Bennett, G.Brassard, N.D.Mermin: Phys. Rev. Lett. 68 (99) 557 [3]J.F.Clauser, M.A.Horne: Phys. Rev. D 0 (974) 56 [4]A.Garg, N.D.Mermin: Phys. Rev. D 35 (987) 383 [5]J-A.Larsson: Phys. Rev. A 57(998)

52 ()--b)e9 (public channel) Bell (Bell's inequality) Bell (Eve) Bell (Eve) E9 E9 Bell detection loophole []A.K.Ekert: Phys. Rev. Lett. 67 (99) 66. []C.H.Bennett, G.Brassard, N.D.Mermin: Phys. Rev. Lett. 68 (99) 557 [3]J.F.Clauser, M.A.Horne: Phys. Rev. D 0 (974) 56 [4]A.Garg, N.D.Mermin: Phys. Rev. D 35 (987) 383 [5]J-A.Larsson: Phys. Rev. A 57(998) 345 5

53 ()- ()--a) GV ()--a)-. no-cloning 995 Goldenberg Vaidman [] GV no-cloning Eve Bob Alice Bob Eve Bob Alice Bob Eve GV i.) ii) a b a a = b b =, a b = 0 Ψ Ψ ( a + 0 = b ( a = b ), ), Ψ0 Ψ a b 5

54 a b τ Alice Bob θ τ > θ b a Bob ( τ ) Alice Bob SR D 0 S 0 C C S SR D ()--a)-.gv Mach-Zehnder Alice S0S S0 Ψ S Ψ Alice 0 S0 S C a SR b τ τ θ ( ) C Ψ 0 Ψ a SR SR Ψ 0 D0 Ψ D 53

55 Alice S0S t Bob tr s Alice Bob i) ii) t t t s r = t s +τ +θ Eve a b r Ψ0 Ψ a (τ ts t r t t τ > ) BB84 ()--a)-. GV GV Eve 997 Alice Bob S A0 0 C C 0 D 0 S A SR a SR b D ()--a)-. GV GV CC 5050 TR(T+R=) Bob 54

56 A0 A ab C S0S Φ 0 = 0 a b T i R 0 a b Φ = 0 a b T i R 0 a b 0 a a a 0 0 b b 0 b a 0 b 0 a b C 0 T 0 R a b i ( T 0 i R ) a b 0 0 S0S Φ0 Φ Ψ 0 = 0 0 Ψ = 0 0 D0D T=R Φ0 Φ GV GV Eve Eve Bob Alice Alice Bob 55

57 Eve SR C3 C4 SR ()--a)-3eve Eve Alice Φ0 Φ Bob SR' Bob Alice GV Bob Ψ f = ( i T e θ + R ) i ( i Re θ T ) 0 ( T R ) = TR 0 ()--a)-3. BB84 B9 E9 GV [3,4] no-cloning Alice Bob 56

58 B9 ()--a)- BB84,E9 GV []L. Goldenberg and L. Vaidman, Phys. Rev. Lett. 75, (995), pp.39. []M. Koashi and N. Imoto, Phys. Rev. Lett. 79, (997), pp.383 [3] 56, (00),pp.7. [4] 8, (000), pp

59 (3) (3)- (3)--a) (3)--a)-. Alice Bob Alice Bob Alice 0 Bob Alice Bob Alice Bob Alice Bob Alice Bob Alice Bob Alice Bob Alice Alice Alice Bob BC(b,r) b r (P)(P) BC:{0,} {0,} {0,} l (P) BC(b,r)=BC(b',r') (b',r'), bb' (P) X X=BC(b,r) b (P)Alice (P)Bob BC(b,r) ) A bu{0,} r X=BC(b,r) A X B ) B cu{0,} c A 58

60 3) A (b,r)b 4) B X=BC(b,r) (3)--a)-. AliceBob (P)(P) (P)(P) Alice Bob AliceBob A B B A BC(b,r)=g b h r mod p (h=g a ) BC(b,r)=g b r mod p A B A B 59

61 [] (997) [] J. Gruska: Quantum computing, Mc Graw Hill (999). 60

62 (3)--b) (3)--b)-. AliceBob (3)--b)-. Lo and Chau [] Mayers[] Alice Bob s Alice b {0,} b=0 b= r Bob Bob s Bob Alice b Alice r b Alice b Bob Alice (EPR pair)s Bob Bob 6

63 b b r Bob Bob Alice 6

64 (3)- (3)--a) (3)--a)-. AliceBob (3)--a)-. [] [] J. Muller-Quade and H. Imai: ISITA000 (000) pp.665. [] 56 (00) pp.7. 63

65 (3)--b) (3)--b)-. (3)--b)- Salvail[] n n b,,bm n (3)--b)-3. Yao [] Yao 64

66 [] L. Salvail: Crypto'98 (999) pp.338. [] A. Yao: Proc. of the 7th Symposium on the Theory of Computing (995) pp.67. [3] J. Muller-Quade and H. Imai: ISITA000 (000) pp

67 OT 66

68 b 0 b b w 67

69 n n q = q, q, L, q ) r = r, r, L, r ) ( n ( n } Θ = ( θ, θ, L, θ n ), θi {0 45 ( ri 45 + qi 90 ) θ i r n i =,, L, n r = 0 i 0 r = i 45 ),( i =,, L, n q i x 0 x x d ( d = 0 or ) x 0 x w = d w = d x b, x ) w = d x b, x ) ( 0 0 b x b d w ( 0 b0 0 cos (.5 ) q x0 x i 68

70 b0 b c q d µ a ε ε ( µ q+ d) a a = ( e µ q) ε d / a d / µ q Η( p) = p log + ( p)log p p µ µ H (ε) < ( e µ e ) / a µ a ε N / a a 69

71 x 0 x ĉ c = cˆ c c = ˆ x b, x ) x b, x ) ( 0 0 b b c ( 0 b0 70

72 []M.O.Rabin, How to exchange secrets by oblivious transfer, Technical Memo TR-8, Aiken Computation Laboratory, Harvard University, 98. []S. Even, O. Goldreich and A. Lempel, A randomized protocol for signing contracts, Advances in Cryptology: Proceedings of Crypto 8, August 98, Plenum Press, pp [3]C. Crépeau, Equivalence between two flavors of oblivious transfer (abstract), Advances in Cryptology: Proceedings of Crypt 87, August 987, Springer-Verlag, pp [4]C. H. Bennett, F. Bessette, G. Brassard, L. Salvail and J. Smolin, Experimental Quantum Cryptography, Journal of Cryptology, Vol.5, pp.3-8, 99. [5]C. Crépeau and J. Kilian, Achieving oblivious transfer using weakened security assumptions, Proceedings of 9th IEEE Symposium on the Foundations of Computer Science, October, 988, pp [6]C. H. Bennett, G. Brassard, C. Crépeau and M-H. Skubiszewska, "Practical quantum oblivious transfer", Advances in Cryptology, Crypto '9 Proceedings, August 99, Springer - Verlag, pp [7]A. Yao, Security of Quantum Protocols Against Coherent Measurements, in Proc. of 6th Annual ACM Symposium on Theory of Computing,

