untitled

Size: px
Start display at page:

Download "untitled"

Transcription

1 ()(H) () / (havng) W W mg ρg d (.) m ρ d d () ( d ) F ρg (.) ρg m () G B :m :W W mg ρg m ρ (.3) η ( d η) F ρg ( d η) (.4) G B :m :W η F()-

2 F()- η ρ ρ d F W d d m g g η ρ ρ d d m g g (.5) a (.5) Laplac η ρ ρ m g g a m g ρg ρ / ) ( m a m a g g g ρ ρ ρ (.6) m a ρg co m / ρg π ηn () G η d d (.7) ηn (.8) a

3 F()-3 (.9) c a c b b a c b a c b a c b a,, c b a Laplac ε n co n co n ) ( (.) ε an an (.) n( ε ) /fπ/

4 n n( ε) gan pha ε ( (.) gan ( ) (.) pha ε an Gan. -9 / / 4/ 6/ 8/ /. Gan. () ()././././ 9 pha(dg) pha(dg) -ε / / / 4/ 6/ 8/ / ε() ε()././././. -9. <</. / 45 >>/ -9 / -8 F()-4

5 F()-5 η (.7)η < < < < < <,,, ) ( η (.) () < < < < < < (.3) η Z H, d H (.4) d d d d d d d d d d d Z () f

6 F()-6 j (.5) H Z G (.6) Im, R ε an R Im an ) ( Im R ) ( (.7) (.)

7 F()-7 η (mpul) (.7) (.8) () ϖ ϖ d d Z (.9) (.9) (.7) (.6)(.7) K K G (.) () ()

8 (.5)a: b: d d d d ( m a) b ρg ρg η () ρg G η m a b ρg G ζ ζ {( ) ζ} {( ) jζ}( { ) ζ} ζ (.) ζ ζ ζ ζ ζ R ζ, Im ( ) ( ζ) ( ) R Im ε an Im an R ( ζ) ζ ( ) ( ζ) (.). gan. ζ. ζ. ζ.5 ζ 9 pha././././. dcad -9 ζ. ζ.5 ζ ζ..././././ /. / 9 ζ / 8 / -8 F()-8

9 ().4m.m.5m m 5kg () PC. PC (3) PC 5 Excl F()-9

10 [vol].75 m a[vol] (Vol)(Vol) m b [vol]. m b [vol].75m a [vol].75 η () a b [ m] (.3) [m][m] Excl.3 F()-

11 (.5 ) () co n F f () a f ()( co n) B f () cod f () B f cod f nd nd d (.4) < B f cod f nd n( ) B f cod f co( j ) f nd f n( j ) n j n j j j (.5) (.6) x y y y x x n n ydx x y x x y y y y y yn- yn xn- xn x x F()-

12 4 (rad/).5,.,., 3., 4.5, 6., 7., 9.,,, 4, 6, 8, η, B H B. H.... F()-

13 Z G (.7) H Ζ... G. F()-8 (.) G ( ) (.8) ζ ζ 6, ξ. 5 ζ 8 (.9) b ξ m a ρg ρg ( m a) (.9) ()a b a ρg m 9.8 (.4.) (.3) b ζ ρg m a F()-3

