kubostat1g p. MCMC binomial distribution q MCMC : i N i y i p(y i q = ( Ni y i q y i (1 q N i y i, q {y i } q likelihood q L(q {y i } = i=1 p(y i q 1

Size: px
Start display at page:

Download "kubostat1g p. MCMC binomial distribution q MCMC : i N i y i p(y i q = ( Ni y i q y i (1 q N i y i, q {y i } q likelihood q L(q {y i } = i=1 p(y i q 1"

Transcription

1 kubostat1g p.1 1 (g Hierarchical Bayesian Model kubo@ees.hokudai.ac.jp The development of linear models Hierarchical Bayesian Model Be more flexible Generalized Linear Mixed Model (GLMM Incoporating random effects such as individuality parameter MCMC MLE Generalized Linear Model (GLM Always normal distribution? That's non-sense! MSE Linear model : : kubostat1g ( 1 (g 1 / 7 kubostat1g ( 1 (g / 7 MCMC 1 MCMC Gibbs sampling GLMM GLMM JAGS kubostat1g ( 1 (g / 7 1. MCMC and logit link function kubostat1g ( 1 (g / 7 : MCMC seed survivorship, again : 8 : N i = 8 i y i = : 1 7 MCMC y i kubostat1g ( 1 (g / 7 kubostat1g ( 1 (g / 7

2 kubostat1g p. MCMC binomial distribution q MCMC : i N i y i p(y i q = ( Ni y i q y i (1 q N i y i, q {y i } q likelihood q L(q {y i } = i=1 p(y i q kubostat1g ( 1 (g 7 / 7 kubostat1g ( 1 (g 8 / 7 MCMC MCMC maximum likelihood (MLE L(q ˆq log L(q = log i=1 ( Ni + {y i log(q + (N i y i log(1 q} i=1 q kubostat1g ( 1 (g 9 / 7 y i L(q q log L(q q ˆq log L(q / q = q ˆq = = 7 1 =..... kubostat1g ( 1 (g 1 / 7 * MCMC 8 y i ˆq =. ( 8 y. y. 8 y. y i kubostat1g ( 1 (g 11 / 7 kubostat1g ( 1 (g 1 / 7

3 kubostat1g p. : MCMC ( Markov chain Monte Carlo (MCMC (Metropolis method :?? MCMC log L(q *.... : q q ( kubostat1g ( 1 (g 1 / 7 kubostat1g ( 1 (g 1 / 7 q q 1 q q (1, ( kubostat1g ( 1 (g 1 / 7 : 1 q ( q. q ( q qnew q new L(q new L(q L(q new L(q (: q q new L(q new < L(q (: r = L(q new/l(q q qnew 1 r q. (q =.1 q =.99 kubostat1g ( 1 (g 1 / 7 q (MCMC kubostat1g ( 1 (g 17 / 7 q ( MCMC ? q kubostat1g ( 1 (g 18 / 7

4 kubostat1g p. q q ? q q ? q MCMC MCMC?? kubostat1g ( 1 (g 19 / 7 kubostat1g ( 1 (g / 7 MCMC? q MCMC q q? log L(q *.... L(q p(q = L(q L(q q kubostat1g ( 1 (g 1 / 7 kubostat1g ( 1 (g / 7 MCMC q ( MCMC p(q q 9%! kubostat1g ( 1 (g / 7 q MCMC q kubostat1g ( 1 (g / 7

5 kubostat1g p. kubostat1g ( 1 (g / 7 kubostat1g ( 1 (g / 7 : p(y q p(q p(q Y = p(y p(q Y (Y (q ( p(q q ( p(y q ( p(y Y ( ( (? q? p(q Y L(q p(q q kubostat1g ( 1 (g 7 / 7 kubostat1g ( 1 (g 8 / 7 Gibbs sampling MCMC. Gibbs sampling kubostat1g ( 1 (g 9 / 7 kubostat1g ( 1 (g / 7

6 kubostat1g p. 統計ソフトウェア R 簡単な GLMM なら R だけで推定可能 今回の例題の事後分布 (Y = {yi } はデータ p(a, {ri }, s Y 1 i=1 p(yi q(a + ri p(a p(ri s p(s 積分で 個体差 ri を消して 周辺尤度を定義する L(a, s Y = 1 i=1 p(yi q(a + ri p(ri sdri これを最大化する a と s を推定すればよい 経験ベイズ法 (empirical Bayesian method kubostat1g ( 1 / 7 kubostat1g ( / 7 しかし R だけ では限界があるかも そこで MCMC による事後分布からのサンプリング! R にはいろいろな GLMM の最尤推定関数が準備さ library(lme の lmer(.. しかし もうちょっと複雑な GLMM たとえば個体 差 + 地域差をいれた統計モデルの最尤推定はかなり 難しい (ヘンな結果が得られたりする... 事前分布 p(q. 尤度 L(q.97 library(nlme の nlme( (正規分布のみ 事後分布 p(q Y 1.98 library(glmmml の glmmml( れている 生存確率 q アルゴリズムにしたがって 乱数を発生させていくだけで OK 積分がたくさん入っている尤度関数の評価がしんどい kubostat1g ( / 7 kubostat1g ( / 7 どのようなソフトウェアで MCMC 計算するか? 再確認: 事後分布からのサンプル って何の役にたつの? > post.mcmc[,"a"] # 事後分布からのサンプルを表示 [1] [9] [17] (以下略... 1 自作プログラム 利点: 問題にあわせて自由に設計できる 欠点: 階層ベイズモデル用の MCMC プログラミング けっこうめん どう これらのサンプルの平均値 中央値 9% 区間を 調べることで事後分布の概要がわかる R のベイズな package 利点: 空間ベイズ統計など便利な専用 package がある 1. 欠点: 汎用性 とぼしい.8 BUGS で Gibbs sampler なソフトウェア. 利点: 幅ひろい問題に適用できて 便利. 欠点というほどでもないけど 多少の勉強が必要 N = 1 Bandwidth =.88 kubostat1g ( 1. えーっと Gibbs sampler って何? / 7 kubostat1g ( / 7

7 kubostat1g p.7 さまざまな MCMC アルゴリズム Gibbs sampling とは何か? MCMC アルゴリズムのひとつ いろいろな MCMC メトロポリス法: 試行錯誤で値を変化させていく 複数のパラメーターの MCMC サンプリングに使う 例: パラメーター β1 と β の Gibbs sampling MCMC 1 メトロポリス ヘイスティングス法: その改良版 ギブス サンプリング: 条件つき確率分布を使った MCMC β に何か適当な値を与える β の値はそのままにして その条件のもとでの β1 の MCMC sampling をする (条件つき事後分布 β1 の値はそのままにして その条件のもとでの β の MCMC sampling をする (条件つき事後分布 複数の変数 (パラメーター 状態 を効率よくサンプリング.. をくりかえす 教科書の第 9 章の例題で説明 kubostat1g ( 図解: Gibbs sampling 7 / 7 記述できるソフトウェア β β step 7. β. 7 WinBUGS ありがとう さようなら? OpenBUGS 予算が足りなくて停滞? JAGS お手軽で良い どんな OS でも動く Stan たぶん 次 はこれ 今日は紹介しませんが 8 1 リンク集: β1 kubostat1g ( step BUGS 言語 (+ っぽいもの でベイズモデルを / 7 β のサンプリング 8 1 便利な BUGS 汎用 Gibbs sampler たち (統計モデリング入門の第 9 章 β1 step 1 kubostat1g ( β1 のサンプリング MCMC. β. 7 えーと BUGS 言語って何? 9 / 7 kubostat1g ( / 7 なんとなく使われ続けている WinBUGS 1.. このベイズモデルを BUGS 言語で記述したい データ Y[i] 種子数8個のうちの生存数 二項分布 dbin(q,8 おそらく世界でもっともよく使われている Gibbs sampler BUGS 言語コード BUGS 言語の実装 -9-1 に最新版 (ここで開発停止 OpenBUGS ソースなど非公開 無料 ユーザー登録不要 生存確率 q Windows バイナリーとして配布されている 無情報事前分布 歴史を変えたソフトウェアだけど 開発も停止していることだし まあ もう ごくろうさま ということで 矢印は手順ではなく 依存関係をあらわしている BUGS 言語: ベイズモデルを記述する言語 Spiegelhalter et al BUGS: Bayesian Using Gibbs Sampling version.. kubostat1g ( 1 / 7 kubostat1g ( / 7

8 kubostat1g p.8 Gibbs sampling Gibbs sampling OS JAGS.. R JAGS (1 / R core team Martyn Plummer Just Another Gibbs Sampler C++ R Linux, Windows, Mac OS X R : library(rjags library(rjags library(rwinbugs # to use write.model( model.bugs <- function( { for (i in 1:N.data { Y[i] ~ dbin(q, 8 # } q ~ dunif(., 1. # q } file.model <- "model.bug.txt" write.model(model.bugs, file.model # kubostat1g ( 1 (g / 7 # kubostat1g ( 1 (g / 7 Gibbs sampling Gibbs sampling R JAGS ( / R JAGS ( / load("data.rdata" list.data <- list(y = data, N.data = length(data inits <- list(q =. n.burnin <- 1 n.chain <- n.thin <- 1 n.iter <- n.thin * 1 model <- jags.model( file = file.model, data = list.data, inits = inits, n.chain = n.chain # kubostat1g ( 1 (g / 7 # burn-in update(model, n.burnin # burn in # post.mcmc.list post.mcmc.list <- coda.samples( model = model, variable.names = names(inits, n.iter = n.iter, thin = n.thin # kubostat1g ( 1 (g / 7 Gibbs sampling Gibbs sampling burn in? MCMC step kubostat1g ( 1 (g 7 / 7 MCMC ˆR = 1.19 MCMC ˆR =. MCMC MCMC step! kubostat1g ( 1 (g 8 / 7