73 [8]J. Kilian, Proc. of 988 ACM Annual Symposium on Theory of Computing, 988. [9]D. Mayers, On the Security of the Quantum Oblivious Transfer and Key Distribution Protocols, Proc. of Crypto 95, LNCS963, Springer-Verlag, pp. 4-35, 996. [0]D. Mayers, Quantum Key Distribution and String Oblivious Transfer in Noisy Channels, arxiv: quant-ph/

74 Polarizer Quantum Channel Calcite wollaston prism APDs Laser Aperture Color Filter Pockels cells Pockels cells cos (.5 ) 73

75 74

76 75

77 (4)- (4)--a) (4)--a)-. 98 Blum [] Alice Bob [] i) 3 ii) Alice Bob iii) Alice Bob iv) Bob [] Alice x y = H(x) H ( ) Alice y Bob Bob x Alice Bob Alice x Bob Bob y = H(x) (4)--a) Bennett Brassard [3] BB-cointoss Alice b0 BB-commit( b 0 ) Bob Bob b Alice Alice Bob BB-open( b 0 Bob b = b 0 BB-commit( b ) 76

78 Alice s B = ( b, b, K, bs) Bob s ) Θ = ( θ, θ, K, θs θi, 45 Alice s b b = 0 0 at b = 0 90 at b = b = 45 at b = 0 Bob 35 at b = Bob Θ 0 45 b = b i = Bob Θ B = b, b, K, b ) ( s Alice b B BB-open( b ) i Alice Bob b B Bob b b = Bob Alice BB-cointoss [4,5] EPR ( ) Alice Bob i i i i i b i (4)--a)-3. MayersSalvail [6,7] 4 i) ii) iii) 77

79 iv) [8] MayersSalvail Slow Coin Tossing Alice Bob Alice Bob m a, j b j m z = a b ψ( 0), ψ() ψ ( 0) = c 0 + s, ψ() = c 0 s j j j ψ(0) θ θ ψ() 0 (4)--a)- 0, c = sin θ, s = sin θ 78

80 n n Φ 0) = ψ(0), Φ() = () ( k = k = ψ Θ cos Θ = cos n θ n Φ(0) Φ() Φ(0) Φ() POVM ( E0, E0 ) E E 0 0 = [ + cosθ] = E 0 Φ(0) Φ(0) ( E, E ) E = [ + cosθ] E = E Φ() Φ() Φ(0) Φ() E Φ(0) 0 E Φ() Alice m ( j =, Km) a j Bob m ( j =, K, m) b j Alice mn ( i =, K n, j =, Km) mn c ij ψ c ) ψ( c ) Bob c c ( ij ij Bob mn ( i =, K n, j =, Km) d ij 79

81 mn ψ d ) ψ( d ) Alice ( ij ij Alice Bob i =, Kn Alice m e ij = a j c ij (i )Bob Bob e m Alice ij m e = ψ c )( = ψ( a )) Alice ij ( ij j ψ c )( = ψ( a )) Bob ( ij j e = ψ c )( = ψ( a )) Alice ij ( ij j ψ c )( = ψ( a )) Bob ( ij j i a e Bob m f ij = b j d ij (i )Alice j ij Alice f ij m Bob m f = ψ d )( = ψ( b )) Bob ij ( ij j ψ d )( = ψ( b )) Alice ( ij j f = ψ d )( = ψ( b )) Bob ij ( ij j ψ d )( = ψ( b )) Alice ( ij j i b f j ij 80

82 Alice n Φ( b j ) Φ( a j) Bob n Φ a ) Φ b ) ( j ( j Alice a Bob Bob j j n Φ a ) POMV ( E, E ) Φ a ) ( j a j a j Alice E, E ) E, E ) a ~ ( 0 0 ( Bob b Alice Alice j j ( j n Φ b ) POMV ( E, E ) Φ b ) ( j bj b j Bob E, E ) E, E ) ( 0 0 ( ( j b ~ j Alice Bob n Φ a ) POMV ( j ( E, E a j a j ) Φ a ) ( j Bob Bob Alice n Φ b ) POMV ( E, E ) ( j bj b j Φ b ) Bob ( j Alice ~ A B = ( j a ) ( j j ~ b ) Bob ~ A B = ( j ~ a ) ( j j j b ) j 8

83 m 3 / O( m ) m []M. Blum, Proc. of COMPCON, IEEE, (98), pp.37 []B. Schneier, Applied Cryptography nd Ed., John Wiley & Sons, Inc., (996), pp.89. [3]C. H. Bennett and G. Brassard, Proc. of IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India., (984), pp.67. [4]D. Mayers, Phys. Rev. Lett.78, (997), pp.344. [5]H. -K. Lo and H. F. Chau, Phys. Rev. Lett.78, (997),pp.340. [6]D. Mayers, L. Salvail, and, Y. Chiba-Kohno, quanta-ph/ , (999). [7] D. Mayers, L. Salvail, and, Y. Chiba-Kohno, QIT99-40, (999), pp.5 [8] H. -K. Lo and H. F. Chau, quanta-ph/97065, (997). 8

84 (4)--b) (4)--b)-. a) MayersSalvail [,] b)-3 BB-cointoss[3] BB-cointoss BB84 air BB84 [4] PBS I II Alice Bob (4)--b)-. BB-cointoss air AliceBob 83

85 Alice Bob Alice ( m) cm Alice Bob Bob 0 45 PBS I 0 45 II Bob (4)--b)-. (3)--b)-. Alice Bob Alice Bob Alicea a,, a, K, b, K Bobb, b s s Alice a0 Alice a0 a i (4)--b)-. 84

86 i = a 0 0 (4)--b)-Alice a i Bob Alice b (4)--b)-. Bob i b i (4)--b)-.Bob Bob a, a,, K a s I II φ() Bob b0 Bob Alice Alice a a Bob 0 i Bob φ φ b i = a 0 85

87 Bob Alice ai a = OK NG i a i NG b = 0 a 0 Bob Alice (4)--b)-3.BB-cointoss i ai bi bit:a' bit rate R6/5=40% bit OK OK NG OK bit error rate BER=/4=5% (4)--b)-3.BB-cointoss s =5 Alice Bob b Bob 0 a 0 (4)--b)-3. BB-cointoss BB-cointoss BB-cointoss MayersSalvail 86