14 実験Ⅲ 課題F 2 抵抗の少ない船型の製作 1 実験概要 船が水上を航走する場合 船体には船の速度 船速 に応じて抵抗が発生する この抵抗が大きいとプロ ペラ推進器の推力も大きくする必要があり エンジン 主機 馬力が大きくなって より多くの燃料が必要に 排出量も少なくなり環 なる 逆に 船体抵抗が少ないと燃費が良く 経済性に優れる他 エンジンの 境保全にも役立つ 1 形状と流体抵抗の性質 宇宙のような真空中を移動する人工衛星や宇宙ス では 物体に働く抵抗 物体の移 テーション 図 動を止めようとする力 はほとんど無く その形状は 構造的な要件で決まり 制約をほとんど受けない 音 速の数十倍で飛行する人工衛星がキャシャな太陽 電池パネルを大きく広げられるのも こうした理由に よる しかし 大気圏の中では空気 あるいは海の中 では水という流体が存在し これが物体に大きな力 を与えることになる 国際宇宙ステーション 宇宙航空研究開発機構(JX より) 図 流体が物体に働く力は 流体の密度 単位体積あた りの質量 物体の面積 物体の移動速度の2乗に比 例する他 その形状に大きく依存することが知られて 倍もあるので 形状 いる 水の密度は空気の約 倍の力を受けることになり その分 が同じなら 物体の速度が遅くなる ちなみに 時速 で飛 行する旅客機が もし水の中を潜水艦のように動け 剥離 渦 流れ 負の圧力 後ろ向きの力 たとすると その速度は になり およそ時速 ノット といった普通の貨物船くらいの速 さになる したがって 海の中を行動する海洋生物は もちろん 水上を航行する船も この力ができるだけ 小さく したがってエネルギーも少なく なるよう形状 が工夫されていると言える 速く移動して獲物を捕獲する あるいは捕獲から逃 に示すように 魚体の形状 げる魚にとっては 図 のように流体の流れに沿 ができるだけ流線型 図 った形状で抵抗が少ない であることが必要になる 制限資料 渦 円断面の抵抗 流れ 流線型の抵抗 図 図 魚の形状 このマークが付してある著作物は 第三者が有する著作物ですので 同著作物の再利用 同著作物の二次的著作物の創作等については 著作権者より直接使用許諾を得る必要があります 形状の違いによる抵抗

15 ) () () ()()() R f C f ν ) V R R C ( R ρ ) SV f f (.) VL R ν S: [m ], V: [m/], ρ: (kg/m 3 ) C p ρ R p C p S pv (.) S p : [m ] R C g V Fn R C ( F ρ ) SV n (.3) V F n Lg (.8kg).8m/.4 F()-

16 .4m.m.4m.m.m () kg.m 3 (4cmcm.5cm) () 5cm.8kg ()() W ( BM nφ BG nφ) W ( GM )nφ GM> B I BB' B BM V nφ d W B φ M W G G B K φ F()-3

17 SI () () kg () (3) (4) 9 (5) (6) ( : L) S (.4). (m) (m) (m) (kg) (m ) (m) F()-4

18 .8kg H9 F()-5

19 (3) ().8[m/].8kg PC Na(vol) (Vol) c(vol) N b(vol) 3. (N) a,b c b R ( 9. 8) [ N] (3.) a b F(3)-

20 () () (3) (4) (4) (5) (6) 3. **, ** [N] b 3,,** (9.8)[N] a () (N) :ν.35-6 ρ (m).4 SV m3).6 [m/] [N] NO V vol R C.4 c c c c c C Fn 3.3 F(3)-

21 () R f C f V R R R C ( R ρ ) SV f f (3.) VL R S: [m ], V: [m/], ρ: [kg/m 3 ] ν R p C p R C ρ SV p p (3.3) R C g V F n F n R C ( F ρ ) SV n (3.4) V F n Lg C R R R R (3.5) f p ρ SV (3.)(3.3) 3.4 C C ( R ) C C ( F ) f p (3.6) n C(Fn) Cp Cf(R) R C (3.5). 3.4 Fn F(3)-3

22 () R C ( C p )( C ) C r. 6 C f.463( log R ) (3.7) VL R V R ν () C p (F n <.)(Fn<.) ( C p C ) C p C C C (3.8) p ( f ) Fn<. C (3) C C (3.7)(3.8) C F n **, ** 3,* () (m).4 m3) (3.7) (3.7) (3.8) (m/) (N) No. V R C Fn R* -6 Cf Cp C F(3)-4