9 kubostat1g p.9 Gibbs sampling Gibbs sampling ˆR Gibbs sampling plot(post.mcmc.list gelman.diag(post.mcmc.list R-hat Gelman-Rubin ˆR var ˆ + (ψ y = W var ˆ + (ψ y = n 1 n W + 1 n B W : variance B : variance Gelman et al.. Bayesian Data Analysis. Chapman & Hall/CRC... Trace of q 8 1 Density of q Iterations.... N = 1 Bandwidth =.88 kubostat1g ( 1 (g 9 / 7 kubostat1g ( 1 (g / 7 GLMM GLMM GLMM GLMM!. GLMM 1 8. GLMM hierarchical Bayesian 1 1! 8 y i? ( 1 kubostat1g ( 1 (g 1 / 7 kubostat1g ( 1 (g / 7 GLMM GLMM GLMM GLMM (overdispersion : y i i N i y i p(y i q i = ( Ni y i q y i i (1 q i N i y i,. : overdispersion q i kubostat1g ( 1 (g / 7 kubostat1g ( 1 (g / 7

10 kubostat1g p.1 GLMM と階層ベイズモデル GLMM のベイズモデル化 GLMM と階層ベイズモデル 個々の個体差 ri を最尤推定するのはまずい GLM わざ: ロジスティック関数で表現する生存確率 生存確率 qi = q(zi をロジスティック関数 q(z = 1/{1 + exp( z} で表現 q(z 個体の生存確率を推定するためにパラメーター 11 個 (a と {r1, r,, r1 } を推定すると 個体ごとに生存数 / 種子数を計算していることと同 じ! ( データのよみあげ と同じ z 線形予測子 zi = a + ri とする そこで 次のように考えてみる パラメーター a: 全体の平均 パラメーター ri : 個体 i の個体差 (ずれ kubostat1g ( GLMM と階層ベイズモデル GLMM のベイズモデル化 / 7 kubostat1g ( GLMM のベイズモデル化 GLMM と階層ベイズモデル suppose {ri } follow the Gausssian distribution {ri } のばらつきは正規分布だと考えてみる / 7 GLMM のベイズモデル化 ひとつの例示: 個体差 ri の分布と過分散の関係 (A 個体差のばらつきが小さい場合 (B 個体差のばらつきが大きい場合 s = 1. p(ri s が生成した 個体ぶんの {ri } s =. s = IIII IIIIII IIIIIIII - ri s =. 確率 qi = s =. I-I I -I I III-IIIIIIIIIIIII II I IIII ri 1 1+exp( ri の二項乱数を発生させる すればよいでしょう ri がゼロにちかい個体はわりと ありがち で ri GLMM と階層ベイズモデル 生存種子数 yi の絶対値が大きな個体は相対的に あまりいない kubostat1g ( 標本分散 p(yi qi が 生成した生 存種子数の 一例 この確率密度 p(ri s は ri の 出現しやすさ をあらわしていると解釈 標本分散.9 ( 1 r p(ri s = exp i s πs 観察された個体数 個体差 ri 7 / 7 kubostat1g ( GLMM のベイズモデル化 GLMM と階層ベイズモデル これは ri の事前分布の指定 ということ 8 生存種子数 yi 8 / 7 GLMM のベイズモデル化 ベイズ統計モデルでよく使われる三種類の事前分布 たいていのベイズ統計モデルでは ひとつのモデルの中で複数の種類の 前回の授業で {ri } は正規分布にしたがうと仮定したが ベイズ統計モデリングでは 1 個の ri たちに 共通する事前分布として正規分布 を指定した ということになる 事前分布を混ぜて使用する (A 主観的な事前分布 s = 1. (B 無情報事前分布 (C 階層事前分布 (できれば使いたくない! s = 1. s = 信じる s によって 変わる わからない 個体差 ri ( 1 r p(ri s = exp i s πs kubostat1g ( 9 / kubostat1g ( / 7

11 kubostat1g p.11 GLMM GLMM GLMM GLMM r i! s = 1. s = 1. r i s =. p(r i s = 1 πs exp ( r i s kubostat1g ( 1 (g 1 / 7 全データ 個体個体 のデータのデータ個体 1 のデータ個体個体 のデータのデータ個体 のデータ {r 1, r, r,..., r 1 } s local parameter a global parameter? kubostat1g ( 1 (g / 7 GLMM GLMM GLMM GLMM {r i } s (B (C a, s {r i } s s = 1. s = 1. s = global local kubostat1g ( 1 (g / 7 s s (non-informative prior < s < 1 kubostat1g ( 1 (g / 7 GLMM GLMM GLMM GLMM a : ( ; 1 ( ; (logit a a 種子 8 個のうち Y[i] が生存 生存 q[i] 全個体共通の 平均 a r[i] s hyper parameter kubostat1g ( 1 (g / 7 kubostat1g ( 1 (g / 7

12 kubostat1g p.1 JAGS JAGS. JAGS R JAGS BUGS model { for (i in 1:N.data { Y[i] ~ dbin(q[i], 8 logit(q[i] <- a + r[i] } a ~ dnorm(, 1.E- for (i in 1:N.data { r[i] ~ dnorm(, tau } tau <- 1 / (s * s s ~ dunif(, 1.E+ } 種子 8 個のうち Y[i] が生存 生存 q[i] 全個体共通の 平均 a r[i] s hyper parameter kubostat1g ( 1 (g 7 / 7 kubostat1g ( 1 (g 8 / 7 JAGS JAGS JAGS > source("mcmc.listbugs.r" # > post.bugs <- mcmc.listbugs(post.mcmc.list # bugs 8% 1 interval for each 1 chain 1 R hat 1. + a * r[1] [] [] [] [] [] [7] [8] [9] [1] [11] [1] [1] [1] [1] [1] [17] [18] [19] [] [1] [] [] [] [] [] [7] [8] [9] [] [1] [] [] [] [] [] [7] [8] [9] [] [1] [] [] [] [] [] [7] [8] [9] [] [1] [] [] [] [] [] [7] [8] [9] [] [1] [] [] [] [] [] [7] [8] [9] [7] [71] [7] [7] [7] [7] s [7] * array truncated for lack of space chains, each with iterations (first discarded..1 a.1. 1 * r 1. s. medians and 8% intervals kubostat1g ( 1 (g 9 / 7 bugs post.bugs print(post.bugs, digits.summary = 9% chains, each with iterations (first discarded, n.thin = n.sims = iterations saved mean sd.% % % 7% 97.% Rhat n.eff a s r[1] r[] r[] r[] r[] ( r[99] r[1] kubostat1g ( 1 (g 7 / 7 JAGS JAGS R Trace of a Density of a post.mcmc <- to.mcmc(post.bugs Iterations Trace of s N = 1 Bandwidth =.79 Density of s.... matrix Iterations N = 1 Bandwidth =.77 kubostat1g ( 1 (g 71 / 7 kubostat1g ( 1 (g 7 / 7

13 kubostat1g p.1. Yay! Be more flexible The development of linear models Hierarchical Bayesian Model Generalized Linear Mixed Model (GLMM Incoporating random effects such as individuality parameter MCMC MLE Generalized Linear Model (GLM Always normal distribution? That's non-sense! MSE Linear model kubostat1g ( 1 (g 7 / 7 kubostat1g ( 1 (g 7 / 7

kubo2015ngt6 p.2 ( ( (MLE 8 y i L(q q log L(q q 0 ˆq log L(q / q = 0 q ˆq = = = * ˆq = 0.46 ( 8 y 0.46 y y y i kubo (ht

kubo2015ngt6 p.2 ( ( (MLE 8 y i L(q q log L(q q 0 ˆq log L(q / q = 0 q ˆq = = = * ˆq = 0.46 ( 8 y 0.46 y y y i kubo (ht kubo2015ngt6 p.1 2015 (6 MCMC kubo@ees.hokudai.ac.jp, @KuboBook http://goo.gl/m8hsbm 1 ( 2 3 4 5 JAGS : 2015 05 18 16:48 kubo (http://goo.gl/m8hsbm 2015 (6 1 / 70 kubo (http://goo.gl/m8hsbm 2015 (6 2 /

More information

12/1 ( ) GLM, R MCMC, WinBUGS 12/2 ( ) WinBUGS WinBUGS 12/2 ( ) : 12/3 ( ) :? ( :51 ) 2/ 71

12/1 ( ) GLM, R MCMC, WinBUGS 12/2 ( ) WinBUGS WinBUGS 12/2 ( ) : 12/3 ( ) :? ( :51 ) 2/ 71 2010-12-02 (2010 12 02 10 :51 ) 1/ 71 GCOE 2010-12-02 WinBUGS kubo@ees.hokudai.ac.jp http://goo.gl/bukrb 12/1 ( ) GLM, R MCMC, WinBUGS 12/2 ( ) WinBUGS WinBUGS 12/2 ( ) : 12/3 ( ) :? 2010-12-02 (2010 12

More information

kubo2017sep16a p.1 ( 1 ) : : :55 kubo ( ( 1 ) / 10

kubo2017sep16a p.1 ( 1 ) :   : :55 kubo (  ( 1 ) / 10 kubo2017sep16a p.1 ( 1 ) kubo@ees.hokudai.ac.jp 2017 09 16 : http://goo.gl/8je5wh : 2017 09 13 16:55 kubo (http://goo.gl/ufq2) ( 1 ) 2017 09 16 1 / 106 kubo (http://goo.gl/ufq2) ( 1 ) 2017 09 16 2 / 106

