(I) (II) 2 (I) 2 (II) 2 (III) (I) (II) (II) : 2 Typeset by Akio Namba usig Powerdot. 2 / 47
|
|
|
- ありさ こうい
- 9 years ago
- Views:
Transcription
1 4 Typeset by Akio Namba usig Powerdot. / 47
2 (I) (II) 2 (I) 2 (II) 2 (III) (I) (II) (II) : 2 Typeset by Akio Namba usig Powerdot. 2 / 47
3 (I) (II) 2 (I) 2 (II) 2 (III) (I) (II) (II) : 2 (radom variable): :, 2, 3, 4, 5, 6 6 : x, x 2,, x X X x i P X x i p i X X x x 2 x P X x i p p 2 p p p 2 p i x x 2 x i Typeset by Akio Namba usig Powerdot. 3 / 47
4 (I) (II) 2 (I) 2 (II) 2 (III) (I) (II) (II) : 2 X x i f x i P X x i p i X (probability fuctio) 2. f x i 0,, 2, () 2. f x i ( ) X P X x i f x i, x 6, 2,..., Typeset by Akio Namba usig Powerdot. 4 / 47
5 (I) (II) 2 (I) 2 (II) 2 (III) (I) (II) (II) : 2 X x F x P X x r r p i f x i r x r x x r (distributio fuctio) p 2 p p r p r x x 2 x r x x r F 0, F Typeset by Akio Namba usig Powerdot. 5 / 47
6 (I) (I) (II) 2 (I) 2 (II) 2 (III) (I) (II) (II) : H H c 3 X X H H H H H H c H H c H H H c H c H c H H H c H H c H c H c H H c H c H c Typeset by Akio Namba usig Powerdot. 6 / 47
7 (II) (I) (II) 2 (I) 2 (II) 2 (III) (I) (II) (II) : X H H H H H H c H H c H H H c H c H c H H H c H H c H c H c H H c H c H c P X P X P X P X Typeset by Akio Namba usig Powerdot. 7 / 47
8 2 (I) (I) (II) 2 (I) 2 (II) 2 (III) (I) (II) (II) 4.2 () A p A c q p (3 ) A x f x P X x C x p x q x! x! x! px q x!! 2 0! : 2 Typeset by Akio Namba usig Powerdot. 8 / 47
9 2 (II) (I) (II) 2 (I) 2 (II) 2 (III) (I) (II) (II) : 2 C x x 3 3! 3C 0 0!3! 3! 3C 2 2!! C x C x 3!, 3C!2! 3! 3, 3C 3 3!0! 4.2 x f x P X x 3C x 0.3 x 0.7 x 3, Typeset by Akio Namba usig Powerdot. 9 / 47
10 2 (III) (I) (II) 2 (I) 2 (II) 2 (III) (I) (II) (II) X f x P X x C x p x q x! x! x! px q x X 2 (Biomial Distiributio) X B, p : 2 Typeset by Akio Namba usig Powerdot. 0 / 47
11 (I) (II) 2 (I) 2 (II) 2 (III) (I) (II) (II) : () (probability desity fuctio): P a X b a b f x dx : 2 f x X Typeset by Akio Namba usig Powerdot. / 47
12 (I) (I) (II) 2 (I) 2 (II) 2 (III) (I) (II) (II) P a X b a b f x dx a X a, b X b f x X : 2 P a X b b f x dx a Typeset by Akio Namba usig Powerdot. 2 / 47
13 (II) (I) (II) 2 (I) 2 (II) 2 (III) (I) (II) (II) : 2 f x 0, f x dx X a X a P X a P a X a a a P a X b P a X b P a X b P a X b f x dx 0 Typeset by Akio Namba usig Powerdot. 3 / 47
14 (I) (II) 2 (I) 2 (II) 2 (III) (I) (II) (II) X x F x P X x x f t dt P a X b F b F a b f x dx a f x dx : 2 a b f x dx Typeset by Akio Namba usig Powerdot. 4 / 47
15 (II) (I) (II) 2 (I) 2 (II) 2 (III) (I) (II) (II) F 0, F : 2 Typeset by Akio Namba usig Powerdot. 5 / 47
16 (I) (II) (I) : 2 Typeset by Akio Namba usig Powerdot. 6 / 47