88 Alice Bob i) Alice Bob 50Km 50sec ii) Alice Bob []D. Mayers, L. Salvail, and, Y. Chiba-Kohno, quanta-ph/ , (999). [] D. Mayers, L. Salvail, and, Y. Chiba-Kohno, QIT99-40, (999), pp.5 [3]C. H. Bennett and G. Brassard, Proc. of IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India., (984), pp.67. [4]B. C. Jacobs and J. D. Franson, Optics Lett., (996), pp

89 (4)- (4)--a) (4)--a) M.Hillery (quantum secret sharing) (secret sharing) Alice Bob m out of n (m,n)- n m m n 3 n Alice Bob Carol (4)--a)-. M.Hillery 3 GHZ (Greenberger-Horne-Zeilinger state) A.Karlsson 88

90 89 (4)--a)-. [ ] + z z (spin eigenstate) z }, { + z z Bell state 4 Bell state ) ( B A B A z z z z = + φ ) ( B A B A z z z z + + = φ ) ( B A B A z z z z = + ψ ) ( B A B A z z z z + + = ψ x-spin (x-spin eigenstate) ) ( + + = + z z x ) ( + = z z x x-spin ) ( B A B A x x x x = + φ ) ( B A B A x x x x = φ ) ( B A B A x x x x + + = + ψ ) ( B A B A x x x x + + = ψ

91 Bell + + Ψ = ( φ + ψ ) = ( z + x + + z x ) A B A B = ( x + A z + B + x A z B ) + Φ ( φ ψ ) = ( z + x z x + ) A B A B = ( x + z x z + A B A B ) + + { ψ, φ, Ψ, Φ } ψ + φ = 0 + Ψ Φ = 0 (nonorthogonal) ψ + Ψ + 0 ψ + Φ 0 φ Ψ + 0 φ + Φ 0 90

92 + + { ψ, φ, Ψ, Φ } step. Trent + + { 0, } { ψ, φ } { 0', ' } { Ψ, Φ } Alice Bob z x step. Alice Bob (measurement outcome) (measurement outcome) Alice Bob step3. Trent Alice Bob Trent Alice Bob Trent Alice Bob step4. Step3 Alice Bob Alice Bob Trent (4)--a)- (4)--a)-. Alice Bob Alice/Bob z+ z- x+ x- z+ + z- ψ x+ x- φ + + ψ Ψ + Ψ φ + Φ Ψ + Φ ψ Φ + Φ Ψ φ φ + ψ 9

93 [3 ] 3 GHZ []M.Hillery, V.Buzek, A.Berthiaume: quant-ph/ (998) []A.Karlsson, M.Koashi, N.Imoto: Phys. Rev. A 59 (999) 6 9

94 (4)--b) (4)--b)-. 3 Alice Trent ( ) Bob PBS PBS source (4)--b)-. Alice Bob AliceBobTrent 3 [Trent] Trent Alice Bob + + { 0, } { ψ, φ } { 0 ', ' } { Ψ, Φ } [Alice]Alice PBS z x [Bob] Bob Alice PBS 93

95 z x (4)--b)-. Alice Trent ( ) Bob PBS PBS source (4)--b)-. stepstep3 step 94

96 Alice Bob step3 Trent Alice Bob []M.Hillery, V.Buzek, A.Berthiaume: quant-ph/ (998) []A.Karlsson, M.Koashi, N.Imoto: Phys. Rev. A 59 (999) 6 95

97 (5) Km 96

98 ( ) EPR (visibility) Dirac 97

99 (binding) APD (POVM) 830nm nm 98

100 0 (bit commitment) (concealing) (no-go theorem) ( privacy amplification ) 99

101 50 (Bell States) 00

102 (quantum bit commitment) APD (Avalansh photo diode) BB84 BennetBrassard 984 B9 Bennet 99 EPR (EPR ) EinsteinPodolskyRosen E9 Ekert 99 GHZ (Greenberger-Horne-Zeilinger state) 3 no- cloning One- Time Pad POVM( ) 0

特集_03-07.Q3C

特集_03-07.Q3C 3-7 Error Detection and Authentication in Quantum Key Distribution YAMAMURA Akihiro and ISHIZUKA Hirokazu Detecting errors in a raw key and authenticating a private key are crucial for quantum key distribution

More information

量子情報科学−情報科学の物理限界への挑戦- 2018

量子情報科学−情報科学の物理限界への挑戦- 2018 1 http://qi.mp.es.osaka-u.ac.jp/main 2 0 5000 10000 15000 20000 25000 30000 35000 40000 1945 1947 1949 1951 1953 1955 1957 1959 1961 1963 1965 1967 1969 1971 1973 1975 1977 1979 1981 1983 1985 1987 1989

More information

量子暗号通信の仕組みと開発動向

量子暗号通信の仕組みと開発動向 RSA AES 1 BB84Y-00 E-mail: hitoshi.gotou-1@boj.or.jp //2009.10 107 1. 2008 10 9 20 km 1.02 Mbps 100 km 10.1 kbps 1 Gbps 10 Gbps VPN 7 km 2. 1 3 2 1 2 108 /2009.10 1 2 2 109 2 ID IC KEELOQ 1 1 EUROCRYPT2008

More information

/ ( ) 1 1.1 323 206 23 ( 23 529 529 323 206 ) 23 1.2 33 1.3 323 61 61 3721 3721 323 168 168 323 23 61 61 23 1403 323 111 111 168 206 323 47 111 323 47 2 23 2 2.1 34 2 2.2 2 a, b N a b N a b (mod N) mod

More information

Microsoft PowerPoint - Tsukuba2006提出.ppt

Microsoft PowerPoint - Tsukuba2006提出.ppt 量子暗号の安全性と量子系の基本的性質 小芦雅斗 阪大基礎工 Introduction Constraint on disturbance-free operations - Quantifying quantum information Monogamy of entanglement - Quantifying entanglement in unit of bits Unconditional

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

[I486S] 暗号プロトコル理論

[I486S]  暗号プロトコル理論 [I486S] 2018 5 1 (JAIST) 2018 5 1 1 / 22 : I486S I URL:https://wwwjaistacjp/~fujisaki/i486S (Tuesdays) 5 17:10 18:50 4/17, 4/24, 5/1, 5/15, 5/22, 5/29, 6/5, 6/19, 6/26, 7/3, 7/10, 7/17, 7/24, 7/31 (JAIST)