More information

kubostat7f p GLM! logistic regression as usual? N? GLM GLM doesn t work! GLM!! probabilit distribution binomial distribution : : β + β x i link functi

kubostat7f p GLM! logistic regression as usual? N? GLM GLM doesn t work! GLM!! probabilit distribution binomial distribution : : β + β x i link functi kubostat7f p statistaical models appeared in the class 7 (f) kubo@eeshokudaiacjp https://googl/z9cjy 7 : 7 : The development of linear models Hierarchical Baesian Model Be more flexible Generalized Linear

More information

/22 R MCMC R R MCMC? 3. Gibbs sampler : kubo/

/22 R MCMC R R MCMC? 3. Gibbs sampler :   kubo/ 2006-12-09 1/22 R MCMC R 1. 2. R MCMC? 3. Gibbs sampler : kubo@ees.hokudai.ac.jp http://hosho.ees.hokudai.ac.jp/ kubo/ 2006-12-09 2/22 : ( ) : : ( ) : (?) community ( ) 2006-12-09 3/22 :? 1. ( ) 2. ( )

More information

60 (W30)? 1. ( ) 2. ( ) web site URL ( :41 ) 1/ 77

60 (W30)? 1. ( ) 2. ( ) web site URL ( :41 ) 1/ 77 60 (W30)? 1. ( ) kubo@ees.hokudai.ac.jp 2. ( ) web site URL http://goo.gl/e1cja!! 2013 03 07 (2013 03 07 17 :41 ) 1/ 77 ! : :? 2013 03 07 (2013 03 07 17 :41 ) 2/ 77 2013 03 07 (2013 03 07 17 :41 ) 3/ 77!!

More information

/ *1 *1 c Mike Gonzalez, October 14, Wikimedia Commons.

/ *1 *1 c Mike Gonzalez, October 14, Wikimedia Commons. 2010 05 22 1/ 35 2010 2010 05 22 *1 kubo@ees.hokudai.ac.jp *1 c Mike Gonzalez, October 14, 2007. Wikimedia Commons. 2010 05 22 2/ 35 1. 2. 3. 2010 05 22 3/ 35 : 1.? 2. 2010 05 22 4/ 35 1. 2010 05 22 5/

More information

kubostat2017b p.1 agenda I 2017 (b) probability distribution and maximum likelihood estimation :

kubostat2017b p.1 agenda I 2017 (b) probability distribution and maximum likelihood estimation : kubostat2017b p.1 agenda I 2017 (b) probabilit distribution and maimum likelihood estimation kubo@ees.hokudai.ac.jp http://goo.gl/76c4i 2017 11 14 : 2017 11 07 15:43 1 : 2 3? 4 kubostat2017b (http://goo.gl/76c4i)

More information

kubostat2017j p.2 CSV CSV (!) d2.csv d2.csv,, 286,0,A 85,0,B 378,1,A 148,1,B ( :27 ) 10/ 51 kubostat2017j (http://goo.gl/76c4i

kubostat2017j p.2 CSV CSV (!) d2.csv d2.csv,, 286,0,A 85,0,B 378,1,A 148,1,B ( :27 ) 10/ 51 kubostat2017j (http://goo.gl/76c4i kubostat2017j p.1 2017 (j) Categorical Data Analsis kubo@ees.hokudai.ac.jp http://goo.gl/76c4i 2017 11 15 : 2017 11 08 17:11 kubostat2017j (http://goo.gl/76c4i) 2017 (j) 2017 11 15 1 / 63 A B C D E F G

More information

kubostat2017c p (c) Poisson regression, a generalized linear model (GLM) : :

kubostat2017c p (c) Poisson regression, a generalized linear model (GLM) : : kubostat2017c p.1 2017 (c), a generalized linear model (GLM) : kubo@ees.hokudai.ac.jp http://goo.gl/76c4i 2017 11 14 : 2017 11 07 15:43 kubostat2017c (http://goo.gl/76c4i) 2017 (c) 2017 11 14 1 / 47 agenda

More information

kubostat2015e p.2 how to specify Poisson regression model, a GLM GLM how to specify model, a GLM GLM logistic probability distribution Poisson distrib

kubostat2015e p.2 how to specify Poisson regression model, a GLM GLM how to specify model, a GLM GLM logistic probability distribution Poisson distrib kubostat2015e p.1 I 2015 (e) GLM kubo@ees.hokudai.ac.jp http://goo.gl/76c4i 2015 07 22 2015 07 21 16:26 kubostat2015e (http://goo.gl/76c4i) 2015 (e) 2015 07 22 1 / 42 1 N k 2 binomial distribution logit

More information

kubostat2017e p.1 I 2017 (e) GLM logistic regression : : :02 1 N y count data or

kubostat2017e p.1 I 2017 (e) GLM logistic regression : : :02 1 N y count data or kubostat207e p. I 207 (e) GLM kubo@ees.hokudai.ac.jp https://goo.gl/z9ycjy 207 4 207 6:02 N y 2 binomial distribution logit link function 3 4! offset kubostat207e (https://goo.gl/z9ycjy) 207 (e) 207 4

More information

日心TWS

日心TWS 2017.09.22 (15:40~17:10) 日本心理学会第 81 回大会 TWS ベイジアンデータ解析入門 回帰分析を例に ベイジアンデータ解析 を体験してみる 広島大学大学院教育学研究科平川真 ベイジアン分析のステップ (p.24) 1) データの特定 2) モデルの定義 ( 解釈可能な ) モデルの作成 3) パラメタの事前分布の設定 4) ベイズ推論を用いて パラメタの値に確信度を再配分ベイズ推定

More information

一般化線形 (混合) モデル (2) - ロジスティック回帰と GLMM

一般化線形 (混合) モデル (2) - ロジスティック回帰と GLMM .. ( ) (2) GLMM kubo@ees.hokudai.ac.jp I http://goo.gl/rrhzey 2013 08 27 : 2013 08 27 08:29 kubostat2013ou2 (http://goo.gl/rrhzey) ( ) (2) 2013 08 27 1 / 74 I.1 N k.2 binomial distribution logit link function.3.4!

More information

今回 次回の要点 あぶない 時系列データ解析は やめましょう! 統計モデル のあてはめ Danger!! (危 1) 時系列データの GLM あてはめ (危 2) 時系列Yt 時系列 Xt 各時刻の個体数 気温 とか これは次回)

今回 次回の要点 あぶない 時系列データ解析は やめましょう! 統計モデル のあてはめ Danger!! (危 1) 時系列データの GLM あてはめ (危 2) 時系列Yt 時系列 Xt 各時刻の個体数 気温 とか これは次回) 生態学の時系列データ解析でよく見る あぶない モデリング 久保拓弥 mailto:kubo@ees.hokudai.ac.jp statistical model for time-series data 2017-07-03 kubostat2017 (h) 1/59 今回 次回の要点 あぶない 時系列データ解析は やめましょう! 統計モデル のあてはめ Danger!! (危 1) 時系列データの

More information

講義のーと : データ解析のための統計モデリング. 第2回

講義のーと :  データ解析のための統計モデリング. 第2回 Title 講義のーと : データ解析のための統計モデリング Author(s) 久保, 拓弥 Issue Date 2008 Doc URL http://hdl.handle.net/2115/49477 Type learningobject Note この講義資料は, 著者のホームページ http://hosho.ees.hokudai.ac.jp/~kub ードできます Note(URL)http://hosho.ees.hokudai.ac.jp/~kubo/ce/EesLecture20

More information

2014ESJ.key

2014ESJ.key http://www001.upp.so-net.ne.jp/ito-hi/stat/2014esj/ Statistical Software for State Space Models Commandeur et al. (2011) Journal of Statistical Software 41(1) State Space Models in R Petris & Petrone (2011)

More information

Microsoft PowerPoint - R-stat-intro_20.ppt [互換モード]

Microsoft PowerPoint - R-stat-intro_20.ppt [互換モード] と WinBUGS R で統計解析入門 (20) ベイズ統計 超 入門 WinBUGS と R2WinBUGS のセットアップ 1. 本資料で使用するデータを以下からダウンロードする http://www.cwk.zaq.ne.jp/fkhud708/files/r-intro/r-stat-intro_data.zip 2. WinBUGS のホームページから下記ファイルをダウンロードし WinBUGS14.exe

More information

今日の要点 あぶない 時系列データ解析は やめましょう! 統計モデル のあてはめ (危 1) 時系列データの GLM あてはめ (危 2) 時系列Yt 時系列 Xt 各時刻の個体数 気温 とか

今日の要点 あぶない 時系列データ解析は やめましょう! 統計モデル のあてはめ (危 1) 時系列データの GLM あてはめ (危 2) 時系列Yt 時系列 Xt 各時刻の個体数 気温 とか 時系列データ解析でよく見る あぶない モデリング 久保拓弥 (北海道大 環境科学) 1/56 今日の要点 あぶない 時系列データ解析は やめましょう! 統計モデル のあてはめ (危 1) 時系列データの GLM あてはめ (危 2) 時系列Yt 時系列 Xt 各時刻の個体数 気温 とか (危 1) 時系列データを GLM で (危 2) 時系列Yt 時系列 Xt 相関は因果関係ではない 問題の一部

More information

kubostat2018a p.1 統計モデリング入門 2018 (a) The main language of this class is 生物多様性学特論 Japanese Sorry An overview: Statistical Modeling 観測されたパターンを説明する統計モデル

kubostat2018a p.1 統計モデリング入門 2018 (a) The main language of this class is 生物多様性学特論 Japanese Sorry An overview: Statistical Modeling 観測されたパターンを説明する統計モデル p.1 統計モデリング入門 2018 (a) The main language of this class is 生物多様性学特論 Japanese Sorry An overview: Statistical Modeling 観測されたパターンを説明する統計モデル 久保拓弥 (北海道大 環境科学) Why in Japanese? because even in Japanese, statistics

