: Bradley-Terry Burczyk
|
|
|
- きみえ みやのじょう
- 9 years ago
- Views:
Transcription
1 58 (W15) ( :32 )
2 : Bradley-Terry Burczyk
3 ? ( )
4
5 R : 7 (1) 8 7??! 15
6 ? ( :32 )
7 0.5
8
9 fixed effects:? random effects:!
10 : as.numeric(table(factor(w, levels = 0:size)))
11 0.5? 15 y? as.numeric(table(factor(w, levels = 0:size)))
12 (GLMM) ( :32 ) as.numeric(table(factor(w, levels = 0:size)))
13 4. σ ( :32 ) BUGS code for (i in 1:N) { Win[i] ~ dbinom(q[i], 15) # 15 logit(q[i]) <- re[i] re[i] ~ dnorm(0, tau) # } tau <- 1 / (sigma * sigma) sigma ~ dunif(0, 1000) # 1. (q i, 15 ) 2. q i 1 1+exp( r i ) 3. r i (, σ)
14 BUGS code for (i in 1:N) { Win[i] ~ dbinom(q[i], 15) # 15 logit(q[i]) <- beta1 + beta2 * Size[i] + re[i] re[i] ~ dnorm(0, tau) # } # beta1, beta2: beta1 ~ dnorm(0, 1.0E-4) # beta2 ~ dnorm(0, 1.0E-4) # ( ) logit(q i ) ( ) + ( ) ( ) + r i ( :32 )
15 Bradley-Terry
16 ??
17 : ??
18 Bradley-Terry model: fixed effects random effects (A ) = exp( A ) exp( A ) + exp( B )
19 Bradley-Terry A A B ( ) = ( ) + ( fixed effects ) + ( random effects ) ( :32 )
20 Random effects? Bradley-Terry (factor ) ( ) : : (or GLMM)? ( )? ( :32 )
21 ?
22 ( :32 )
23 ( ) ( )
24 ???
25 ? ( )?
26 ??
27
28
29 ( :32 )
30 ?
31 N =
32 ! N = ?
33 2
34 BUGS code for (j in 1:N.loser) { B1 ~ dbern(win1[j]) # 1 ( ) B2[j] ~ dbern(win2[j]) # 2 ( ) # B-T model logit(win1[j]) <- x[t.b1, Loser[j]] - x[t.b1, Winner1[j]] logit(win2[j]) <- x[t.b2[j], Loser[j]] - x[t.b2[j], Winner2[j]] for (t in 1:T.max) { x[t, Loser[j]] ~ dnorm(meanl[t], 20) # x[t, Winner1[j]] ~ dnorm(0.0, 20) } } ( ) logit( ) ( ) ( :32 )
35 BUGS code # meanl[t.b1] <- 0.0 meanl[t.b1 + 1] <- ab for (t in 3:T.max) { meanl[t] <- meanl[t - 1] * a # } ( ) ( :32 )
36
37 ( :32 )
38 ?
39 feeder ( :32 ) Kawamori, A. and Matsushima, T. (2010) feeder
40 B-T : Burczyk
41 N B-T 3 (A ) = exp( A ) exp( A ) + exp( B ) + exp( C ) N exp( A ) (A ) = N i exp( i ) : : : random effects 花 ( :32 ) 花
42
43 (1) Bradley-Terry Burczyk ( ) ( :32 )
44 (2) random effects ( )? ( :32 )
45 ( )
46 ( )?!
12/1 ( ) GLM, R MCMC, WinBUGS 12/2 ( ) WinBUGS WinBUGS 12/2 ( ) : 12/3 ( ) :? ( :51 ) 2/ 71
2010-12-02 (2010 12 02 10 :51 ) 1/ 71 GCOE 2010-12-02 WinBUGS [email protected] http://goo.gl/bukrb 12/1 ( ) GLM, R MCMC, WinBUGS 12/2 ( ) WinBUGS WinBUGS 12/2 ( ) : 12/3 ( ) :? 2010-12-02 (2010 12
kubostat2017j p.2 CSV CSV (!) d2.csv d2.csv,, 286,0,A 85,0,B 378,1,A 148,1,B ( :27 ) 10/ 51 kubostat2017j (http://goo.gl/76c4i
kubostat2017j p.1 2017 (j) Categorical Data Analsis [email protected] http://goo.gl/76c4i 2017 11 15 : 2017 11 08 17:11 kubostat2017j (http://goo.gl/76c4i) 2017 (j) 2017 11 15 1 / 63 A B C D E F G
/ *1 *1 c Mike Gonzalez, October 14, Wikimedia Commons.