More information

Mott散乱によるParity対称性の破れを検証

Mott散乱によるParity対称性の破れを検証 Mott Parity P2 Mott target Mott Parity Parity Γ = 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 t P P ),,, ( 3 2 1 0 1 γ γ γ γ γ γ ν ν µ µ = = Γ 1 : : : Γ P P P P x x P ν ν µ µ vector axial vector ν ν µ µ γ γ Γ ν γ

More information

21 Key Exchange method for portable terminal with direct input by user

21 Key Exchange method for portable terminal with direct input by user 21 Key Exchange method for portable terminal with direct input by user 1110251 2011 3 17 Diffie-Hellman,..,,,,.,, 2.,.,..,,.,, Diffie-Hellman, i Abstract Key Exchange method for portable terminal with

More information

I

I I 6 4 10 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

4 i

4 i 22 Quantum error correction and its simulation 1135071 2011 3 1 4 i Abstract Quantum error correction and its simulation Hiroko Dehare Researches in quantum information theory and technology, that mix

More information

数学の基礎訓練I

数学の基礎訓練I I 9 6 13 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 3 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

( )

( ) NAIST-IS-MT0851100 2010 2 4 ( ) CR CR CR 1980 90 CR Kerberos SSH CR CR CR CR CR CR,,, ID, NAIST-IS- MT0851100, 2010 2 4. i On the Key Management Policy of Challenge Response Authentication Schemes Toshiya

More information

1/2 ( ) 1 * 1 2/3 *2 up charm top -1/3 down strange bottom 6 (ν e, ν µ, ν τ ) -1 (e) (µ) (τ) 6 ( 2 ) 6 6 I II III u d ν e e c s ν µ µ t b ν τ τ (2a) (

1/2 ( ) 1 * 1 2/3 *2 up charm top -1/3 down strange bottom 6 (ν e, ν µ, ν τ ) -1 (e) (µ) (τ) 6 ( 2 ) 6 6 I II III u d ν e e c s ν µ µ t b ν τ τ (2a) ( August 26, 2005 1 1 1.1...................................... 1 1.2......................... 4 1.3....................... 5 1.4.............. 7 1.5.................... 8 1.6 GIM..........................

More information

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence Hanbury-Brown Twiss (ver. 2.) 25 4 4 1 2 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 4 3 Hanbury-Brown Twiss ( ) 5 3.1............................................

More information

( ) 2002 1 1 1 1.1....................................... 1 1.1.1................................. 1 1.1.2................................. 1 1.1.3................... 3 1.1.4......................................

More information

三石貴志.indd

三石貴志.indd 流通科学大学論集 - 経済 情報 政策編 - 第 21 巻第 1 号,23-33(2012) SIRMs SIRMs Fuzzy fuzzyapproximate approximatereasoning reasoningusing using Lukasiewicz Łukasiewicz logical Logical operations Operations Takashi Mitsuishi

More information

L. S. Abstract. Date: last revised on 9 Feb translated to Japanese by Kazumoto Iguchi. Original papers: Received May 13, L. Onsager and S.

L. S. Abstract. Date: last revised on 9 Feb translated to Japanese by Kazumoto Iguchi. Original papers: Received May 13, L. Onsager and S. L. S. Abstract. Date: last revised on 9 Feb 01. translated to Japanese by Kazumoto Iguchi. Original papers: Received May 13, 1953. L. Onsager and S. Machlup, Fluctuations and Irreversibel Processes, Physical

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

The Physics of Atmospheres CAPTER :

The Physics of Atmospheres CAPTER : The Physics of Atmospheres CAPTER 4 1 4 2 41 : 2 42 14 43 17 44 25 45 27 46 3 47 31 48 32 49 34 41 35 411 36 maintex 23/11/28 The Physics of Atmospheres CAPTER 4 2 4 41 : 2 1 σ 2 (21) (22) k I = I exp(

More information

28 Horizontal angle correction using straight line detection in an equirectangular image

28 Horizontal angle correction using straight line detection in an equirectangular image 28 Horizontal angle correction using straight line detection in an equirectangular image 1170283 2017 3 1 2 i Abstract Horizontal angle correction using straight line detection in an equirectangular image

More information

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2 Hanbury-Brown Twiss (ver. 1.) 24 2 1 1 1 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 3 3 Hanbury-Brown Twiss ( ) 4 3.1............................................

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

第5章 偏微分方程式の境界値問題

第5章 偏微分方程式の境界値問題 October 5, 2018 1 / 113 4 ( ) 2 / 113 Poisson 5.1 Poisson ( A.7.1) Poisson Poisson 1 (A.6 ) Γ p p N u D Γ D b 5.1.1: = Γ D Γ N 3 / 113 Poisson 5.1.1 d {2, 3} Lipschitz (A.5 ) Γ D Γ N = \ Γ D Γ p Γ N Γ

More information

修士論文.dvi

修士論文.dvi 3 2 4 2...................... 5 2.2..................... 0 2.3 ( )............ 2 2.4... 5 3 8 3............................. 9 3.2................... 20 3.3... 24 3.4................... 27 3.4.............

More information

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100 positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) 0.5 1.5MeV : thermalization 10 100 m psec 100psec nsec E total = 2mc 2 + E e + + E e Ee+ Ee-c mc

More information

1 n 1 1 2 2 3 3 3.1............................ 3 3.2............................. 6 3.2.1.............. 6 3.2.2................. 7 3.2.3........................... 10 4 11 4.1..........................

More information

note4.dvi

note4.dvi 10 016 6 0 4 (quantum wire) 4.1 4.1.1.6.1, 4.1(a) V Q N dep ( ) 4.1(b) w σ E z (d) E z (d) = σ [ ( ) ( )] x w/ x+w/ π+arctan arctan πǫǫ 0 d d (4.1) à ƒq [ƒg w ó R w d V( x) QŽŸŒ³ džq x (a) (b) 4.1 (a)

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

i

i i ii 1 6 9 12 15 16 19 19 19 21 21 22 22 23 26 32 34 35 36 3 37 5 5 4 4 5 iii 4 55 55 59 59 7 7 8 8 9 9 10 10 1 11 iv ozein Van Marum 1801 Cruiokshank Marum 1840 Schonbein 3 / atm 1 N 1892 50 1960 1970

More information

main.dvi

main.dvi CDMA 1 CDMA ( ) CDMA CDMA CDMA 1 ( ) Hopfield [1] Hopfield 1 E-mail: okada@brain.riken.go.jp 1 1: 1 [] Hopfield Sourlas Hopfield [3] Sourlas 1? CDMA.1 DS/BPSK CDMA (Direct Sequence; DS) (Binary Phase-Shift-Keying;

More information

2013 M

2013 M 2013 M0110453 2013 : M0110453 20 1 1 1.1............................ 1 1.2.............................. 4 2 5 2.1................................. 6 2.2................................. 8 2.3.................................