More information

統計モデリング入門 2018 (a) 生物多様性学特論 An overview: Statistical Modeling 観測されたパターンを説明する統計モデル 久保拓弥 (北海道大 環境科学) 統計モデリング入門 2018a 1

統計モデリング入門 2018 (a) 生物多様性学特論 An overview: Statistical Modeling 観測されたパターンを説明する統計モデル 久保拓弥 (北海道大 環境科学) 統計モデリング入門 2018a 1 統計モデリング入門 2018 (a) 生物多様性学特論 An overview: Statistical Modeling 観測されたパターンを説明する統計モデル 久保拓弥 (北海道大 環境科学) kubo@ees.hokudai.ac.jp 1/56 The main language of this class is Japanese Sorry Why in Japanese? because

More information

untitled

untitled MCMC 2004 23 1 I. MCMC 1. 2. 3. 4. MH 5. 6. MCMC 2 II. 1. 2. 3. 4. 5. 3 I. MCMC 1. 2. 3. 4. MH 5. 4 1. MCMC 5 2. A P (A) : P (A)=0.02 A B A B Pr B A) Pr B A c Pr B A)=0.8, Pr B A c =0.1 6 B A 7 8 A, :

More information

NLMIXED プロシジャを用いた生存時間解析 伊藤要二アストラゼネカ株式会社臨床統計 プログラミング グループグルプ Survival analysis using PROC NLMIXED Yohji Itoh Clinical Statistics & Programming Group, A

NLMIXED プロシジャを用いた生存時間解析 伊藤要二アストラゼネカ株式会社臨床統計 プログラミング グループグルプ Survival analysis using PROC NLMIXED Yohji Itoh Clinical Statistics & Programming Group, A NLMIXED プロシジャを用いた生存時間解析 伊藤要二アストラゼネカ株式会社臨床統計 プログラミング グループグルプ Survival analysis using PROC NLMIXED Yohji Itoh Clinical Statistics & Programming Group, AstraZeneca KK 要旨 : NLMIXEDプロシジャの最尤推定の機能を用いて 指数分布 Weibull

More information

スライド 1

スライド 1 WinBUGS 入門 水産資源学におけるベイズ統計の応用ワークショップ 2007 年 8 月 2-3 日, 中央水研 遠洋水産研究所外洋資源部 鯨類管理研究室 岡村寛 WinBUGS とは BUGS (Bayesian Inference Using Gibbs Sampling) の Windows バージョン フリーのソフトウェア Gibbs samplingを利用した事後確率からのサンプリングを行う

More information

ベイズ統計入門

ベイズ統計入門 ベイズ統計入門 条件付確率 事象 F が起こったことが既知であるという条件の下で E が起こる確率を条件付確率 (codtoal probablt) という P ( E F ) P ( E F ) P( F ) 定義式を変形すると 確率の乗法公式となる ( E F ) P( F ) P( E F ) P( E) P( F E) P 事象の独立 ある事象の生起する確率が 他のある事象が生起するかどうかによって変化しないとき

More information

k2 ( :35 ) ( k2) (GLM) web web 1 :

k2 ( :35 ) ( k2) (GLM) web   web   1 : 2012 11 01 k2 (2012-10-26 16:35 ) 1 6 2 (2012 11 01 k2) (GLM) kubo@ees.hokudai.ac.jp web http://goo.gl/wijx2 web http://goo.gl/ufq2 1 : 2 2 4 3 7 4 9 5 : 11 5.1................... 13 6 14 6.1......................

More information

X X X Y R Y R Y R MCAR MAR MNAR Figure 1: MCAR, MAR, MNAR Y R X 1.2 Missing At Random (MAR) MAR MCAR MCAR Y X X Y MCAR 2 1 R X Y Table 1 3 IQ MCAR Y I

X X X Y R Y R Y R MCAR MAR MNAR Figure 1: MCAR, MAR, MNAR Y R X 1.2 Missing At Random (MAR) MAR MCAR MCAR Y X X Y MCAR 2 1 R X Y Table 1 3 IQ MCAR Y I (missing data analysis) - - 1/16/2011 (missing data, missing value) (list-wise deletion) (pair-wise deletion) (full information maximum likelihood method, FIML) (multiple imputation method) 1 missing completely

More information

Probit , Mixed logit

Probit , Mixed logit Probit, Mixed logit 2016/5/16 スタートアップゼミ #5 B4 後藤祥孝 1 0. 目次 Probit モデルについて 1. モデル概要 2. 定式化と理解 3. 推定 Mixed logit モデルについて 4. モデル概要 5. 定式化と理解 6. 推定 2 1.Probit 概要 プロビットモデルとは. 効用関数の誤差項に多変量正規分布を仮定したもの. 誤差項には様々な要因が存在するため,

More information

したがって このモデルではの長さをもつ潜在履歴 latent history が存在し 同様に と指標化して扱うことができる 以下では 潜在的に起こりうる履歴を潜在履歴 latent history 実際にデ ータとして記録された履歴を記録履歴 recorded history ということにする M

したがって このモデルではの長さをもつ潜在履歴 latent history が存在し 同様に と指標化して扱うことができる 以下では 潜在的に起こりうる履歴を潜在履歴 latent history 実際にデ ータとして記録された履歴を記録履歴 recorded history ということにする M Bayesian Inference with ecological applications Chapter 10 Bayesian Inference with ecological applications 輪読会 潜在的な事象を扱うための多項分布モデル Latent Multinomial Models 本章では 記録した頻度データが多項分布に従う潜在的な変数を集約したものと考えられるときの

More information

講義「○○○○」

講義「○○○○」 講義 信頼度の推定と立証 内容. 点推定と区間推定. 指数分布の点推定 区間推定 3. 指数分布 正規分布の信頼度推定 担当 : 倉敷哲生 ( ビジネスエンジニアリング専攻 ) 統計的推測 標本から得られる情報を基に 母集団に関する結論の導出が目的 測定値 x x x 3 : x 母集団 (populaio) 母集団の特性値 統計的推測 標本 (sample) 標本の特性値 分布のパラメータ ( 母数

More information

Microsoft PowerPoint - 14回パラメータ推定配布用.pptx

Microsoft PowerPoint - 14回パラメータ推定配布用.pptx パラメータ推定の理論と実践 BEhavior Study for Transportation Graduate school, Univ. of Yamanashi 山梨大学佐々木邦明 最尤推定法 点推定量を求める最もポピュラーな方法 L n x n i1 f x i 右上の式を θ の関数とみなしたものが尤度関数 データ (a,b) が得られたとき, 全体の平均がいくつとするのがよいか 平均がいくつだったら

More information

講義のーと : データ解析のための統計モデリング. 第5回

講義のーと :  データ解析のための統計モデリング. 第5回 Title 講義のーと : データ解析のための統計モデリング Author(s) 久保, 拓弥 Issue Date 2008 Doc URL http://hdl.handle.net/2115/49477 Type learningobject Note この講義資料は, 著者のホームページ http://hosho.ees.hokudai.ac.jp/~kub ードできます Note(URL)http://hosho.ees.hokudai.ac.jp/~kubo/ce/EesLecture20

More information

: Bradley-Terry Burczyk

: Bradley-Terry Burczyk 58 (W15) 2011 03 09 kubo@ees.hokudai.ac.jp http://goo.gl/edzle 2011 03 09 (2011 03 09 19 :32 ) : Bradley-Terry Burczyk ? ( ) 1999 2010 9 R : 7 (1) 8 7??! 15 http://www.atmarkit.co.jp/fcoding/articles/stat/07/stat07a.html

More information

様々なミクロ計量モデル†

様々なミクロ計量モデル† 担当 : 長倉大輔 ( ながくらだいすけ ) この資料は私の講義において使用するために作成した資料です WEB ページ上で公開しており 自由に参照して頂いて構いません ただし 内容について 一応検証してありますが もし間違いがあった場合でもそれによって生じるいかなる損害 不利益について責任を負いかねますのでご了承ください 間違いは発見次第 継続的に直していますが まだ存在する可能性があります 1 カウントデータモデル

More information

みっちりGLM

みっちりGLM 2015/3/27 12:00-13:00 日本草地学会若手 R 統計企画 ( 信州大学農学部 ) R と一般化線形モデル入門 山梨県富士山科学研究所 安田泰輔 謝辞 : 日本草地学会若手の会の皆様 発表の機会を頂き たいへんありがとうございます! 茨城大学 学生時代 自己紹介 ベータ二項分布を用いた種の空間分布の解析 所属 : 山梨県富士山科学研究所 最近の研究テーマ 近接リモートセンシングによる半自然草地のモニタリング手法開発

More information

2. 方法 対象とする期間と地域対象期間は 2002 年から 2010 年までとした 対象地域は淡路島とする 用いたデータ推定には以下のデータを使用した 有害捕獲数 ( 年度 )i_yugai[i]:i 年度の有害許可による捕獲数 個体数を反映する指標として用いる 目撃効率 spue[i]:i 年度