17 (I) (I) (II) (I) : ) ( Typeset by Akio Namba usig Powerdot. 7 / 47
18 (II) (I) (II) (I) : (expectatio, ) E X x i p i x i f x i E X xf x dx Typeset by Akio Namba usig Powerdot. 8 / 47
19 (I) (II) (I) : 2 4. a, b E ax b ae X b ( ): E ax b a ae X ax i b f x i ax i f x i bf x i x i f x i b b f x i Typeset by Akio Namba usig Powerdot. 9 / 47
20 (I) (II) (I) : 2 X (Variace) V X E X µ 2, µ E X x i µ 2 f x i () x µ 2 f x dx () σ X V X E X µ 2 Typeset by Akio Namba usig Powerdot. 20 / 47
21 (I) (I) (II) (I) 4.2 µ E X V X E X 2 µ 2 ( ): V X E X µ 2 x i µ 2 f x i : 2 x 2 i 2µx i µ 2 f x i x 2 i f x i 2µ x i f x i µ 2 f x i E X 2 2µE X µ 2 E X 2 µ 2 Typeset by Akio Namba usig Powerdot. 2 / 47
22 (I) (II) (I) : a, b V ax b a 2 V X : E ax b ae X b aµ b ( 4.) V ax b E ax b aµ b 2 E a X µ 2 E a 2 X µ 2 a 2 E X µ 2 ( 4. ) a 2 V X Typeset by Akio Namba usig Powerdot. 22 / 47
23 (I) (II) (I) X µ E X σ σ X z X µ σ X () (stadardized) : 2 Typeset by Akio Namba usig Powerdot. 23 / 47
24 (I) (II) (I) : z E z 0, V z : a σ, b µ σ z ax b 4. E z ae X b E X µ σ µ σ µ σ σ V z a 2 V X σ 2 σ 2 Typeset by Akio Namba usig Powerdot. 24 / 47
25 (I) (II) (I) a k E X a k a k (momet) : E X :0() V X E X E X 2 : E X 2 : 2 Typeset by Akio Namba usig Powerdot. 25 / 47
26 (I) (II) (I) : 2 k m k E X E X k γ m 4 m 2 2, γ 2 m 3 m γ (kurtosis) γ 2 (skewess) Typeset by Akio Namba usig Powerdot. 26 / 47
27 (I) 4.9 () 4.9 () : 2 Typeset by Akio Namba usig Powerdot. 27 / 47
28 (I) (I) 4.9 () 4.9 () : 2 X, Y X Y (X Y j ) X i Y j (i, j, 2,, 6) P X i, Y j P X i P Y j 36 X Y (joit probability distributio) : 2 Typeset by Akio Namba usig Powerdot. 28 / 47
29 (II) (I) 4.9 () 4.9 () f x i, y j P X x i, Y y j p ij, 2,,, j, 2,, m X, Y X Y 4.6 y y 2 y m x p p 2 p m p x 2 p 2 p 22 p 2m p x p p 2 p m p p p 2 p m : 2 Typeset by Akio Namba usig Powerdot. 29 / 47
30 (II) (I) 4.9 () 4.9 () p i m i X Y 4.6 y y 2 y m x p p 2 p m p x 2 p 2 p 22 p 2m p x p p 2 p m p p p 2 p m p ij Y X x i X (margial distributio) p j Y : 2 Typeset by Akio Namba usig Powerdot. 30 / 47
31 (II) (I) 4.9 () 4.9 () f x i P X x i p i m j f y j P X y j p j X, Y m j p ij p i m j p j 2 X, Y p ij p ij : 2 Typeset by Akio Namba usig Powerdot. 3 / 47
32 (I) 4.9 () 4.9 () Y Y y j X x i f x i y j P X x i Y y j P X x i, Y y j P Y Y j () f x i, y j f y j f x i y j Y y j X x i : 2 Typeset by Akio Namba usig Powerdot. 32 / 47
33 (I) 4.9 () 4.9 () : 2 X x i Y y j P X x i, Y y j P X x i P Y y j f x, y f x, f y p ij, p i, p j f x i, y j f x i f y j, p ij p i p j i, j X Y () f x, y f x, f y f x, y f x f y X Y () Typeset by Akio Namba usig Powerdot. 33 / 47
34 (I) 4.9 () 4.9 () : 2 X, Y 4.6 X () E X m j x i x i p ij m x i p i Y j p ij Typeset by Akio Namba usig Powerdot. 34 / 47