More information

a L = Ψ éiγ c pa qaa mc ù êë ( - )- úû Ψ 1 Ψ 4 γ a a 0, 1,, 3 {γ a, γ b } η ab æi O ö æo ö β, σ = ço I α = è - ø çèσ O ø γ 0 x iβ γ i x iβα i

a L = Ψ éiγ c pa qaa mc ù êë ( - )- úû Ψ 1 Ψ 4 γ a a 0, 1,, 3 {γ a, γ b } η ab æi O ö æo ö β, σ = ço I α = è - ø çèσ O ø γ 0 x iβ γ i x iβα i 解説 4 matsuo.mamoru jaea.go.jp 4 eizi imr.tohoku.ac.jp 4 maekawa.sadamichi jaea.go.jp i ii iii i Gd Tb Dy g khz Pt ii iii Keywords vierbein 3 dreibein 4 vielbein torsion JST-ERATO 1 017 1. 1..1 a L = Ψ

More information

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e ( ) Note 3 19 12 13 8 8.1 (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R, µ R, τ R (1a) L ( ) ) * 3) W Z 1/2 ( - )

More information

PDF

PDF 1 1 1 1-1 1 1-9 1-3 1-1 13-17 -3 6-4 6 3 3-1 35 3-37 3-3 38 4 4-1 39 4- Fe C TEM 41 4-3 C TEM 44 4-4 Fe TEM 46 4-5 5 4-6 5 5 51 6 5 1 1-1 1991 1,1 multiwall nanotube 1993 singlewall nanotube ( 1,) sp 7.4eV

More information

1 2 LDA Local Density Approximation 2 LDA 1 LDA LDA N N N H = N [ 2 j + V ion (r j ) ] + 1 e 2 2 r j r k j j k (3) V ion V ion (r) = I Z I e 2 r

1 2 LDA Local Density Approximation 2 LDA 1 LDA LDA N N N H = N [ 2 j + V ion (r j ) ] + 1 e 2 2 r j r k j j k (3) V ion V ion (r) = I Z I e 2 r 11 March 2005 1 [ { } ] 3 1/3 2 + V ion (r) + V H (r) 3α 4π ρ σ(r) ϕ iσ (r) = ε iσ ϕ iσ (r) (1) KS Kohn-Sham [ 2 + V ion (r) + V H (r) + V σ xc(r) ] ϕ iσ (r) = ε iσ ϕ iσ (r) (2) 1 2 1 2 2 1 1 2 LDA Local

More information

,, Andrej Gendiar (Density Matrix Renormalization Group, DMRG) 1 10 S.R. White [1, 2] 2 DMRG ( ) [3, 2] DMRG Baxter [4, 5] 2 Ising 2 1 Ising 1 1 Ising

,, Andrej Gendiar (Density Matrix Renormalization Group, DMRG) 1 10 S.R. White [1, 2] 2 DMRG ( ) [3, 2] DMRG Baxter [4, 5] 2 Ising 2 1 Ising 1 1 Ising ,, Andrej Gendiar (Density Matrix Renormalization Group, DMRG) 1 10 S.R. White [1, 2] 2 DMRG ( ) [3, 2] DMRG Baxter [4, 5] 2 Ising 2 1 Ising 1 1 Ising Model 1 Ising 1 Ising Model N Ising (σ i = ±1) (Free

More information

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2 1 6 6.1 (??) (P = ρ rad /3) ρ rad T 4 d(ρv ) + PdV = 0 (6.1) dρ rad ρ rad + 4 da a = 0 (6.2) dt T + da a = 0 T 1 a (6.3) ( ) n ρ m = n (m + 12 ) m v2 = n (m + 32 ) T, P = nt (6.4) (6.1) d [(nm + 32 ] )a

More information

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji 8 4 2018 6 2018 6 7 1 (Contents) 1. 2 2. (1) 22 3. 31 1. Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji SETO 22 3. Editorial Comments Tadashi

More information

Ni PLD GdBa 2 Cu 3 O 7 x 2 6

Ni PLD GdBa 2 Cu 3 O 7 x 2 6 Ni PLD GdBa 2 Cu 3 O 7 x 2 6 1 1 1.1.................................. 1 1.2................................ 2 1.2.1......................... 3 1.3 RE 1 Ba 2 Cu 3 O 7 x...................... 3 1.3.1...............................

More information

,,, 2 ( ), $[2, 4]$, $[21, 25]$, $V$,, 31, 2, $V$, $V$ $V$, 2, (b) $-$,,, (1) : (2) : (3) : $r$ $R$ $r/r$, (4) : 3

,,, 2 ( ), $[2, 4]$, $[21, 25]$, $V$,, 31, 2, $V$, $V$ $V$, 2, (b) $-$,,, (1) : (2) : (3) : $r$ $R$ $r/r$, (4) : 3 1084 1999 124-134 124 3 1 (SUGIHARA Kokichi),,,,, 1, [5, 11, 12, 13], (2, 3 ), -,,,, 2 [5], 3,, 3, 2 2, -, 3,, 1,, 3 2,,, 3 $R$ ( ), $R$ $R$ $V$, $V$ $R$,,,, 3 2 125 1 3,,, 2 ( ), $[2, 4]$, $[21, 25]$,

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e 7 -a 7 -a February 4, 2007 1. 2. 3. 4. 1. 2. 3. 1 Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e z

More information

2 ( ) i

2 ( ) i 25 Study on Rating System in Multi-player Games with Imperfect Information 1165069 2014 2 28 2 ( ) i ii Abstract Study on Rating System in Multi-player Games with Imperfect Information Shigehiko MORITA

More information

3 2 2 (1) (2) (3) (4) 4 4 AdaBoost 2. [11] Onishi&Yoda [8] Iwashita&Stoica [5] 4 [3] 3. 3 (1) (2) (3)

3 2 2 (1) (2) (3) (4) 4 4 AdaBoost 2. [11] Onishi&Yoda [8] Iwashita&Stoica [5] 4 [3] 3. 3 (1) (2) (3) (MIRU2012) 2012 8 820-8502 680-4 E-mail: {d kouno,shimada,endo}@pluto.ai.kyutech.ac.jp (1) (2) (3) (4) 4 AdaBoost 1. Kanade [6] CLAFIC [12] EigenFace [10] 1 1 2 1 [7] 3 2 2 (1) (2) (3) (4) 4 4 AdaBoost

More information

42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 =

42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 = 3 3.1 3.1.1 kg m s J = kg m 2 s 2 MeV MeV [1] 1MeV=1 6 ev = 1.62 176 462 (63) 1 13 J (3.1) [1] 1MeV/c 2 =1.782 661 731 (7) 1 3 kg (3.2) c =1 MeV (atomic mass unit) 12 C u = 1 12 M(12 C) (3.3) 41 42 3 u