2. 方法 対象とする期間と地域対象期間は 2002 年から 2010 年までとした 対象地域は淡路島とする 用いたデータ推定には以下のデータを使用した 有害捕獲数 ( 年度 )i_yugai[i]:i 年度の有害許可による捕獲数 個体数を反映する指標として用いる 目撃効率 spue[i]:i 年度 兵庫ワイルドライフレポート 1: 56-67. 2012 原著論文 イノシシの個体群動態の推定 ( 淡路島 2011 年 ) 関香菜子 1 岸本康誉 1,2 坂田宏志 1,2 * 1 兵庫県森林動物研究センター 2 兵庫県立大学自然 環境科学研究所 要点 2011 年までに入手されたデータから 兵庫県淡路島のイノシシの自然増加率や個体数を 階層ベイズモデルを構築し マルコフ連鎖モンテカルロ法によって推定した

More information

講義のーと : データ解析のための統計モデリング. 第3回

講義のーと :  データ解析のための統計モデリング. 第3回 Title 講義のーと : データ解析のための統計モデリング Author(s) 久保, 拓弥 Issue Date 2008 Doc URL http://hdl.handle.net/2115/49477 Type learningobject Note この講義資料は, 著者のホームページ http://hosho.ees.hokudai.ac.jp/~kub ードできます Note(URL)http://hosho.ees.hokudai.ac.jp/~kubo/ce/EesLecture20

More information

: (GLMM) (pseudo replication) ( ) ( ) & Markov Chain Monte Carlo (MCMC)? /30

: (GLMM) (pseudo replication) ( ) ( ) & Markov Chain Monte Carlo (MCMC)? /30 PlotNet 6 ( ) 2006-01-19 TOEF(1998 2004), AM, growth6 DBH growth (mm) 1998 1999 2000 2001 2002 2003 2004 10 20 30 40 50 70 DBH (cm) 1. 2. - - : kubo@ees.hokudai.ac.jp http://hosho.ees.hokudai.ac.jp/ kubo/show/2006/plotnet/

More information

1 環境統計学ぷらす 第 5 回 一般 ( 化 ) 線形混合モデル 高木俊 2013/11/21

1 環境統計学ぷらす 第 5 回 一般 ( 化 ) 線形混合モデル 高木俊 2013/11/21 1 環境統計学ぷらす 第 5 回 一般 ( 化 ) 線形混合モデル 高木俊 shun.takagi@sci.toho-u.ac.jp 2013/11/21 2 予定 第 1 回 : Rの基礎と仮説検定 第 2 回 : 分散分析と回帰 第 3 回 : 一般線形モデル 交互作用 第 4.1 回 : 一般化線形モデル 第 4.2 回 : モデル選択 (11/29?) 第 5 回 : 一般化線形混合モデル

More information

Stanによるハミルトニアンモンテカルロ法を用いたサンプリングについて

Stanによるハミルトニアンモンテカルロ法を用いたサンプリングについて Stan によるハミルトニアンモンテカルロ法を用いたサンプリングについて 10 月 22 日中村文士 1 目次 1.STANについて 2.RでSTANをするためのインストール 3.STANのコード記述方法 4.STANによるサンプリングの例 2 1.STAN について ハミルトニアンモンテカルロ法に基づいた事後分布からのサンプリングなどができる STAN の HP: mc-stan.org 3 由来

More information

バイオインフォマティクス特論12

バイオインフォマティクス特論12 藤 博幸 事後予測分布 パラメータの事後分布に従って モデルがどんなデータを期待するかを予測する 予測分布が観測されたデータと 致するかを確認することで モデルの適切さを確認できる 前回と同じ問題で事後予測を う 3-1-1. 個 差を考えない場合 3-1-2. 完全な個 差を考える場合 3-1-3. 構造化された個 差を考える場合 ベイズ統計で実践モデリング 10.1 個 差を考えない場合 第 10

More information

@i_kiwamu Bayes - -

@i_kiwamu Bayes - - Bayes RStan 1 2012 12 1 R @ @i_kiwamu Bayes - - Stan / RStan Bayes Stan Development Team - Andrew Gelman, Bob Carpenter, Matt Hoffman, Ben Goodrich, Michael Malecki, Daniel Lee and Chad Scherrer Open source

More information

第 3 回講義の項目と概要 統計的手法入門 : 品質のばらつきを解析する 平均と標準偏差 (P30) a) データは平均を見ただけではわからない 平均が同じだからといって 同一視してはいけない b) データのばらつきを示す 標準偏差 にも注目しよう c) 平均

第 3 回講義の項目と概要 統計的手法入門 : 品質のばらつきを解析する 平均と標準偏差 (P30) a) データは平均を見ただけではわからない 平均が同じだからといって 同一視してはいけない b) データのばらつきを示す 標準偏差 にも注目しよう c) 平均 第 3 回講義の項目と概要 016.8.9 1.3 統計的手法入門 : 品質のばらつきを解析する 1.3.1 平均と標準偏差 (P30) a) データは平均を見ただけではわからない 平均が同じだからといって 同一視してはいけない b) データのばらつきを示す 標準偏差 にも注目しよう c) 平均 :AVERAGE 関数, 標準偏差 :STDEVP 関数とSTDEVという関数 1 取得したデータそのものの標準偏差

More information

統計的データ解析

統計的データ解析 統計的データ解析 011 011.11.9 林田清 ( 大阪大学大学院理学研究科 ) 連続確率分布の平均値 分散 比較のため P(c ) c 分布 自由度 の ( カイ c 平均値 0, 標準偏差 1の正規分布 に従う変数 xの自乗和 c x =1 が従う分布を自由度 の分布と呼ぶ 一般に自由度の分布は f /1 c / / ( c ) {( c ) e }/ ( / ) 期待値 二乗 ) 分布 c

More information

カイ二乗フィット検定、パラメータの誤差

カイ二乗フィット検定、パラメータの誤差 統計的データ解析 008 008.. 林田清 ( 大阪大学大学院理学研究科 ) 問題 C (, ) ( x xˆ) ( y yˆ) σ x πσ σ y y Pabx (, ;,,, ) ˆ y σx σ y = dx exp exp πσx ただし xy ˆ ˆ はyˆ = axˆ+ bであらわされる直線モデル上の点 ( ˆ) ( ˆ ) ( ) x x y ax b y ax b Pabx (,

More information

医薬品開発の意思決定における Bayesian Posterior Probability の適用例 ~ Random-Walk Metropolis vs. No-U-Turn Sampler ~ 作井将 清水康平 舟尾暢男 武田薬品工業株式会社日本開発センター生物統計室 Using Bayesi

医薬品開発の意思決定における Bayesian Posterior Probability の適用例 ~ Random-Walk Metropolis vs. No-U-Turn Sampler ~ 作井将 清水康平 舟尾暢男 武田薬品工業株式会社日本開発センター生物統計室 Using Bayesi 医薬品開発の意思決定における Bayesian Posterior Probability の適用例 ~ Random-Walk Metropolis vs. No-U-Turn Sampler ~ 作井将 清水康平 舟尾暢男 武田薬品工業株式会社日本開発センター生物統計室 Using Bayesian Posterior Probability for Go/No-Go Decision Making

More information

Dirichlet process mixture Dirichlet process mixture 2 /40 MIRU2008 :

Dirichlet process mixture Dirichlet process mixture 2 /40 MIRU2008 : Dirichlet Process : joint work with: Max Welling (UC Irvine), Yee Whye Teh (UCL, Gatsby) http://kenichi.kurihara.googlepages.com/miru_workshop.pdf 1 /40 MIRU2008 : Dirichlet process mixture Dirichlet process

More information

2. 方法対象とする期間と地域対象期間は 2002 年から 2010 年までとした 対象地域は兵庫県本州部とする 用いたデータ推定には以下のデータを使用した 有害捕獲数 ( 年度 )i_yugai[i]:i 年度の有害許可による捕獲数 個体数を反映する指標として用いる 目撃効率 spue[i]:i

2. 方法対象とする期間と地域対象期間は 2002 年から 2010 年までとした 対象地域は兵庫県本州部とする 用いたデータ推定には以下のデータを使用した 有害捕獲数 ( 年度 )i_yugai[i]:i 年度の有害許可による捕獲数 個体数を反映する指標として用いる 目撃効率 spue[i]:i 兵庫ワイルドライフレポート 1: 44-55. 2012 原著論文 イノシシの個体群動態の推定 ( 兵庫県本州部 2011 年 ) 坂田宏志 1,2 * 岸本康誉 1,2 関香菜子 1 1 兵庫県森林動物研究センター 2 兵庫県立大学自然 環境科学研究所 要点 2011 年までに入手されたデータから 兵庫県本州部のイノシシの自然増加率や個体数を 階層ベイズモデルを構築し マルコフ連鎖モンテカルロ法によって推定した

More information

ECCS. ECCS,. ( 2. Mac Do-file Editor. Mac Do-file Editor Windows Do-file Editor Top Do-file e

ECCS. ECCS,. (  2. Mac Do-file Editor. Mac Do-file Editor Windows Do-file Editor Top Do-file e 1 1 2015 4 6 1. ECCS. ECCS,. (https://ras.ecc.u-tokyo.ac.jp/guacamole/) 2. Mac Do-file Editor. Mac Do-file Editor Windows Do-file Editor Top Do-file editor, Do View Do-file Editor Execute(do). 3. Mac System

More information

2009 5 1...1 2...3 2.1...3 2.2...3 3...10 3.1...10 3.1.1...10 3.1.2... 11 3.2...14 3.2.1...14 3.2.2...16 3.3...18 3.4...19 3.4.1...19 3.4.2...20 3.4.3...21 4...24 4.1...24 4.2...24 4.3 WinBUGS...25 4.4...28

More information

,, Poisson 3 3. t t y,, y n Nµ, σ 2 y i µ + ɛ i ɛ i N0, σ 2 E[y i ] µ * i y i x i y i α + βx i + ɛ i ɛ i N0, σ 2, α, β *3 y i E[y i ] α + βx i