2010 05 22 1/ 35 2010 2010 05 22 *1 [email protected] *1 c Mike Gonzalez, October 14, 2007. Wikimedia Commons. 2010 05 22 2/ 35 1. 2. 3. 2010 05 22 3/ 35 : 1.? 2. 2010 05 22 4/ 35 1. 2010 05 22 5/
/22 R MCMC R R MCMC? 3. Gibbs sampler : kubo/
2006-12-09 1/22 R MCMC R 1. 2. R MCMC? 3. Gibbs sampler : [email protected] http://hosho.ees.hokudai.ac.jp/ kubo/ 2006-12-09 2/22 : ( ) : : ( ) : (?) community ( ) 2006-12-09 3/22 :? 1. ( ) 2. ( )
P1-1 P1-2 P1-3 P1-4 P1-5 P1-6 P3-1 P3-2 P3-3 P3-4 P3-5 P3-6 P5-1 P5-2 P5-3 P5-4 P5-5 P5-6 P7-1 P7-2 P7-3 P7-4 P7-5 P7-6 P9-1 P9-2 P9-3 P9-4 P9-5 P9-6 P11-1 P11-2 P11-3 P11-4 P13-1 P13-2 P13-3 P13-4 P13-5
kubo2015ngt6 p.2 ( ( (MLE 8 y i L(q q log L(q q 0 ˆq log L(q / q = 0 q ˆq = = = * ˆq = 0.46 ( 8 y 0.46 y y y i kubo (ht
kubo2015ngt6 p.1 2015 (6 MCMC [email protected], @KuboBook http://goo.gl/m8hsbm 1 ( 2 3 4 5 JAGS : 2015 05 18 16:48 kubo (http://goo.gl/m8hsbm 2015 (6 1 / 70 kubo (http://goo.gl/m8hsbm 2015 (6 2 /
一般化線形 (混合) モデル (2) - ロジスティック回帰と GLMM
.. ( ) (2) GLMM [email protected] I http://goo.gl/rrhzey 2013 08 27 : 2013 08 27 08:29 kubostat2013ou2 (http://goo.gl/rrhzey) ( ) (2) 2013 08 27 1 / 74 I.1 N k.2 binomial distribution logit link function.3.4!
36
36 37 38 P r R P 39 (1+r ) P =R+P g P r g P = R r g r g == == 40 41 42 τ R P = r g+τ 43 τ (1+r ) P τ ( P P ) = R+P τ ( P P ) n P P r P P g P 44 R τ P P = (1 τ )(r g) (1 τ )P R τ 45 R R σ u R= R +u u~ (0,σ
kubostat1g p. MCMC binomial distribution q MCMC : i N i y i p(y i q = ( Ni y i q y i (1 q N i y i, q {y i } q likelihood q L(q {y i } = i=1 p(y i q 1
kubostat1g p.1 1 (g Hierarchical Bayesian Model [email protected] http://goo.gl/7ci The development of linear models Hierarchical Bayesian Model Be more flexible Generalized Linear Mixed Model (GLMM
EPSON エプソンプリンタ共通 取扱説明書 ネットワーク編
K L N K N N N N N N N N N N N N L A B C N N N A AB B C L D N N N N N L N N N A L B N N A B C N L N N N N L N A B C D N N A L N A L B C D N L N A L N B C N N D E F N K G H N A B C A L N N N N D D
ありがとうございました
- 1 - - 2 - - 3 - - 4 - - 5 - 1 2 AB C A B C - 6 - - 7 - - 8 - 10 1 3 1 10 400 8 9-9 - 2600 1 119 26.44 63 50 15 325.37 131.99 457.36-10 - 5 977 1688 1805 200 7 80-11 - - 12 - - 13 - - 14 - 2-1 - 15 -
EPSON エプソンプリンタ共通 取扱説明書 ネットワーク編