35 (I) 4.9 () 4.9 () 4.5 X, Y : E X E X Y E X E Y Y E X m j m j x i y j p ij x i p ij E Y m j y j p ij : 2 Typeset by Akio Namba usig Powerdot. 35 / 47
36 (I) 4.9 () 4.9 () : X Y : E XY E XY m j m j x i p i E X E Y x i y j p ij x i y j p i p j m j E X E Y y j p j ( ) Typeset by Akio Namba usig Powerdot. 36 / 47
37 (I) 4.9 () 4.9 () V X E X E X 2 m j x i E X 2 p ij x i E X 2 p i V Y V X, V Y,, σ X ( σ X ), σ Y ( σ Y ) : 2 Typeset by Akio Namba usig Powerdot. 37 / 47
38 (I) 4.9 () 4.9 () (covariace) Cov X, Y E X E X Y E Y m j X x i E X y j E Y p ij Y : 2 Typeset by Akio Namba usig Powerdot. 38 / 47
39 (I) 4.9 () 4.9 () : Cov X, Y E XY E X E Y : Cov X, Y m j m j x i E X y j E Y p ij x i y j x i E Y E X y j E X E Y p ij E XY E X E Y E X E Y E X E Y E XY E X E Y X Y 4.6 E XY E X E Y Cov X, Y 0 Cov X, Y 0 X Y Typeset by Akio Namba usig Powerdot. 39 / 47
40 (I) 4.9 () 4.9 () (correlatio coefficiet) ρ X, Y Cov X, Y σ X σ Y X Y ρ X, Y 0 ρ X, Y 0 X Y : 2 Typeset by Akio Namba usig Powerdot. 40 / 47
41 4.8 ρ X, Y 0 (I) 4.9 () 4.9 () : 2 : V X Y V X V Y V X Y E X Y E X E Y E X E X Y E Y E X E X 2 Y E y 2 2 X E X Y E Y E X E X 2 E Y E Y 2 2E X E X Y E Y V X V Y 2E X E X Y E Y ρ X, Y 0 E X E X Y E Y 0 V X Y V X V Y. 2 2 Typeset by Akio Namba usig Powerdot. 4 / 47
42 (I) 4.9 () 4.9 () : 2 4.5(E X Y E X E Y ) 4.8(ρ X, Y 0 V X Y V X V Y ) 4.9 X, X 2,, X µ V X i σ 2 E X i µ, V X i σ 2,, 2,, X E X µ, V X X i σ 2 Typeset by Akio Namba usig Powerdot. 42 / 47
43 4.9 () (I) 4.9 () 4.9 () : 2 : 4.5 E X E E µ µ X i X i E X i µ ( 4.5 ) Typeset by Akio Namba usig Powerdot. 43 / 47
44 4.9 () (I) 4.9 () 4.9 () : V X V 2 V 2 2 σ2 σ 2 X i V X i X i ( 4.3 ) (X i 4.8 ) Typeset by Akio Namba usig Powerdot. 44 / 47
45 : : 2 Typeset by Akio Namba usig Powerdot. 45 / 47
46 2 : X B, p f x C x p x q x! x! x! px q x, x 0,,..., E X V X x 0 x 0 xf x p x E X 2 f x pq q p Typeset by Akio Namba usig Powerdot. 46 / 47
47 2 : A p A c q p X i i A A c 0 X X i X A X B, p P X p, P X i 0 q E X p 0 q p E Xi 2 2 p 0 2 q p V X i E Xi 2 2 E X i p p 2 pq 4.5 E X 4.8 V X E X i p V X i pq Typeset by Akio Namba usig Powerdot. 47 / 47
() Statistik19 Statistik () 19 ( ) (18 ) ()
010 4 5 1 8.1.............................................. 8............................................. 11.3............................................. 11.4............................................
populatio sample II, B II? [1] I. [2] 1 [3] David J. Had [4] 2 [5] 3 2
(2015 ) 1 NHK 2012 5 28 2013 7 3 2014 9 17 2015 4 8!? New York Times 2009 8 5 For Today s Graduate, Just Oe Word: Statistics Google Hal Varia I keep sayig that the sexy job i the ext 10 years will be statisticias.