,, Poisson 3 3. t t y,, y n Nµ, σ 2 y i µ + ɛ i ɛ i N0, σ 2 E[y i ] µ * i y i x i y i α + βx i + ɛ i ɛ i N0, σ 2, α, β *3 y i E[y i ] α + βx i Armitage.? SAS.2 µ, µ 2, µ 3 a, a 2, a 3 a µ + a 2 µ 2 + a 3 µ 3 µ, µ 2, µ 3 µ, µ 2, µ 3 log a, a 2, a 3 a µ + a 2 µ 2 + a 3 µ 3 µ, µ 2, µ 3 * 2 2. y t y y y Poisson y * ,, Poisson 3 3. t t y,, y n Nµ,

More information

kubostat2018d p.2 :? bod size x and fertilization f change seed number? : a statistical model for this example? i response variable seed number : { i

kubostat2018d p.2 :? bod size x and fertilization f change seed number? : a statistical model for this example? i response variable seed number : { i kubostat2018d p.1 I 2018 (d) model selection and kubo@ees.hokudai.ac.jp http://goo.gl/76c4i 2018 06 25 : 2018 06 21 17:45 1 2 3 4 :? AIC : deviance model selection misunderstanding kubostat2018d (http://goo.gl/76c4i)

More information

スライド 1

スライド 1 データ解析特論第 10 回 ( 全 15 回 ) 2012 年 12 月 11 日 ( 火 ) 情報エレクトロニクス専攻横田孝義 1 終了 11/13 11/20 重回帰分析をしばらくやります 12/4 12/11 12/18 2 前回から回帰分析について学習しています 3 ( 単 ) 回帰分析 単回帰分析では一つの従属変数 ( 目的変数 ) を 一つの独立変数 ( 説明変数 ) で予測する事を考える

More information

スライド 1

スライド 1 2019 年 5 月 7 日 @ 統計モデリング 統計モデリング 第四回配布資料 ( 予習用 ) 文献 : a) A. J. Dobson and A. G. Barnett: An Introduction to Generalized Linear Models. 3rd ed., CRC Press. b) H. Dung, et al: Monitoring the Transmission

More information

集中理論談話会 #9 Bhat, C.R., Sidharthan, R.: A simulation evaluation of the maximum approximate composite marginal likelihood (MACML) estimator for mixed mu

集中理論談話会 #9 Bhat, C.R., Sidharthan, R.: A simulation evaluation of the maximum approximate composite marginal likelihood (MACML) estimator for mixed mu 集中理論談話会 #9 Bhat, C.R., Sidharthan, R.: A simulation evaluation of the maximum approximate composite marginal likelihood (MACML) estimator for mixed multinomial probit models, Transportation Research Part

More information

スライド 1

スライド 1 . 無情報事前分布 前回 前回の復習 データの分布 ( 統計モデル を設定 ( θ モデルごとに相性のよい事前分布 ( 共役事前分布 を紹介 事後分布の計算 π (θ π ( θ, π ( θ dθ, 昔 共役事前分布を利用して 解析的に事後分布を導出簡単な形で書けない場合は ラプラス近似を利用 現在 パラメータの次元が高い, もしくは複雑な入り方をする統計モデル 数値的な方法 ( 第六回 で近似するため共役事前分布にこだわらない

More information

Microsoft PowerPoint - 【配布・WEB公開用】SAS発表資料.pptx

Microsoft PowerPoint - 【配布・WEB公開用】SAS発表資料.pptx 生存関数における信頼区間算出法の比較 佐藤聖士, 浜田知久馬東京理科大学工学研究科 Comparison of confidence intervals for survival rate Masashi Sato, Chikuma Hamada Graduate school of Engineering, Tokyo University of Science 要旨 : 生存割合の信頼区間算出の際に用いられる各変換関数の性能について被覆確率を評価指標として比較した.

More information

専修人間科学論集心理学篇 Vol. 7, No. 1, pp. 15~23, ロジスティック型項目反応理論モデルにおける JAGS と Stan を用いた推定の比較評価 1 北條大樹 2 岡田謙介 3 Comparative evaluation of parameter estim

専修人間科学論集心理学篇 Vol. 7, No. 1, pp. 15~23, ロジスティック型項目反応理論モデルにおける JAGS と Stan を用いた推定の比較評価 1 北條大樹 2 岡田謙介 3 Comparative evaluation of parameter estim 専修人間科学論集心理学篇 Vol. 7, No. 1, pp. 15~23, 2017 15 ロジスティック型項目反応理論モデルにおける JAGS と Stan を用いた推定の比較評価 1 北條大樹 2 岡田謙介 3 Comparative evaluation of parameter estimation methods between JAGS and Stan in Bayesian item

More information

AR(1) y t = φy t 1 + ɛ t, ɛ t N(0, σ 2 ) 1. Mean of y t given y t 1, y t 2, E(y t y t 1, y t 2, ) = φy t 1 2. Variance of y t given y t 1, y t

AR(1) y t = φy t 1 + ɛ t, ɛ t N(0, σ 2 ) 1. Mean of y t given y t 1, y t 2, E(y t y t 1, y t 2, ) = φy t 1 2. Variance of y t given y t 1, y t 87 6.1 AR(1) y t = φy t 1 + ɛ t, ɛ t N(0, σ 2 ) 1. Mean of y t given y t 1, y t 2, E(y t y t 1, y t 2, ) = φy t 1 2. Variance of y t given y t 1, y t 2, V(y t y t 1, y t 2, ) = σ 2 3. Thus, y t y t 1,

More information

Microsoft PowerPoint - GLMMexample_ver pptx

Microsoft PowerPoint - GLMMexample_ver pptx Linear Mixed Model ( 以下 混合モデル ) の短い解説 この解説のPDFは http://www.lowtem.hokudai.ac.jp/plantecol/akihiro/sumida-index.html の お勉強 のページにあります. ver 20121121 と との間に次のような関係が見つかったとしよう 全体的な傾向に対する回帰直線を点線で示した ところが これらのデータは実は異なる

More information

80 X 1, X 2,, X n ( λ ) λ P(X = x) = f (x; λ) = λx e λ, x = 0, 1, 2, x! l(λ) = n f (x i ; λ) = i=1 i=1 n λ x i e λ i=1 x i! = λ n i=1 x i e nλ n i=1 x

80 X 1, X 2,, X n ( λ ) λ P(X = x) = f (x; λ) = λx e λ, x = 0, 1, 2, x! l(λ) = n f (x i ; λ) = i=1 i=1 n λ x i e λ i=1 x i! = λ n i=1 x i e nλ n i=1 x 80 X 1, X 2,, X n ( λ ) λ P(X = x) = f (x; λ) = λx e λ, x = 0, 1, 2, x! l(λ) = n f (x i ; λ) = n λ x i e λ x i! = λ n x i e nλ n x i! n n log l(λ) = log(λ) x i nλ log( x i!) log l(λ) λ = 1 λ n x i n =

More information

Microsoft PowerPoint slide2forWeb.ppt [互換モード]

Microsoft PowerPoint slide2forWeb.ppt [互換モード] 講義内容 9..4 正規分布 ormal dstrbuto ガウス分布 Gaussa dstrbuto 中心極限定理 サンプルからの母集団統計量の推定 不偏推定量について 確率変数, 確率密度関数 確率密度関数 確率密度関数は積分したら. 平均 : 確率変数 分散 : 例 ある場所, ある日時での気温の確率. : 気温, : 気温 が起こる確率 標本平均とのアナロジー 類推 例 人の身長の分布と平均

More information

Microsoft PowerPoint - SAS2012_ZHANG_0629.ppt [互換モード]

Microsoft PowerPoint - SAS2012_ZHANG_0629.ppt [互換モード] SAS による生存時間解析の実務 張方紅グラクソ スミスクライン ( 株 バイオメディカルデータサイエンス部 Practice of Survival Analysis sing SAS Fanghong Zhang Biomedical Data Science Department, GlaxoSmithKline K.K. 要旨 : SASによる生存時間解析の実務経験を共有する. データの要約

More information

EBNと疫学

EBNと疫学 推定と検定 57 ( 復習 ) 記述統計と推測統計 統計解析は大きく 2 つに分けられる 記述統計 推測統計 記述統計 観察集団の特性を示すもの 代表値 ( 平均値や中央値 ) や ばらつきの指標 ( 標準偏差など ) 図表を効果的に使う 推測統計 観察集団のデータから母集団の特性を 推定 する 平均 / 分散 / 係数値などの推定 ( 点推定 ) 点推定値のばらつきを調べる ( 区間推定 ) 検定統計量を用いた検定

More information

生命情報学

生命情報学 生命情報学 5 隠れマルコフモデル 阿久津達也 京都大学化学研究所 バイオインフォマティクスセンター 内容 配列モチーフ 最尤推定 ベイズ推定 M 推定 隠れマルコフモデル HMM Verアルゴリズム EMアルゴリズム Baum-Welchアルゴリズム 前向きアルゴリズム 後向きアルゴリズム プロファイル HMM 配列モチーフ モチーフ発見 配列モチーフ : 同じ機能を持つ遺伝子配列などに見られる共通の文字列パターン

More information

分布

分布 (normal distribution) 30 2 Skewed graph 1 2 (variance) s 2 = 1/(n-1) (xi x) 2 x = mean, s = variance (variance) (standard deviation) SD = SQR (var) or 8 8 0.3 0.2 0.1 0.0 0 1 2 3 4 5 6 7 8 8 0 1 8 (probability