More information

Mantel-Haenszelの方法

Mantel-Haenszelの方法 Mantel-Haenszel 2008 6 12 ) 2008 6 12 1 / 39 Mantel & Haenzel 1959) Mantel N, Haenszel W. Statistical aspects of the analysis of data from retrospective studies of disease. J. Nat. Cancer Inst. 1959; 224):

More information

ELECTRONIC IMAGING IN ASTRONOMY Detectors and Instrumentation 5 Instrumentation and detectors

ELECTRONIC IMAGING IN ASTRONOMY  Detectors and Instrumentation   5 Instrumentation and detectors ELECTRONIC IMAGING IN ASTRONOMY Detectors and Instrumentation 5 Instrumentation and detectors 4 2017/5/10 Contents 5.4 Interferometers 5.4.1 The Fourier Transform Spectrometer (FTS) 5.4.2 The Fabry-Perot

More information

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2 filename=mathformula58.tex ax + bx + c =, x = b ± b 4ac, (.) a x + x = b a, x x = c a, (.) ax + b x + c =, x = b ± b ac. a (.3). sin(a ± B) = sin A cos B ± cos A sin B, (.) cos(a ± B) = cos A cos B sin

More information

* 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) *

* 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) * * 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) *1 2004 1 1 ( ) ( ) 1.1 140 MeV 1.2 ( ) ( ) 1.3 2.6 10 8 s 7.6 10 17 s? Λ 2.5 10 10 s 6 10 24 s 1.4 ( m

More information

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1 QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1 (vierbein) QCD QCD 1 1: QCD QCD Γ ρ µν A µ R σ µνρ F µν g µν A µ Lagrangian gr TrFµν F µν No. Yes. Yes. No. No! Yes! [1] Nash & Sen [2] Riemann

More information

1 Kinect for Windows M = [X Y Z] T M = [X Y Z ] T f (u,v) w 3.2 [11] [7] u = f X +u Z 0 δ u (X,Y,Z ) (5) v = f Y Z +v 0 δ v (X,Y,Z ) (6) w = Z +

1 Kinect for Windows M = [X Y Z] T M = [X Y Z ] T f (u,v) w 3.2 [11] [7] u = f X +u Z 0 δ u (X,Y,Z ) (5) v = f Y Z +v 0 δ v (X,Y,Z ) (6) w = Z + 3 3D 1,a) 1 1 Kinect (X, Y) 3D 3D 1. 2010 Microsoft Kinect for Windows SDK( (Kinect) SDK ) 3D [1], [2] [3] [4] [5] [10] 30fps [10] 3 Kinect 3 Kinect Kinect for Windows SDK 3 Microsoft 3 Kinect for Windows

More information

p *2 DSGEDynamic Stochastic General Equilibrium New Keynesian *2 2

p *2 DSGEDynamic Stochastic General Equilibrium New Keynesian *2 2 2013 1 nabe@ier.hit-u.ac.jp 2013 4 11 Jorgenson Tobin q : Hayashi s Theorem : Jordan : 1 investment 1 2 3 4 5 6 7 8 *1 *1 93SNA 1 p.180 1936 100 1970 *2 DSGEDynamic Stochastic General Equilibrium New Keynesian

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

吸収分光.PDF

吸収分光.PDF 3 Rb 1 1 4 1.1 4 1. 4 5.1 5. 5 3 8 3.1 8 4 1 4.1 External Cavity Laser Diode: ECLD 1 4. 1 4.3 Polarization Beam Splitter: PBS 13 4.4 Photo Diode: PD 13 4.5 13 4.6 13 5 Rb 14 6 15 6.1 ECLD 15 6. 15 6.3

More information

²ÄÀÑʬΥ»¶ÈóÀþ·¿¥·¥å¥ì¡¼¥Ç¥£¥ó¥¬¡¼ÊýÄø¼°¤ÎÁ²¶á²òÀÏ Asymptotic analysis for the integrable discrete nonlinear Schrödinger equation

²ÄÀÑʬΥ»¶ÈóÀþ·¿¥·¥å¥ì¡¼¥Ç¥£¥ó¥¬¡¼ÊýÄø¼°¤ÎÁ²¶á²òÀÏ  Asymptotic analysis for the integrable discrete nonlinear Schrödinger equation Asymptotic analysis for the integrable discrete nonlinear Schrödinger equation ( ) ( ) 2016 12 17 1. Schrödinger focusing NLS iu t + u xx +2 u 2 u = 0 u(x, t) =2ηe 2iξx 4i(ξ2 η 2 )t+i(ψ 0 +π/2) sech(2ηx

More information

[1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin Clifford Spin 10 A 12 B 17 1 Cliffo

[1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin Clifford Spin 10 A 12 B 17 1 Cliffo [1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin + 8 5 Clifford Spin 10 A 12 B 17 1 Clifford Spin D Euclid Clifford Γ µ, µ = 1,, D {Γ µ, Γ ν

More information

( 9 1 ) 1 2 1.1................................... 2 1.2................................................. 3 1.3............................................... 4 1.4...........................................

More information

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes ) ( 3 7 4 ) 2 2 ) 8 2 954 2) 955 3) 5) J = σe 2 6) 955 7) 9) 955 Statistical-Mechanical Theory of Irreversible Processes 957 ) 3 4 2 A B H (t) = Ae iωt B(t) = B(ω)e iωt B(ω) = [ Φ R (ω) Φ R () ] iω Φ R (t)

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

2016 ǯ¥Î¡¼¥Ù¥ëʪÍý³Ø¾Þ²òÀ⥻¥ß¥Ê¡¼ Kosterlitz-Thouless ž°Ü¤È Haldane ͽÁÛ

2016 ǯ¥Î¡¼¥Ù¥ëʪÍý³Ø¾Þ²òÀ⥻¥ß¥Ê¡¼  Kosterlitz-Thouless ž°Ü¤È Haldane ͽÁÛ 2016 Kosterlitz-Thouless Haldane Dept. of Phys., Kyushu Univ. 2016 11 29 2016 Figure: D.J.Thouless F D.M.Haldane J.M.Kosterlitz TOPOLOGICAL PHASE TRANSITIONS AND TOPOLOGICAL PHASES OF MATTER ( ) ( ) (Dirac,

More information

ばらつき抑制のための確率最適制御

ばらつき抑制のための確率最適制御 ( ) http://wwwhayanuemnagoya-uacjp/ fujimoto/ 2011 3 9 11 ( ) 2011/03/09-11 1 / 46 Outline 1 2 3 4 5 ( ) 2011/03/09-11 2 / 46 Outline 1 2 3 4 5 ( ) 2011/03/09-11 3 / 46 (1/2) r + Controller - u Plant y

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds 127 3 II 3.1 3.1.1 Φ(t) ϕ em = dφ dt (3.1) B( r) Φ = { B( r) n( r)}ds (3.2) S S n( r) Φ 128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds

More information

xia2.dvi

xia2.dvi Journal of Differential Equations 96 (992), 70-84 Melnikov method and transversal homoclinic points in the restricted three-body problem Zhihong Xia Department of Mathematics, Harvard University Cambridge,

More information

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,.