K L N K N N N N N N N N N N N N L A B C N N N A AB B C L D N N N N N L N N N A L B N N A B C N L N N N N L N A B C D N N A L N A L B C D N L N A L N B C N N D E F N K G H N A B C A L N N N N D D
公務員人件費のシミュレーション分析
47 50 (a) (b) (c) (7) 11 10 2018 20 2028 16 17 18 19 20 21 22 20 90.1 9.9 20 87.2 12.8 2018 10 17 6.916.0 7.87.4 40.511.6 23 0.0% 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2.0% 4.0% 6.0% 8.0%
198
197 198 199 200 201 202 A B C D E F G H I J K L 203 204 205 A B 206 A B C D E F 207 208 209 210 211 212 213 214 215 A B 216 217 218 219 220 221 222 223 224 225 226 227 228 229 A B C D 230 231 232 233 A
ネットショップ・オーナー2 ユーザーマニュアル
1 1-1 1-2 1-3 1-4 1 1-5 2 2-1 A C 2-2 A 2 C D E F G H I 2-3 2-4 2 C D E E A 3 3-1 A 3 A A 3 3 3 3-2 3-3 3-4 3 C 4 4-1 A A 4 B B C D C D E F G 4 H I J K L 4-2 4 C D E B D C A C B D 4 E F B E C 4-3 4
/9/ ) 1) 1 2 2) 4) ) ) 2x + y 42x + y + 1) 4) : 6 = x 5) : x 2) x ) x 2 8x + 10 = 0
1. 2018/9/ ) 1) 8 9) 2) 6 14) + 14 ) 1 4 8a 8b) 2 a + b) 4) 2 : 7 = x 8) : x ) x ) + 1 2 ) + 2 6) x + 1)x + ) 15 2. 2018/9/ ) 1) 1 2 2) 4) 2 + 6 5) ) 2x + y 42x + y + 1) 4) : 6 = x 5) : x 2) x 2 15 12
: (GLMM) (pseudo replication) ( ) ( ) & Markov Chain Monte Carlo (MCMC)? /30
PlotNet 6 ( ) 2006-01-19 TOEF(1998 2004), AM, growth6 DBH growth (mm) 1998 1999 2000 2001 2002 2003 2004 10 20 30 40 50 70 DBH (cm) 1. 2. - - : [email protected] http://hosho.ees.hokudai.ac.jp/ kubo/show/2006/plotnet/
kubo2017sep16a p.1 ( 1 ) : : :55 kubo ( ( 1 ) / 10
kubo2017sep16a p.1 ( 1 ) [email protected] 2017 09 16 : http://goo.gl/8je5wh : 2017 09 13 16:55 kubo (http://goo.gl/ufq2) ( 1 ) 2017 09 16 1 / 106 kubo (http://goo.gl/ufq2) ( 1 ) 2017 09 16 2 / 106
kubostat2017e p.1 I 2017 (e) GLM logistic regression : : :02 1 N y count data or
kubostat207e p. I 207 (e) GLM [email protected] https://goo.gl/z9ycjy 207 4 207 6:02 N y 2 binomial distribution logit link function 3 4! offset kubostat207e (https://goo.gl/z9ycjy) 207 (e) 207 4
講義のーと : データ解析のための統計モデリング. 第3回
Title 講義のーと : データ解析のための統計モデリング Author(s) 久保, 拓弥 Issue Date 2008 Doc URL http://hdl.handle.net/2115/49477 Type learningobject Note この講義資料は, 著者のホームページ http://hosho.ees.hokudai.ac.jp/~kub ードできます Note(URL)http://hosho.ees.hokudai.ac.jp/~kubo/ce/EesLecture20
今回 次回の要点 あぶない 時系列データ解析は やめましょう! 統計モデル のあてはめ Danger!! (危 1) 時系列データの GLM あてはめ (危 2) 時系列Yt 時系列 Xt 各時刻の個体数 気温 とか これは次回)