More information

斎藤参郎 データサイエンス A 2018 年度水曜日 2 限目 (10:40-12:10) 0. イントロダクション 講義の進め方 担当昨年度より 講義の方針 1) 自宅でも学習できる 2) 様々なデータ分析手法を自分でインストールし 実験できる 環境の紹

斎藤参郎 データサイエンス A 2018 年度水曜日 2 限目 (10:40-12:10) 0. イントロダクション 講義の進め方 担当昨年度より 講義の方針 1) 自宅でも学習できる 2) 様々なデータ分析手法を自分でインストールし 実験できる 環境の紹 斎藤参郎 saito@fukuoka-u.ac.jp データサイエンス A 2018 年度水曜日 2 限目 (10:40-12:10) 0. イントロダクション 講義の進め方 担当昨年度より 講義の方針 1) 自宅でも学習できる 2) 様々なデータ分析手法を自分でインストールし 実験できる 環境の紹介 3) データ分析技法を自習していくことができる基礎能力 講義内容で考慮すべき点 4) 多くの手法が電卓のように使える時代

More information

takano1

takano1 欠損値を補完する? 教育認知心理学講座野村研究室 M1 高野了太 データ解析演習 2017/07/05 目次 1. はじめに 2. 欠損値の種類 2-1. MCAR 2-2. MAR 2-3. MNAR 3. 欠損データの対処法 3-1. FIML 法 3-2. 多重代入法 4. 実際に多重代入法をやろう! 2 1. はじめに 心理学の研究 とりわけ質問紙調査などでは 欠損値はつきもの 欠損値があるデータをどのように扱うのかに関しては

More information

2 値データの Intraclass Correlation Coefficient の推定マクロプログラム 稲葉洋介 1 田中紀子 1 1 国立国際医療研究センターデータサイエンス部生物統計研究室 Macro program for calculating Intraclass Correlati

2 値データの Intraclass Correlation Coefficient の推定マクロプログラム 稲葉洋介 1 田中紀子 1 1 国立国際医療研究センターデータサイエンス部生物統計研究室 Macro program for calculating Intraclass Correlati 2 値データの Intraclass Correlation Coefficient の推定マクロプログラム 稲葉洋介 1 田中紀子 1 1 国立国際医療研究センターデータサイエンス部生物統計研究室 Macro program for calculating Intraclass Correlation Coefficient for binary data Yosuke Inaba, Noriko

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 1/X Chapter 9: Linear correlation Cohen, B. H. (2007). In B. H. Cohen (Ed.), Explaining Psychological Statistics (3rd ed.) (pp. 255-285). NJ: Wiley. 概要 2/X 相関係数とは何か 相関係数の数式 検定 注意点 フィッシャーのZ 変換 信頼区間 相関係数の差の検定

More information

II 2

II 2 Multi-Vendor Services II II II II 2 4 II 1 2 3 4 3 1 STEP 1 STEP 2 STEP 3 4 II II doc ppt xls 5 2 3 6 4 7 II II II II 8 II II II II 1 2 3 4 1 2 3 II 9 II II II II II II II II II II II II II II II IIII

More information

Microsoft PowerPoint - statistics pptx

Microsoft PowerPoint - statistics pptx 統計学 第 16 回 講義 母平均の区間推定 Part-1 016 年 6 10 ( ) 1 限 担当教員 : 唐渡 広志 ( からと こうじ ) 研究室 : 経済学研究棟 4 階 43 号室 email: kkarato@eco.u-toyama.ac.jp website: http://www3.u-toyama.ac.jp/kkarato/ 1 講義の目的 標本平均は正規分布に従うという性質を

More information

Multivariate Realized Stochastic Volatility Models with Dynamic Correlation and Skew Distribution: Bayesian Analysis and Application to Risk Managemen

Multivariate Realized Stochastic Volatility Models with Dynamic Correlation and Skew Distribution: Bayesian Analysis and Application to Risk Managemen Multivariate Realized Stochastic Volatility Models with Dynamic Correlation and Skew Distribution: Bayesian Analysis and Application to Risk Management 2019 3 15 Dai Yamashita (Hitotsubashi ICS) MSV Models

More information

dvi

dvi 2017 65 2 235 249 2017 1 2 2 2016 12 26 2017 3 1 4 25 1 MCMC 1. SLG OBP OPS Albert and Benett, 2003 1 2 3 4 OPS Albert and Benett 2003 Albert 2008 1 112 8551 1 13 27 2 112 8551 1 13 27 236 65 2 2017 Albert

More information

Statistical inference for one-sample proportion

Statistical inference for one-sample proportion RAND 関数による擬似乱数の生成 魚住龍史 * 浜田知久馬東京理科大学大学院工学研究科経営工学専攻 Generating pseudo-random numbers using RAND function Ryuji Uozumi * and Chikuma Hamada Department of Management Science, Graduate School of Engineering,

More information

バイオインフォマティクス特論4

バイオインフォマティクス特論4 藤 博幸 1-3-1. ピアソン相関係数 1-3-2. 致性のカッパ係数 1-3-3. 時系列データにおける変化検出 ベイズ統計で実践モデリング 5.1 ピアソン係数 第 5 章データ解析の例 データは n ペアの独 な観測値の対例 : 特定の薬剤の投与量と投与から t 時間後の注 する遺伝 の発現量 2 つの変数間の線形の関係性はピアソンの積率相関係数 r で表現される t 時間後の注 する遺伝

More information

スライド 1

スライド 1 2016 年 4 月 26 日 @ 統計モデリング 統計モデリング 第三回配布資料 文献 : A. J. Dobson and A. G. Barnett: An Introducton to Generalzed Lnear Models. 3rd ed., CRC Press. J. J. Farawa: Extendng the Lnear Model wth R. CRC Press. 配布資料の

More information

03.Œk’ì

03.Œk’ì HRS KG NG-HRS NG-KG AIC Fama 1965 Mandelbrot Blattberg Gonedes t t Kariya, et. al. Nagahara ARCH EngleGARCH Bollerslev EGARCH Nelson GARCH Heynen, et. al. r n r n =σ n w n logσ n =α +βlogσ n 1 + v n w

More information

統計学 - 社会統計の基礎 - 正規分布 標準正規分布累積分布関数の逆関数 t 分布正規分布に従うサンプルの平均の信頼区間 担当 : 岸 康人 資料ページ :

統計学 - 社会統計の基礎 - 正規分布 標準正規分布累積分布関数の逆関数 t 分布正規分布に従うサンプルの平均の信頼区間 担当 : 岸 康人 資料ページ : 統計学 - 社会統計の基礎 - 正規分布 標準正規分布累積分布関数の逆関数 t 分布正規分布に従うサンプルの平均の信頼区間 担当 : 岸 康人 資料ページ : https://goo.gl/qw1djw 正規分布 ( 復習 ) 正規分布 (Normal Distribution)N (μ, σ 2 ) 別名 : ガウス分布 (Gaussian Distribution) 密度関数 Excel:= NORM.DIST

More information

y i OLS [0, 1] OLS x i = (1, x 1,i,, x k,i ) β = (β 0, β 1,, β k ) G ( x i β) 1 G i 1 π i π i P {y i = 1 x i } = G (

y i OLS [0, 1] OLS x i = (1, x 1,i,, x k,i ) β = (β 0, β 1,, β k ) G ( x i β) 1 G i 1 π i π i P {y i = 1 x i } = G ( 7 2 2008 7 10 1 2 2 1.1 2............................................. 2 1.2 2.......................................... 2 1.3 2........................................ 3 1.4................................................

More information

当し 図 6. のように 2 分類 ( 疾患の有無 ) のデータを直線の代わりにシグモイド曲線 (S 字状曲線 ) で回帰する手法である ちなみに 直線で回帰する手法はコクラン アーミテージの傾向検定 疾患の確率 x : リスクファクター 図 6. ロジスティック曲線と回帰直線 疾患が発

当し 図 6. のように 2 分類 ( 疾患の有無 ) のデータを直線の代わりにシグモイド曲線 (S 字状曲線 ) で回帰する手法である ちなみに 直線で回帰する手法はコクラン アーミテージの傾向検定 疾患の確率 x : リスクファクター 図 6. ロジスティック曲線と回帰直線 疾患が発 6.. ロジスティック回帰分析 6. ロジスティック回帰分析の原理 ロジスティック回帰分析は判別分析を前向きデータ用にした手法 () ロジスティックモデル 疾患が発症するかどうかをリスクファクターから予想したいまたは疾患のリスクファクターを検討したい 判別分析は後ろ向きデータ用だから前向きデータ用にする必要がある ロジスティック回帰分析を適用ロジスティック回帰分析 ( ロジット回帰分析 ) は 判別分析をロジスティック曲線によって前向き研究から得られたデータ用にした手法

More information

基礎統計

基礎統計 基礎統計 第 11 回講義資料 6.4.2 標本平均の差の標本分布 母平均の差 標本平均の差をみれば良い ただし, 母分散に依存するため場合分けをする 1 2 3 分散が既知分散が未知であるが等しい分散が未知であり等しいとは限らない 1 母分散が既知のとき が既知 標準化変量 2 母分散が未知であり, 等しいとき 分散が未知であるが, 等しいということは分かっているとき 標準化変量 自由度 の t

More information

MCMCについて

MCMCについて MCMC について 水産資源学におけるベイズ統計の応用ワークショップ 2007 年 8 月 2-3 日, 中央水研 遠洋水産研究所外洋資源部 鯨類管理研究室 岡村寛 事後分布からサンプルする Pr(θ 1, θ 2, θ 3, ) θ 1 は重要. あとは必要だけど直接的じゃないというようなとき, P(θ 1 x)= P(θ 1,, θ n x)dθ 2 dθ n を計算したい. モンテカルロ近似