23 3m C C ( R ) C C ( F ) (3.9) f p n 3.5 C C C(Fn) Cp Cf(R) Fn().. Fn() 3.5 R 3m (ρ/)sv 5 ρ R C SV (3.) S S L L (3.) / V Fn L g (3.) EHP EHP R (kw) (3.3) V (kno) kno85m/36c.544m/ 3.6 F(3)-5

24 3.3 3 m 384 m (3.7) (3.6) (3.9) (m/) (kno) NO Fn V R -6 Cf Cp C C EHP(kW) F(3)-6

25 m EHP SI (W)(.735 ) BHP(Brak Hor Por) % 35~5% BHP η η P η H EHP η : (.97) η : (.5~.65) η : (.~.) BHP ()() HP DHP EHP V () () BHP η DHP ηo HP (η h η r ) BHP EHP.5 89kW(, ) F(3)-7

26 [kg/m 3 ] ρ ρ ρ ν([m /] 6 6 ) 5 ρ 5. [kg/m 3 ] ν [m /] F(3)-8

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

緑化計画作成の手引き 26年4月版

緑化計画作成の手引き  26年4月版 http://www.city.shibuya.tokyo.jp/env/en_eventact/midori_ryokka.html 10 11 12 13 14 15 16 17 18 19 P10 P10 1 P12 2635 Fax (1) 47 03-5388-3554 http://www2.kankyo.metro.tokyo.jp/sizen/sinseisyo/e2/tebiki.htm

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

a a b a b c d e R c d e A a b e a b a b c d a b c d e f a M a b f d a M b a b a M b a M b M M M R M a M b M c a M a R b A a b b a CF a b c a b a M b a b M a M b c a A b a b M b a A b a M b C a M C a M

More information

P F ext 1: F ext P F ext (Count Rumford, ) H 2 O H 2 O 2 F ext F ext N 2 O 2 2

P F ext 1: F ext P F ext (Count Rumford, ) H 2 O H 2 O 2 F ext F ext N 2 O 2 2 1 1 2 2 2 1 1 P F ext 1: F ext P F ext (Count Rumford, 1753 1814) 0 100 H 2 O H 2 O 2 F ext F ext N 2 O 2 2 P F S F = P S (1) ( 1 ) F ext x W ext W ext = F ext x (2) F ext P S W ext = P S x (3) S x V V

More information

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j 6 6.. [, b] [, d] ij P ij ξ ij, η ij f Sf,, {P ij } Sf,, {P ij } k m i j m fξ ij, η ij i i j j i j i m i j k i i j j m i i j j k i i j j kb d {P ij } lim Sf,, {P ij} kb d f, k [, b] [, d] f, d kb d 6..

More information

[Ver. 0.2] 1 2 3 4 5 6 7 1 1.1 1.2 1.3 1.4 1.5 1 1.1 1 1.2 1. (elasticity) 2. (plasticity) 3. (strength) 4. 5. (toughness) 6. 1 1.2 1. (elasticity) } 1 1.2 2. (plasticity), 1 1.2 3. (strength) a < b F

More information

I II

I II I II I I 8 I I 5 I 5 9 I 6 6 I 7 7 I 8 87 I 9 96 I 7 I 8 I 9 I 7 I 95 I 5 I 6 II 7 6 II 8 II 9 59 II 67 II 76 II II 9 II 8 II 5 8 II 6 58 II 7 6 II 8 8 I.., < b, b, c, k, m. k + m + c + c b + k + m log

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

1

1 問題を解こう. 熱力学の基礎 問題. 容積 [m ] の密閉容器内に 温度 0[ ] 質量 0[kg] の酸素が含まれている この容器内の圧力を求めよ ただし 酸素の気体定数を R= 59.8[J/kg K] とする 解答 酸素の体積 V=m 質量 m=0kg なので 酸素の比容積 v=/0 m /kg である 式 (.) において ガス定数 R=59.8 温度 T=(0+7)K であるので 圧力

More information

i

i i 3 4 4 7 5 6 3 ( ).. () 3 () (3) (4) /. 3. 4/3 7. /e 8. a > a, a = /, > a >. () a >, a =, > a > () a > b, a = b, a < b. c c n a n + b n + c n 3c n..... () /3 () + (3) / (4) /4 (5) m > n, a b >, m > n,