( )/2 hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1
( )/2 http://www2.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html 1 2011 ( )/2 2 2011 4 1 2 1.1 1 2 1 2 3 4 5 1.1.1 sample space S S = {H, T } H T T H S = {(H, H), (H, T ), (T, H), (T, T )} (T, H) S
2 1,, x = 1 a i f i = i i a i f i. media ( ): x 1, x 2,..., x,. mode ( ): x 1, x 2,..., x,., ( ). 2., : box plot ( ): x variace ( ): σ 2 = 1 (x k x) 2
1 1 Lambert Adolphe Jacques Quetelet (1796 1874) 1.1 1 1 (1 ) x 1, x 2,..., x ( ) x a 1 a i a m f f 1 f i f m 1.1 ( ( )) 155 160 160 165 165 170 170 175 175 180 180 185 x 157.5 162.5 167.5 172.5 177.5
- 2 -
- 2 - - 3 - (1) (2) (3) (1) - 4 - ~ - 5 - (2) - 6 - (1) (1) - 7 - - 8 - (i) (ii) (iii) (ii) (iii) (ii) 10 - 9 - (3) - 10 - (3) - 11 - - 12 - (1) - 13 - - 14 - (2) - 15 - - 16 - (3) - 17 - - 18 - (4) -
2 1980 8 4 4 4 4 4 3 4 2 4 4 2 4 6 0 0 6 4 2 4 1 2 2 1 4 4 4 2 3 3 3 4 3 4 4 4 4 2 5 5 2 4 4 4 0 3 3 0 9 10 10 9 1 1
1 1979 6 24 3 4 4 4 4 3 4 4 2 3 4 4 6 0 0 6 2 4 4 4 3 0 0 3 3 3 4 3 2 4 3? 4 3 4 3 4 4 4 4 3 3 4 4 4 4 2 1 1 2 15 4 4 15 0 1 2 1980 8 4 4 4 4 4 3 4 2 4 4 2 4 6 0 0 6 4 2 4 1 2 2 1 4 4 4 2 3 3 3 4 3 4 4
1 (1) (2)
1 2 (1) (2) (3) 3-78 - 1 (1) (2) - 79 - i) ii) iii) (3) (4) (5) (6) - 80 - (7) (8) (9) (10) 2 (1) (2) (3) (4) i) - 81 - ii) (a) (b) 3 (1) (2) - 82 - - 83 - - 84 - - 85 - - 86 - (1) (2) (3) (4) (5) (6)
(Basic of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Weak Law
I (Radom Walks ad Percolatios) 3 4 7 ( -2 ) (Preface),.,,,...,,.,,,,.,.,,.,,. (,.) (Basic of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios, Meas).............................
..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A
.. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.
ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.
24(2012) (1 C106) 4 11 (2 C206) 4 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 (). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5... 6.. 7.,,. 8.,. 1. (75%)
Microsoft Word - 表紙.docx
黒住英司 [ 著 ] サピエンティア 計量経済学 訂正および練習問題解答 (206/2/2 版 ) 訂正 練習問題解答 3 .69, 3.8 4 (X i X)U i i i (X i μ x )U i ( X μx ) U i. i E [ ] (X i μ x )U i i E[(X i μ x )]E[U i ]0. i V [ ] (X i μ x )U i i 2 i j E [(X i
(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi
I (Basics of Probability Theory ad Radom Walks) 25 4 5 ( 4 ) (Preface),.,,,.,,,...,,.,.,,.,,. (,.) (Basics of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios,
untitled
[email protected] http://www.image.med.osaka-u.ac.jp/member/yoshi/ II Excel, Mathematica Mathematica Osaka Electro-Communication University (2007 Apr) 09849-31503-64015-30704-18799-390 http://www.image.med.osaka-u.ac.jp/member/yoshi/
医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.
医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987
.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0,
.1.1 Y K L Y = K 1 3 L 3 L K K (K + ) 1 1 3 L 3 K 3 L 3 K 0 (K + K) 1 3 L 3 K 1 3 L 3 lim K 0 K = L (K + K) 1 3 K 1 3 3 lim K 0 K = 1 3 K 3 L 3 z = f(x, y) x y z x-y-z.1 z = e x +xy y 3 x-y ( ) z 0 f(x,
,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.
9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,
(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi
II (Basics of Probability Theory ad Radom Walks) (Preface),.,,,.,,,...,,.,.,,.,,. (Basics of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios, Meas).............................
‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í
Markov 2009 10 2 Markov 2009 10 2 1 / 25 1 (GA) 2 GA 3 4 Markov 2009 10 2 2 / 25 (GA) (GA) L ( 1) I := {0, 1} L f : I (0, ) M( 2) S := I M GA (GA) f (i) i I Markov 2009 10 2 3 / 25 (GA) ρ(i, j), i, j I
44 4 I (1) ( ) (10 15 ) ( 17 ) ( 3 1 ) (2)
(1) I 44 II 45 III 47 IV 52 44 4 I (1) ( ) 1945 8 9 (10 15 ) ( 17 ) ( 3 1 ) (2) 45 II 1 (3) 511 ( 451 1 ) ( ) 365 1 2 512 1 2 365 1 2 363 2 ( ) 3 ( ) ( 451 2 ( 314 1 ) ( 339 1 4 ) 337 2 3 ) 363 (4) 46
統計学のポイント整理
.. September 17, 2012 1 / 55 n! = n (n 1) (n 2) 1 0! = 1 10! = 10 9 8 1 = 3628800 n k np k np k = n! (n k)! (1) 5 3 5 P 3 = 5! = 5 4 3 = 60 (5 3)! n k n C k nc k = npk k! = n! k!(n k)! (2) 5 3 5C 3 = 5!