生態学の時系列データ解析でよく見る あぶない モデリング 久保拓弥 mailto:[email protected] statistical model for time-series data 2017-07-03 kubostat2017 (h) 1/59 今回 次回の要点 あぶない 時系列データ解析は やめましょう! 統計モデル のあてはめ Danger!! (危 1) 時系列データの
,, Poisson 3 3. t t y,, y n Nµ, σ 2 y i µ + ɛ i ɛ i N0, σ 2 E[y i ] µ * i y i x i y i α + βx i + ɛ i ɛ i N0, σ 2, α, β *3 y i E[y i ] α + βx i
Armitage.? SAS.2 µ, µ 2, µ 3 a, a 2, a 3 a µ + a 2 µ 2 + a 3 µ 3 µ, µ 2, µ 3 µ, µ 2, µ 3 log a, a 2, a 3 a µ + a 2 µ 2 + a 3 µ 3 µ, µ 2, µ 3 * 2 2. y t y y y Poisson y * ,, Poisson 3 3. t t y,, y n Nµ,
日本糖尿病学会誌第58巻第1号
α β β β β β β α α β α β α l l α l μ l β l α β β Wfs1 β β l l l l μ l l μ μ l μ l Δ l μ μ l μ l l ll l l l l l l l l μ l l l l μ μ l l l l μ l l l l l l l l l l μ l l l μ l μ l l l l l l l l l μ l l l l
kubostat2017c p (c) Poisson regression, a generalized linear model (GLM) : :
kubostat2017c p.1 2017 (c), a generalized linear model (GLM) : [email protected] http://goo.gl/76c4i 2017 11 14 : 2017 11 07 15:43 kubostat2017c (http://goo.gl/76c4i) 2017 (c) 2017 11 14 1 / 47 agenda
自由集会時系列part2web.key
spurious correlation spurious regression xt=xt-1+n(0,σ^2) yt=yt-1+n(0,σ^2) n=20 type1error(5%)=0.4703 no trend 0 1000 2000 3000 4000 p for r xt=xt-1+n(0,σ^2) random walk random walk variable -5 0 5 variable
合併後の交付税について
(1) (2) 1 0.9 0.7 0.5 0.3 0.1 2 3 (1) (a), 4 (b) (a), (c) (a) 0.9 0.7 0.5 0.3 0.1 (b) (d),(e) (f) (g) (h) (a) (i) (g) (h) (j) (i) 5 (2) 6 (3) (A) (B) (A)+(B) n 1,000 1,000 2,000 n+1 970 970 1,940 3.0%
講義のーと : データ解析のための統計モデリング. 第5回
Title 講義のーと : データ解析のための統計モデリング Author(s) 久保, 拓弥 Issue Date 2008 Doc URL http://hdl.handle.net/2115/49477 Type learningobject Note この講義資料は, 著者のホームページ http://hosho.ees.hokudai.ac.jp/~kub ードできます Note(URL)http://hosho.ees.hokudai.ac.jp/~kubo/ce/EesLecture20
2009 5 1...1 2...3 2.1...3 2.2...3 3...10 3.1...10 3.1.1...10 3.1.2... 11 3.2...14 3.2.1...14 3.2.2...16 3.3...18 3.4...19 3.4.1...19 3.4.2...20 3.4.3...21 4...24 4.1...24 4.2...24 4.3 WinBUGS...25 4.4...28
54 144 144 144 144 144 80 152 84 122 HTML
54 144 144 144 144 144 80 152 84 122 HTML P20 P24 P28 P40 P54 P84 P122 P138 P144 P152 P220 P234 P240 P242 1 1-1 1-2 1-3 1-4 1-5 1 1-6 1 2 2-1 2-2 A C D E F 2 G H I 2-3 2-4 C D E E A 2
00 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.... 0........ 0 0 0 0 0 0 0 0 0 0..0..........0 0 0 0 0 0 0 0 0 0 0.... 0........ 0 0 0 0 0 0 0 0 0 0... 0...... 0... 0 0 0 0 0 0..0 0... 0 0 0 0 0.0.....0.