More information

untitled

untitled GeoFem 1 1.1 1 1.2 1 1.3 1 2 2.1 2 2.2 3 2.3 FEM 5 (1) 5 (2) 5 (3) 6 2.4 GeoFem 7 2.5 FEM 16 2.6 19 2.7 26 3.1 33 3.2 35 3.3 GeoFem 36 3.4 48 3.5 49 A A1 A2 A3 A4 A5 A6 A7 GeoFem GeoFem CRS GeoFem GeoFem

More information

ÿþŸb8bn0irt

ÿþŸb8bn0irt 折戸の物理 スペシャル補習 http://oritobuturi.co/ NO.5(009..16) 今日の目的 : 1 物理と微分 積分について 微分方程式について学ぶ 3 近似を学ぶ 10. 以下の文を読み,[ ア ]~[ ク ] の空欄に適当な式をいれよ 物体物体に一定の大きさの力を加えたときの, 物体の運動について考え よう 右図のように, なめらかな水平面上で質量 の物体に水平に一定の大きさ

More information

untitled

untitled V. 8 9 9 8.. SI 5 6 7 8 9. - - SI 6 6 6 6 6 6 6 SI -- l -- 6 -- -- 6 6 u 6cod5 6 h5 -oo ch 79 79 85 875 99 79 58 886 9 89 9 959 966 - - NM /6 Nucl Ml SI NM/6/685 85co /./ /h / /6/.6 / /.6 /h o NM o.85

More information

平成9年度水道事業年報 1概況 2施設

平成9年度水道事業年報 1概況 2施設 () (mm) 12 3 31 12 3 31 4 5 6 7 8 9 10 11 12 1 2 3 145,085 146,117 146,352 146,409 146,605 146,685 146,807 147,014 147,002 147,277

More information

http://www.ike-dyn.ritsumei.ac.jp/ hyoo/wave.html 1 1, 5 3 1.1 1..................................... 3 1.2 5.1................................... 4 1.3.......................... 5 1.4 5.2, 5.3....................

More information

素粒子物理学2 素粒子物理学序論B 2010年度講義第2回

素粒子物理学2 素粒子物理学序論B 2010年度講義第2回 素粒子物理学2 素粒子物理学序論B 2010年度講義第2回 =1.055 10 34 J sec =6.582 10 22 MeV sec c = 197.33 10 15 MeV m = c = c =1 1 m p = c(mev m) 938M ev = 197 10 15 (m) 938 =0.2 10 13 (cm) 1 m p = (MeV sec) 938M ev = 6.58

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

<4D F736F F D B B998BC682CC8FC C838B834D815B82C98CFC82AF82C481768DC58F4994C E646F6378>

<4D F736F F D B B998BC682CC8FC C838B834D815B82C98CFC82AF82C481768DC58F4994C E646F6378> 1.1 1 1.2 21 1.3 25 1.4 27 2.1 28 2.2 32 2.3 34 3.1 3.2 3.3 3.4 3.5 39 40 41 42 43 4.1 4.2 44 45 20 1 1.1 1.3 1.1 A 20GT A-1 60 4.9GT 型一本釣漁船 ( 例 ) 4.9GT 型一本釣漁船 ( 例 ) 55 50 通常の航海速力 :14.5 ノット 55 45 主機関 燃料消費量

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

ニュートン重力理論.pptx

ニュートン重力理論.pptx 3 ニュートン重力理論 1. ニュートン重力理論の基本 : 慣性系とガリレイ変換不変性 2. ニュートン重力理論の定式化 3. 等価原理 4. 流体力学方程式とその基礎 3.1 ニュートン重力理論の基本 u ニュートンの第一法則 = 力がかからなければ 等速直線運動を続ける u 等速直線運動に見える系を 慣性系 と呼ぶ ² 直線とはどんな空間の直線か? ニュートン理論では 3 次元ユークリッド空間