More information

Microsoft PowerPoint - stat-2014-[9] pptx

Microsoft PowerPoint - stat-2014-[9] pptx 統計学 第 17 回 講義 母平均の区間推定 Part-1 014 年 6 17 ( )6-7 限 担当教員 : 唐渡 広志 ( からと こうじ ) 研究室 : 経済学研究棟 4 階 43 号室 email: kkarato@eco.u-toyama.ac.j website: htt://www3.u-toyama.ac.j/kkarato/ 1 講義の目的 標本平均は正規分布に従うという性質を

More information

モジュール1のまとめ

モジュール1のまとめ 数理統計学 第 0 回 復習 標本分散と ( 標本 ) 不偏分散両方とも 分散 というのが実情 二乗偏差計標本分散 = データ数 (0ページ) ( 標本 ) 不偏分散 = (03 ページ ) 二乗偏差計 データ数 - 分析ではこちらをとることが多い 復習 ここまで 実験結果 ( 万回 ) 平均 50Kg 標準偏差 0Kg 0 人 全体に小さすぎる > mea(jkke) [] 89.4373 標準偏差

More information

1 Tokyo Daily Rainfall (mm) Days (mm)

1 Tokyo Daily Rainfall (mm) Days (mm) ( ) r-taka@maritime.kobe-u.ac.jp 1 Tokyo Daily Rainfall (mm) 0 100 200 300 0 10000 20000 30000 40000 50000 Days (mm) 1876 1 1 2013 12 31 Tokyo, 1876 Daily Rainfall (mm) 0 50 100 150 0 100 200 300 Tokyo,

More information

Microsoft PowerPoint - Rを利用した回帰分析.pptx

Microsoft PowerPoint - Rを利用した回帰分析.pptx R を利 した回帰分析 中央水産研究所 岡村 寛 水産資源学における統計解析 漁業 調査データ解析 CPUE 標準化 資源のトレンド 体 組成のモード分解 成 式などの生物パラメータの推定 資源評価モデルによる個体群評価 ほとんどがパラメータの推定問題 今日の概要 前半 ( 岡村 ) 単回帰 重回帰モデル一般化線形 ( 混合 加法 ) モデルプロダクションモデル,VPA など 最小二乗法 最尤法 ベイズ推定

More information

k3 ( :07 ) 2 (A) k = 1 (B) k = 7 y x x 1 (k2)?? x y (A) GLM (k

k3 ( :07 ) 2 (A) k = 1 (B) k = 7 y x x 1 (k2)?? x y (A) GLM (k 2012 11 01 k3 (2012-10-24 14:07 ) 1 6 3 (2012 11 01 k3) kubo@ees.hokudai.ac.jp web http://goo.gl/wijx2 web http://goo.gl/ufq2 1 3 2 : 4 3 AIC 6 4 7 5 8 6 : 9 7 11 8 12 8.1 (1)........ 13 8.2 (2) χ 2....................

More information

IPSJ SIG Technical Report Pitman-Yor 1 1 Pitman-Yor n-gram A proposal of the melody generation method using hierarchical pitman-yor language model Aki

IPSJ SIG Technical Report Pitman-Yor 1 1 Pitman-Yor n-gram A proposal of the melody generation method using hierarchical pitman-yor language model Aki Pitman-Yor Pitman-Yor n-gram A proposal of the melody generation method using hierarchical pitman-yor language model Akira Shirai and Tadahiro Taniguchi Although a lot of melody generation method has been

More information

< E6D6364>

< E6D6364> 東京経大学会誌 第 274 号 田島博和 1. はじめに 確率的離散選択の代表的なモデルであるロジットモデルは, マーケティングや消費者行動の分野でも, 消費者のブランド選択行動等を記述するために古くから用いられてきた [Malhotra, 1984; 片平 杉田, 1994; 土田, 2010 ほか ] 最近では,MCMC(Markov-Chain Monte-Carlo) アルゴリズムを用いたベイズ推定により,

More information

統計学の基礎から学ぶ実験計画法ー1

統計学の基礎から学ぶ実験計画法ー1 第 部統計学の基礎と. 統計学とは. 統計学の基本. 母集団とサンプル ( 標本 ). データ (data) 3. 集団の特性を示す統計量 基本的な解析手法 3. 統計量 (statistic) とは 3. 集団を代表する統計量 - 平均値など 3.3 集団のばらつきを表す値 - 平方和 分散 標準偏差 4. ばらつき ( 分布 ) を表す関数 4. 確率密度関数 4. 最も重要な正規分布 4.3

More information

二項‐ベータ階層ベイズモデルによる児童虐待相談対応率の地域差に関する研究 : 都道府県政令指定都市別による多重比較

二項‐ベータ階層ベイズモデルによる児童虐待相談対応率の地域差に関する研究 : 都道府県政令指定都市別による多重比較 Kwansei Gakuin University Rep Title Author(s) 二 項 ベータ 階 層 ベイズモデルによる 児 童 虐 待 相 談 対 応 率 の 地 域 差 に 関 する 研 究 : 都 道 府 県 政 令 指 定 都 市 別 による 多 重 比 較 Lee, Jung Won, 李, 政 元 Citation 総 合 政 策 研 究, 41: 29-36 Issue

More information

森林水文 水資源学 2 2. 水文統計 豪雨があった時, 新聞やテレビのニュースで 50 年に一度の大雨だった などと報告されることがある. 今争点となっている川辺川ダムは,80 年に 1 回の洪水を想定して治水計画が立てられている. 畑地かんがいでは,10 年に 1 回の渇水を対象として計画が立て

森林水文 水資源学 2 2. 水文統計 豪雨があった時, 新聞やテレビのニュースで 50 年に一度の大雨だった などと報告されることがある. 今争点となっている川辺川ダムは,80 年に 1 回の洪水を想定して治水計画が立てられている. 畑地かんがいでは,10 年に 1 回の渇水を対象として計画が立て . 水文統計 豪雨があった時, 新聞やテレビのニュースで 50 年に一度の大雨だった などと報告されることがある. 今争点となっている川辺川ダムは,80 年に 回の洪水を想定して治水計画が立てられている. 畑地かんがいでは,0 年に 回の渇水を対象として計画が立てられる. このように, 水利構造物の設計や, 治水や利水の計画などでは, 年に 回起こるような降雨事象 ( 最大降雨強度, 最大連続干天日数など

More information

Microsoft PowerPoint - statistics pptx

Microsoft PowerPoint - statistics pptx 統計学 第 17 回 講義 母平均の区間推定 Part- 016 年 6 14 ( )3 限 担当教員 : 唐渡 広志 ( からと こうじ ) 研究室 : 経済学研究棟 4 階 43 号室 email: kkarato@eco.u toyama.ac.jp website: http://www3.u toyama.ac.jp/kkarato/ 1 講義の目的 標本平均は正規分布に従うという性質を

More information

スライド 1

スライド 1 データ解析特論重回帰分析編 2017 年 7 月 10 日 ( 月 )~ 情報エレクトロニクスコース横田孝義 1 ( 単 ) 回帰分析 単回帰分析では一つの従属変数 ( 目的変数 ) を 一つの独立変数 ( 説明変数 ) で予測する事を考える 具体的には y = a + bx という回帰直線 ( モデル ) でデータを代表させる このためにデータからこの回帰直線の切片 (a) と傾き (b) を最小

More information

スライド 1

スライド 1 205 年 4 月 28 日 @ 統計モデリング 統計モデリング 第三回配布資料 文献 : A. J. Dobso ad A. G. Barett: A Itroducto to Geeralzed Lear Models. 3rd ed., CRC Press. J. J. Faraway: Etedg the Lear Model wth R. CRC Press. 配布資料の PDF は以下からも

More information

情報工学概論

情報工学概論 確率と統計 中山クラス 第 11 週 0 本日の内容 第 3 回レポート解説 第 5 章 5.6 独立性の検定 ( カイ二乗検定 ) 5.7 サンプルサイズの検定結果への影響練習問題 (4),(5) 第 4 回レポート課題の説明 1 演習問題 ( 前回 ) の解説 勉強時間と定期試験の得点の関係を無相関検定により調べる. データ入力 > aa

More information

untitled

untitled 18 1 2,000,000 2,000,000 2007 2 2 2008 3 31 (1) 6 JCOSSAR 2007pp.57-642007.6. LCC (1) (2) 2 10mm 1020 14 12 10 8 6 4 40,50,60 2 0 1998 27.5 1995 1960 40 1) 2) 3) LCC LCC LCC 1 1) Vol.42No.5pp.29-322004.5.

More information

Microsoft PowerPoint - e-stat(OLS).pptx

Microsoft PowerPoint - e-stat(OLS).pptx 経済統計学 ( 補足 ) 最小二乗法について 担当 : 小塚匡文 2015 年 11 月 19 日 ( 改訂版 ) 神戸大学経済学部 2015 年度後期開講授業 補足 : 最小二乗法 ( 単回帰分析 ) 1.( 単純 ) 回帰分析とは? 標本サイズTの2 変数 ( ここではXとY) のデータが存在 YをXで説明する回帰方程式を推定するための方法 Y: 被説明変数 ( または従属変数 ) X: 説明変数

More information

Excelにおける回帰分析(最小二乗法)の手順と出力

Excelにおける回帰分析(最小二乗法)の手順と出力 Microsoft Excel Excel 1 1 x y x y y = a + bx a b a x 1 3 x 0 1 30 31 y b log x α x α x β 4 version.01 008 3 30 Website:http://keijisaito.info, E-mail:master@keijisaito.info 1 Excel Excel.1 Excel Excel

More information