140 120 100 80 60 40 20 0 115 107 102 99 95 97 95 97 98 100 64 72 37 60 50 53 50 36 32 18 H18 H19 H20 H21 H22 H23 H24 H25 H26 H27 1 100 () 80 60 40 20 0 1 19 16 10 11 6 8 9 5 10 35 76 83 73 68 46 44 H11
福岡大学人文論叢47-3
679 pp. 1 680 2 681 pp. 3 682 4 683 5 684 pp. 6 685 7 686 8 687 9 688 pp. b 10 689 11 690 12 691 13 692 pp. 14 693 15 694 a b 16 695 a b 17 696 a 18 697 B 19 698 A B B B A B B A A 20 699 pp. 21 700 pp.
B's Recorderマニュアル_B's Recorderマニュアル
5 Part 6 - 8 9 - 0 5 A C B AB A B A B C 7-6 - 8 9-5 0 5 7 A D B C E F A B C D F E 6 9 8 0 Part - - 5 5 7 6 9-7 6 8 0 5 5-6 7 9 8 5-5 50 5 5 5 -6 5 55 5 57-7 56 59 8 7 6 58 0 8 9 6 6 7 6 5 60 7 5 6 6-8
B's Recorderマニュアル
2 3 4 5 Part 1 6 1-1 8 9 1-2 10 11 12 13 A B C A C B AB A B 14 15 17 1-4 2 1 16 1-3 18 19 1-5 2 1 20 21 22 23 24 25 A B C D E F A B C D E F 26 27 28 29 30 31 Part 2 32 2-1 2-2 1 2 34 35 5 37 4 3 36 6 2-3
今日の要点 あぶない 時系列データ解析は やめましょう! 統計モデル のあてはめ (危 1) 時系列データの GLM あてはめ (危 2) 時系列Yt 時系列 Xt 各時刻の個体数 気温 とか
時系列データ解析でよく見る あぶない モデリング 久保拓弥 (北海道大 環境科学) 1/56 今日の要点 あぶない 時系列データ解析は やめましょう! 統計モデル のあてはめ (危 1) 時系列データの GLM あてはめ (危 2) 時系列Yt 時系列 Xt 各時刻の個体数 気温 とか (危 1) 時系列データを GLM で (危 2) 時系列Yt 時系列 Xt 相関は因果関係ではない 問題の一部
一般演題(ポスター)
6 5 13 : 00 14 : 00 A μ 13 : 00 14 : 00 A β β β 13 : 00 14 : 00 A 13 : 00 14 : 00 A 13 : 00 14 : 00 A β 13 : 00 14 : 00 A β 13 : 00 14 : 00 A 13 : 00 14 : 00 A β 13 : 00 14 : 00 A 13 : 00 14 : 00 A
kubostat2017b p.1 agenda I 2017 (b) probability distribution and maximum likelihood estimation :
kubostat2017b p.1 agenda I 2017 (b) probabilit distribution and maimum likelihood estimation [email protected] http://goo.gl/76c4i 2017 11 14 : 2017 11 07 15:43 1 : 2 3? 4 kubostat2017b (http://goo.gl/76c4i)
雇用不安時代における女性の高学歴化と結婚タイミング-JGSSデータによる検証-
日 本 版 General Social Surveys 研 究 論 文 集 [6] JGSS で 見 た 日 本 人 の 意 識 と 行 動 JGSS Research Series No.3 JGSS Women s Higher Education and Marriage Timing in an era of employment uncertainty Yuko NOZAKI Graduate
A B ( +A+B) H g H27 H28 H29 H30 189, , , , , , , , ,
04 01 03 01 001505000 30 7 1 30 10 A B (+A+B) H36 11 g 851 30.1 H27 H28 H29 H30 189,405 160,401 149,683 138,928 165,746 133,618 125,755 107,100 103,700 96,700 96,700 272,846 237,318 222,455 235,628 H27
1 913 10301200 A B C D E F G H J K L M 1A1030 10 : 45 1A1045 11 : 00 1A1100 11 : 15 1A1115 11 : 30 1A1130 11 : 45 1A1145 12 : 00 1B1030 1B1045 1C1030
1 913 9001030 A B C D E F G H J K L M 9:00 1A0900 9:15 1A0915 9:30 1A0930 9:45 1A0945 10 : 00 1A1000 10 : 15 1B0900 1B0915 1B0930 1B0945 1B1000 1C0900 1C0915 1D0915 1C0930 1C0945 1C1000 1D0930 1D0945 1D1000