More information

数学の基礎訓練I

数学の基礎訓練I I 9 6 13 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 3 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

1

1 GL (a) (b) Ph l P N P h l l Ph Ph Ph Ph l l l l P Ph l P N h l P l .9 αl B βlt D E. 5.5 L r..8 e g s e,e l l W l s l g W W s g l l W W e s g e s g r e l ( s ) l ( l s ) r e l ( s ) l ( l s ) e R e r

More information

Techniques for Nuclear and Particle Physics Experiments Energy Loss by Radiation : Bremsstrahlung 制動放射によるエネルギー損失は σ r 2 e = (e 2 mc 2 ) 2 で表される為

Techniques for Nuclear and Particle Physics Experiments Energy Loss by Radiation : Bremsstrahlung 制動放射によるエネルギー損失は σ r 2 e = (e 2 mc 2 ) 2 で表される為 Techniques for Nuclear and Particle Physics Experiments.. Energy Loss by Radiation : Bremsstrahlung 制動放射によるエネルギー損失は σ r e = (e mc ) で表される為 質量に大きく依存する Ex) 電子の次に質量の小さいミューオンの制動放射によるエネルギー損失 m e 0.5 MeV, m

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k 63 3 Section 3.1 g 3.1 3.1: : 64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () 3 9.8 m/s 2 3.2 3.2: : a) b) 5 15 4 1 1. 1 3 14. 1 3 kg/m 3 2 3.3 1 3 5.8 1 3 kg/m 3 3 2.65 1 3 kg/m 3 4 6 m 3.1. 65 5

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

ポリトロープ、対流と輻射、時間尺度

ポリトロープ、対流と輻射、時間尺度 宇宙物理学 ( 概論 ) 6/6/ 大阪大学大学院理学研究科林田清 ポリトロープ関係式 1+(1/) 圧力と密度の間にP=Kρ という関係が成り立っていると仮定する K とは定数でをポリトロープ指数と呼ぶ 5 = : 非相対論的ガス dlnp 3 断熱変化の場合 断熱指数 γ, と dlnρ 4 = : 相対論的ガス 3 1 = の関係にある γ 1 等温変化の場合は= に相当 一様密度の球は=に相当

More information

12-7 12-7 12-7 12-7 12-8 12-10 12-10 12-10 12-11 12-12 12-12 12-14 12-15 12-17 12-18 10 12-19 12-20 12-20 12-21 12-22 12-22 12-23 12-25 12-26 12-26 12-29 12-30 12-30 12-31 12-33 12-34 12-3 12-35 12-36

More information

線積分.indd

線積分.indd 線積分 線積分 ( n, n, n ) (ξ n, η n, ζ n ) ( n-, n-, n- ) (ξ k, η k, ζ k ) ( k, k, k ) ( k-, k-, k- ) 物体に力 を作用させて位置ベクトル A の点 A から位置ベクトル の点 まで曲線 に沿って物体を移動させたときの仕事 W は 次式で計算された A, A, W : d 6 d+ d+ d@,,, d+ d+

More information

A a b c d a b a b c d e a b c g h f i d e f g h i M a b c a b c d M a M b c d a b a b a M b a b a b c a b a M a a M a c d b a b c d a b a b a M c d a b e c M f a b c d e f E F d e a f a M bm c d a M b

More information

運動方程式の基本 座標系と変数を導入 (u,v) ニュートンの第一法則 力 = 質量 加速度 大気や海洋に加わる力を, 思いつくだけ挙げてみよう 重力, 圧力傾度力, コリオリ力, 摩擦力 水平方向に働く力に下線をつけよう. したがって水平方向の運動方程式は 質量 水平加速度 = コリオリ力 + 圧