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,. R-space ( ) Version 1.1 (2012/02/29) i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,. ii 1 Lie 1 1.1 Killing................................

More information

[Ver. 0.2] 1 2 3 4 5 6 7 1 1.1 1.2 1.3 1.4 1.5 1 1.1 1 1.2 1. (elasticity) 2. (plasticity) 3. (strength) 4. 5. (toughness) 6. 1 1.2 1. (elasticity) } 1 1.2 2. (plasticity), 1 1.2 3. (strength) a < b F

More information

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K 2 2 T c µ T c 1 1.1 1911 Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 1 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K τ 4.2K σ 58 213 email:takada@issp.u-tokyo.ac.jp 1933 Meissner Ochsenfeld λ = 1 5 cm B = χ B =

More information

(Visual Secret Sharing Scheme) VSSS VSSS 3 i

(Visual Secret Sharing Scheme) VSSS VSSS 3 i 13 A Visual Secret Sharing Scheme for Continuous Color Images 10066 14 8 (Visual Secret Sharing Scheme) VSSS VSSS 3 i Abstract A Visual Secret Sharing Scheme for Continuous Color Images Tomoe Ogawa The

More information

COE-RES Discussion Paper Series Center of Excellence Project The Normative Evaluation and Social Choice of Contemporary Economic Systems Graduate Scho

COE-RES Discussion Paper Series Center of Excellence Project The Normative Evaluation and Social Choice of Contemporary Economic Systems Graduate Scho COE-RES Discussion Paper Series Center of Excellence Project The Normative Evaluation and Social Choice of Contemporary Economic Systems Graduate School of Economics and Institute of Economic Research

More information

UWB a) Accuracy of Relative Distance Measurement with Ultra Wideband System Yuichiro SHIMIZU a) and Yukitoshi SANADA (Ultra Wideband; UWB) UWB GHz DLL

UWB a) Accuracy of Relative Distance Measurement with Ultra Wideband System Yuichiro SHIMIZU a) and Yukitoshi SANADA (Ultra Wideband; UWB) UWB GHz DLL UWB a) Accuracy of Relative Distance Measurement with Ultra Wideband System Yuichiro SHIMIZU a) and Yukitoshi SANADA (Ultra Wideband; UWB) UWB GHz DLL UWB (DLL) UWB DLL 1. UWB FCC (Federal Communications

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

D-brane K 1, 2 ( ) 1 K D-brane K K D-brane Witten [1] D-brane K K K K D-brane D-brane K RR BPS D-brane

D-brane K 1, 2   ( ) 1 K D-brane K K D-brane Witten [1] D-brane K K K K D-brane D-brane K RR BPS D-brane D-brane K 1, 2 E-mail: sugimoto@yukawa.kyoto-u.ac.jp (2004 12 16 ) 1 K D-brane K K D-brane Witten [1] D-brane K K K K D-brane D-brane K RR BPS D-brane D-brane RR D-brane K D-brane K D-brane K K [2, 3]

More information

29

29 9 .,,, 3 () C k k C k C + C + C + + C 8 + C 9 + C k C + C + C + C 3 + C 4 + C 5 + + 45 + + + 5 + + 9 + 4 + 4 + 5 4 C k k k ( + ) 4 C k k ( k) 3 n( ) n n n ( ) n ( ) n 3 ( ) 3 3 3 n 4 ( ) 4 4 4 ( ) n n

More information

IPSJ SIG Technical Report 1, Instrument Separation in Reverberant Environments Using Crystal Microphone Arrays Nobutaka ITO, 1, 2 Yu KITANO, 1

IPSJ SIG Technical Report 1, Instrument Separation in Reverberant Environments Using Crystal Microphone Arrays Nobutaka ITO, 1, 2 Yu KITANO, 1 1, 2 1 1 1 Instrument Separation in Reverberant Environments Using Crystal Microphone Arrays Nobutaka ITO, 1, 2 Yu KITANO, 1 Nobutaka ONO 1 and Shigeki SAGAYAMA 1 This paper deals with instrument separation

More information

LD

LD 989935 1 1 3 3 4 4 LD 6 7 10 1 3 13 13 16 0 4 5 30 31 33 33 35 35 37 38 5 40 FFT 40 40 4 4 4 44 47 48 49 51 51 5 53 54 55 56 Abstract [1] HDD (LaserDopplerVibrometer; LDV) [] HDD IC 1 4 LDV LDV He-Ne Acousto-optic

More information

IntroductionToQuantumComputer

IntroductionToQuantumComputer http://quantphys.org/wp/keisukefujii/?p=433 Twitter Keisuke Fujii@fgksk ? 1687: () Isaac Newton (1642-1727) http://www.newton.cam.ac.uk/art/portrait.html Equation of motion ? 1687: () 1873: () James C.

More information

Jorgenson F, L : L: Inada lim F =, lim F L = k L lim F =, lim F L = 2 L F >, F L > 3 F <, F LL < 4 λ >, λf, L = F λ, λl 5 Y = Const a L a < α < CES? C

Jorgenson F, L : L: Inada lim F =, lim F L = k L lim F =, lim F L = 2 L F >, F L > 3 F <, F LL < 4 λ >, λf, L = F λ, λl 5 Y = Const a L a < α < CES? C 27 nabe@ier.hit-u.ac.jp 27 4 3 Jorgenson Tobin q : Hayashi s Theorem Jordan Saddle Path. GDP % GDP 2. 3. 4.. Tobin q 2 2. Jorgenson F, L : L: Inada lim F =, lim F L = k L lim F =, lim F L = 2 L F >, F

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................