運動方程式の基本 座標系と変数を導入 (u,v) ニュートンの第一法則 力 = 質量 加速度 大気や海洋に加わる力を, 思いつくだけ挙げてみよう 重力, 圧力傾度力, コリオリ力, 摩擦力 水平方向に働く力に下線をつけよう. したがって水平方向の運動方程式は 質量 水平加速度 = コリオリ力 + 圧 2. 潜水方程式系の導出 見延庄士郎 ( 海洋気候物理学研究室 ) [email protected] 第 1 回まとめ 1/2 二つの変数の関係の強さを表す統計量は相関であり, 最小値は -1, 最大値は +1, 無相関は である. 過去数十年間の ( 気象庁は 3 年 ) 月ごとの平均値を, 月平均データの平年値または気候値という. 観測値から平年値を引いたものが, 偏差である.

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

Xamテスト作成用テンプレート

Xamテスト作成用テンプレート 気体の性質 1 1990 年度本試験化学第 2 問 問 1 次の問い (a b) に答えよ a 一定質量の理想気体の温度を T 1 [K] または T 2 [K] に保ったまま, 圧力 P を変える このときの気体の体積 V[L] と圧力 P[atm] との関係を表すグラフとして, 最も適当なものを, 次の1~6のうちから一つ選べ ただし,T 1 >T 2 とする b 理想気体 1mol がある 圧力を

More information

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1)

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1) φ 4 Minimal subtraction scheme 2-loop ε 28 University of Tokyo Atsuo Kuniba version 2/Apr/28 Formulas Γ n + ɛ = n n! ɛ + ψn + + Oɛ n =,, 2, ψn + = + 2 + + γ, 2 n ψ = γ =.5772... Euler const, log + ax x

More information

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =, [ ] IC. r, θ r, θ π, y y = 3 3 = r cos θ r sin θ D D = {, y ; y }, y D r, θ ep y yddy D D 9 s96. d y dt + 3dy + y = cos t dt t = y = e π + e π +. t = π y =.9 s6.3 d y d + dy d + y = y =, dy d = 3 a, b

More information

Microsoft PowerPoint - 1章 [互換モード]

Microsoft PowerPoint - 1章 [互換モード] 1. 直線運動 キーワード 速さ ( 等速直線運動, 変位 ) 加速度 ( 等加速度直線運動 ) 重力加速度 ( 自由落下 ) 力学 I 内容 1. 直線運動 2. ベクトル 3. 平面運動 4. 運動の法則 5. 摩擦力と抵抗 6. 振動 7. 仕事とエネルギー 8. 運動量と力積, 衝突 9. 角運動量 3 章以降は, 運動の向きを考えなければならない 1. 直線運動 キーワード 速さ ( 等速直線運動,

More information

untitled

untitled - k k k = y. k = ky. y du dx = ε ux ( ) ux ( ) = ax+ b x u() = ; u( ) = AE u() = b= u () = a= ; a= d x du ε x = = = dx dx N = σ da = E ε da = EA ε A x A x x - σ x σ x = Eε x N = EAε x = EA = N = EA k =

More information

A S hara/lectures/lectures-j.html ϵ-n 1 ϵ-n lim n a n = α n a n α 2 lim a n = 0 1 n a k n n k= ϵ

A S hara/lectures/lectures-j.html ϵ-n 1 ϵ-n lim n a n = α n a n α 2 lim a n = 0 1 n a k n n k= ϵ A S1-20 http://www2.mth.kyushu-u.c.jp/ hr/lectures/lectures-j.html 1 1 1.1 ϵ-n 1 ϵ-n lim n n = α n n α 2 lim n = 0 1 n k n n k=1 0 1.1.7 ϵ-n 1.1.1 n α n n α lim n n = α ϵ N(ϵ) n > N(ϵ) n α < ϵ (1.1.1)

More information

- 1 - 2 ç 21,464 5.1% 7,743 112 11,260 2,349 36.1% 0.5% 52.5% 10.9% 1,039 0.2% 0 1 84 954 0.0% 0.1% 8.1% 91.8% 2,829 0.7% 1,274 1,035 496 24 45.0% 36.6% 17.5% 0.8% 24,886 5.9% 9,661 717 6,350 8,203 38.8%

More information

untitled

untitled 1 th 1 th Dec.2006 1 1 th 1 th Dec.2006 103 1 2 EITC 2 1 th 1 th Dec.2006 3 1 th 1 th Dec.2006 2006 4 1 th 1 th Dec.2006 5 1 th 1 th Dec.2006 2 6 1 th 1 th Dec.2006 7 1 th 1 th Dec.2006 3 8 1 th 1 th Dec.2006

More information

prime number theorem

prime number theorem For Tutor MeBio ζ Eite by kamei MeBio 7.8.3 : Bernoulli Bernoulli 4 Bernoulli....................................................................................... 4 Bernoulli............................................................................

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

211 [email protected] 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................

More information

/02/18

/02/18 3 09/0/8 i III,,,, III,?,,,,,,,,,,,,,,,,,,,,?,?,,,,,,,,,,,,,,!!!,? 3,,,, ii,,,!,,,, OK! :!,,,, :!,,,,,, 3:!,, 4:!,,,, 5:!,,! 7:!,,,,, 8:!,! 9:!,,,,,,,,, ( ),, :, ( ), ( ), 6:!,,, :... : 3 ( )... iii,,

More information

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j = 72 Maxwell. Maxwell e r ( =,,N Maxwell rot E + B t = 0 rot H D t = j dv D = ρ dv B = 0 D = ɛ 0 E H = μ 0 B ρ( r = j( r = N e δ( r r = N e r δ( r r = : 2005 ( 2006.8.22 73 207 ρ t +dv j =0 r m m r = e E(

More information

円形直管ダクトの算定 ( 抵抗基準 ) タ クト材料 : スハ イラルタ クト 絶対粗度 ε= 空気の密度 P = 1.20 [kg/ m3 ] 摩擦抵抗損失の目標値 : 1.0 [Pa/m] 風量 Q [ m3 /h] 1,000 2,000 3,000 5,000 10,00

円形直管ダクトの算定 ( 抵抗基準 ) タ クト材料 : スハ イラルタ クト 絶対粗度 ε= 空気の密度 P = 1.20 [kg/ m3 ] 摩擦抵抗損失の目標値 : 1.0 [Pa/m] 風量 Q [ m3 /h] 1,000 2,000 3,000 5,000 10,00 ダクト計算ソフトの概要説明 1 ダクト計算の基礎として円形直管ダクトの算定のダクト材料を変えながら練習して下さい ダクト材によって粗度が異なるため圧力損失が変わることを理解して下さい 2 一般空調ダクトは抵抗基準( 定圧法 ) で算定します SI 単位以前はm 当り 0.1mmAq を基準にしていましたが現在は 1.0~1.5Pa を基準にしています 3 集塵ダクトのようにダクト内風速 20m/s

More information

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) 4 4 ) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) a b a b = 6i j 4 b c b c 9) a b = 4 a b) c = 7

More information

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co 16 I ( ) (1) I-1 I-2 I-3 (2) I-1 ( ) (100 ) 2l x x = 0 y t y(x, t) y(±l, t) = 0 m T g y(x, t) l y(x, t) c = 2 y(x, t) c 2 2 y(x, t) = g (A) t 2 x 2 T/m (1) y 0 (x) y 0 (x) = g c 2 (l2 x 2 ) (B) (2) (1)

More information

devicemondai

devicemondai c 2019 i 3 (1) q V I T ε 0 k h c n p (2) T 300 K (3) A ii c 2019 i 1 1 2 13 3 30 4 53 5 78 6 89 7 101 8 112 9 116 A 131 B 132 c 2019 1 1 300 K 1.1 1.5 V 1.1 qv = 1.60 10 19 C 1.5 V = 2.4 10 19 J (1.1)

More information

物理学 II( 熱力学 ) 期末試験問題 (2) 問 (2) : 以下のカルノーサイクルの p V 線図に関して以下の問題に答えなさい. (a) "! (a) p V 線図の各過程 ( ) の名称とそのと (& きの仕事 W の面積を図示せよ. # " %&! (' $! #! " $ %'!!!