More information

Input image Initialize variables Loop for period of oscillation Update height map Make shade image Change property of image Output image Change time L

Input image Initialize variables Loop for period of oscillation Update height map Make shade image Change property of image Output image Change time L 1,a) 1,b) 1/f β Generation Method of Animation from Pictures with Natural Flicker Abstract: Some methods to create animation automatically from one picture have been proposed. There is a method that gives

More information

untitled

untitled IT E- IT http://www.ipa.go.jp/security/ CERT/CC http://www.cert.org/stats/#alerts IPA IPA 2004 52,151 IT 2003 12 Yahoo 451 40 2002 4 18 IT 1/14 2.1 DoS(Denial of Access) IDS(Intrusion Detection System)

More information

ʪ¼Á¤Î¥È¥Ý¥í¥¸¥«¥ë¸½¾Ý (2016ǯ¥Î¡¼¥Ù¥ë¾Þ¤Ë´ØÏ¢¤·¤Æ)

ʪ¼Á¤Î¥È¥Ý¥í¥¸¥«¥ë¸½¾Ý  (2016ǯ¥Î¡¼¥Ù¥ë¾Þ¤Ë´ØÏ¢¤·¤Æ) (2016 ) Dept. of Phys., Kyushu Univ. 2017 8 10 1 / 59 2016 Figure: D.J.Thouless F D.M.Haldane J.M.Kosterlitz TOPOLOGICAL PHASE TRANSITIONS AND TOPOLOGICAL PHASES OF MATTER 2 / 59 ( ) ( ) (Dirac, t Hooft-Polyakov)

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information

Hilbert, von Neuman [1, p.86] kt 2 1 [1, 2] 2 2

Hilbert, von Neuman [1, p.86] kt 2 1 [1, 2] 2 2 hara@math.kyushu-u.ac.jp 1 1 1.1............................................... 2 1.2............................................. 3 2 3 3 5 3.1............................................. 6 3.2...................................

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z I 1 m 2 l k 2 x = 0 x 1 x 1 2 x 2 g x x 2 x 1 m k m 1-1. L x 1, x 2, ẋ 1, ẋ 2 ẋ 1 x = 0 1-2. 2 Q = x 1 + x 2 2 q = x 2 x 1 l L Q, q, Q, q M = 2m µ = m 2 1-3. Q q 1-4. 2 x 2 = h 1 x 1 t = 0 2 1 t x 1 (t)

More information

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat / Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiation and the Continuing Failure of the Bilinear Formalism,

More information

1).1-5) - 9 -

1).1-5) - 9 - - 8 - 1).1-5) - 9 - ε = ε xx 0 0 0 ε xx 0 0 0 ε xx (.1 ) z z 1 z ε = ε xx ε x y 0 - ε x y ε xx 0 0 0 ε zz (. ) 3 xy ) ε xx, ε zz» ε x y (.3 ) ε ij = ε ij ^ (.4 ) 6) xx, xy ε xx = ε xx + i ε xx ε xy = ε

More information

28 SAS-X Proposal of Multi Device Authenticable Password Management System using SAS-X 1195074 2017 2 3 SAS-X Web ID/ ID/ Web SAS-2 SAS-X i Abstract Proposal of Multi Device Authenticable Password Management

More information

ohp_06nov_tohoku.dvi

ohp_06nov_tohoku.dvi 2006 11 28 1. (1) ẋ = ax = x(t) =Ce at C C>0 a0 x(t) 0(t )!! 1 0.8 0.6 0.4 0.2 2 4 6 8 10-0.2 (1) a =2 C =1 1. (1) τ>0 (2) ẋ(t) = ax(t τ) 4 2 2 4 6 8 10-2 -4 (2) a =2 τ =1!! 1. (2) A. (2)

More information

1 Visible spectroscopy for student Spectrometer and optical spectrum phys/ishikawa/class/index.html

1 Visible spectroscopy for student Spectrometer and optical spectrum   phys/ishikawa/class/index.html 1 Visible spectroscopy for student Spectrometer and optical spectrum http://www.sci.u-hyogo.ac.jp/material/photo phys/ishikawa/class/index.html 1 2 2 2 2.1................................................

More information

平成 19 年度 ( 第 29 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 19 ~8 年月 72 月日開催 30 日 ) 1 PCF (Programming language for Computable Functions) PCF adequacy adequacy

平成 19 年度 ( 第 29 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 19 ~8 年月 72 月日開催 30 日 ) 1 PCF (Programming language for Computable Functions) PCF adequacy adequacy 1 PCF (Programming language for Computable Functions) PCF adequacy adequacy 2 N X Y X Y f (x) f x f x y z (( f x) y) z = (( f (x))(y))(z) X Y x e X Y λx. e x x 2 + x + 1 λx. x 2 + x + 1 3 PCF 3.1 PCF PCF

More information

Venkatram and Wyngaard, Lectures on Air Pollution Modeling, m km 6.2 Stull, An Introduction to Boundary Layer Meteorology,

Venkatram and Wyngaard, Lectures on Air Pollution Modeling, m km 6.2 Stull, An Introduction to Boundary Layer Meteorology, 65 6 6.1 No.4 1982 1 1981 J. C. Kaimal 1993 1994 Turbulence and Diffusion in the Atmosphere : Lectures in Environmental Sciences, by A. K. Blackadar, Springer, 1998 An Introduction to Boundary Layer Meteorology,

More information

反D中間子と核子のエキゾチックな 束縛状態と散乱状態の解析

反D中間子と核子のエキゾチックな   束縛状態と散乱状態の解析 .... D 1 in collaboration with 1, 2, 1 RCNP 1, KEK 2 . Exotic hadron qqq q q Θ + Λ(1405) etc. uudd s? KN quasi-bound state? . D(B)-N bound state { { D D0 ( cu) B = D ( cd), B = + ( bu) B 0 ( bd) D(B)-N

More information

DVIOUT-fujin

DVIOUT-fujin 2005 Limit Distribution of Quantum Walks and Weyl Equation 2006 3 2 1 2 2 4 2.1...................... 4 2.2......................... 5 2.3..................... 6 3 8 3.1........... 8 3.2..........................

More information

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1)

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1) φ 4 Minimal subtraction scheme 2-loop ε 28 University of Tokyo Atsuo Kuniba version 2/Apr/28 Formulas Γ n + ɛ = n n! ɛ + ψn + + Oɛ n =,, 2, ψn + = + 2 + + γ, 2 n ψ = γ =.5772... Euler const, log + ax x

More information

基礎数学I

基礎数学I I & II ii ii........... 22................. 25 12............... 28.................. 28.................... 31............. 32.................. 34 3 1 9.................... 1....................... 1............

More information

: , 2.0, 3.0, 2.0, (%) ( 2.

: , 2.0, 3.0, 2.0, (%) ( 2. 2017 1 2 1.1...................................... 2 1.2......................................... 4 1.3........................................... 10 1.4................................. 14 1.5..........................................

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

Design of highly accurate formulas for numerical integration in weighted Hardy spaces with the aid of potential theory 1 Ken ichiro Tanaka 1 Ω R m F I = F (t) dt (1.1) Ω m m 1 m = 1 1 Newton-Cotes Gauss

More information