物理学 II( 熱力学 ) 期末試験問題 (2) 問 (2) : 以下のカルノーサイクルの p V 線図に関して以下の問題に答えなさい. (a) ! (a) p V 線図の各過程 ( ) の名称とそのと (& きの仕事 W の面積を図示せよ. #  %&! (' $! #!  $ %'!!! 物理学 II( 熱力学 ) 期末試験問題 & 解答 (1) 問 (1): 以下の文章の空欄に相応しい用語あるいは文字式を記入しなさい. 温度とは物体の熱さ冷たさを表す概念である. 物体は外部の影響を受けなければ, 十分な時間が経過すると全体が一様な温度の定常的な熱平衡状態となる. 物体 と物体 が熱平衡にあり, 物体 と物体 が熱平衡にあるならば, 物体 と物体 も熱平衡にある. これを熱力学第 0

More information

8 i, III,,,, III,, :!,,,, :!,,,,, 4:!,,,,,,!,,,, OK! 5:!,,,,,,,,,, OK 6:!, 0, 3:!,,,,! 7:!,,,,,, ii,,,,,, ( ),, :, ( ), ( ), :... : 3 ( )...,, () : ( )..., :,,, ( ), (,,, ),, (ϵ δ ), ( ), (ˆ ˆ;),,,,,,!,,,,.,,

More information

4................................. 4................................. 4 6................................. 6................................. 9.................................................... 3..3..........................

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: [email protected], http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

05Mar2001_tune.dvi

05Mar2001_tune.dvi 2001 3 5 COD 1 1.1 u d2 u + ku =0 (1) dt2 u = a exp(pt) (2) p = ± k (3) k>0k = ω 2 exp(±iωt) (4) k

More information

36 th IChO : - 3 ( ) , G O O D L U C K final 1

36 th IChO : - 3 ( ) , G O O D L U C K final 1 36 th ICh - - 5 - - : - 3 ( ) - 169 - -, - - - - - - - G D L U C K final 1 1 1.01 2 e 4.00 3 Li 6.94 4 Be 9.01 5 B 10.81 6 C 12.01 7 N 14.01 8 16.00 9 F 19.00 10 Ne 20.18 11 Na 22.99 12 Mg 24.31 Periodic

More information

取扱説明書

取扱説明書 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 FN E FN E FN E 21 22 23 24 25 26 Enter 27 28 29 30 31 32 33 34 35 36 37 Enter 38 39 40 41 42 43 44 45 Enter 46 47 48 49 50 51 52 53 Enter 54 Enter 55

More information

( ) ± = 2018

( ) ± = 2018 30 ( 3 ) ( ) 2018 ( ) ± = 2018 (PDF ), PDF PDF. PDF, ( ), ( ),,,,., PDF,,. , 7., 14 (SSH).,,,.,,,.,., 1.. 2.,,. 3.,,. 4...,, 14 16, 17 21, 22 26, 27( ), 28 32 SSH,,,, ( 7 9 ), ( 14 16 SSH ), ( 17 21, 22

More information

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a 1 2 2.1 (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a) L ( ) ) * 2) W Z 1/2 ( - ) d u + e + ν e 1 1 0 0

More information

BIT -2-

BIT -2- 2004.3.31 10 11 12-1- BIT -2- -3-256 258 932 524 585 -4- -5- A B A B AB A B A B C AB A B AB AB AB AB -6- -7- A B -8- -9- -10- mm -11- fax -12- -13- -14- -15- s58.10.1 1255 4.2 30.10-16- -17- -18- -19-6.12.10

More information

2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP

2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP 1. 1 213 1 6 1 3 1: ( ) 2: 3: SF 1 2 3 1: 3 2 A m 2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP

More information