( 28 ) ( ) ( ) 0 This note is c 2016, 2017 by Setsuo Taniguchi. It may be used for personal or classroom purposes, but not for commercial purp
( 28) ( ) ( 28 9 22 ) 0 This ote is c 2016, 2017 by Setsuo Taiguchi. It may be used for persoal or classroom purposes, but ot for commercial purposes. i (http://www.stat.go.jp/teacher/c2epi1.htm ) = statistics
untitled
20 7 1 22 7 1 1 2 3 7 8 9 10 11 13 14 15 17 18 19 21 22 - 1 - - 2 - - 3 - - 4 - 50 200 50 200-5 - 50 200 50 200 50 200 - 6 - - 7 - () - 8 - (XY) - 9 - 112-10 - - 11 - - 12 - - 13 - - 14 - - 15 - - 16 -
untitled
19 1 19 19 3 8 1 19 1 61 2 479 1965 64 1237 148 1272 58 183 X 1 X 2 12 2 15 A B 5 18 B 29 X 1 12 10 31 A 1 58 Y B 14 1 25 3 31 1 5 5 15 Y B 1 232 Y B 1 4235 14 11 8 5350 2409 X 1 15 10 10 B Y Y 2 X 1 X
meiji_resume_1.PDF
β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E
Taro13-第6章(まとめ).PDF
% % % % % % % % 31 NO 1 52,422 10,431 19.9 10,431 19.9 1,380 2.6 1,039 2.0 33,859 64.6 5,713 10.9 2 8,292 1,591 19.2 1,591 19.2 1,827 22.0 1,782 21.5 1,431 17.3 1,661 20.0 3 1,948 1,541 79.1 1,541 79.1
.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T
NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977
68 A mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1
67 A Section A.1 0 1 0 1 Balmer 7 9 1 0.1 0.01 1 9 3 10:09 6 A.1: A.1 1 10 9 68 A 10 9 10 9 1 10 9 10 1 mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1 A.1. 69 5 1 10 15 3 40 0 0 ¾ ¾ É f Á ½ j 30 A.3: A.4: 1/10
応力とひずみ.ppt
in [email protected] 2 3 4 5 x 2 6 Continuum) 7 8 9 F F 10 F L L F L 1 L F L F L F 11 F L F F L F L L L 1 L 2 12 F L F! A A! S! = F S 13 F L L F F n = F " cos# F t = F " sin# S $ = S cos# S S
i ii i iii iv 1 3 3 10 14 17 17 18 22 23 28 29 31 36 37 39 40 43 48 59 70 75 75 77 90 95 102 107 109 110 118 125 128 130 132 134 48 43 43 51 52 61 61 64 62 124 70 58 3 10 17 29 78 82 85 102 95 109 iii
L P y P y + ɛ, ɛ y P y I P y,, y P y + I P y, 3 ŷ β 0 β y β 0 β y β β 0, β y x x, x,, x, y y, y,, y x x y y x x, y y, x x y y {}}{,,, / / L P / / y, P
005 5 6 y β + ɛ {x, x,, x p } y, {x, x,, x p }, β, ɛ E ɛ 0 V ɛ σ I 3 rak p 4 ɛ i N 0, σ ɛ ɛ y β y β y y β y + β β, ɛ β y + β 0, β y β y ɛ ɛ β ɛ y β mi L y y ŷ β y β y β β L P y P y + ɛ, ɛ y P y I P y,,
t χ 2 F Q t χ 2 F 1 2 µ, σ 2 N(µ, σ 2 ) f(x µ, σ 2 ) = 1 ( exp (x ) µ)2 2πσ 2 2σ 2 0, N(0, 1) (100 α) z(α) t χ 2 *1 2.1 t (i)x N(µ, σ 2 ) x µ σ N(0, 1
t χ F Q t χ F µ, σ N(µ, σ ) f(x µ, σ ) = ( exp (x ) µ) πσ σ 0, N(0, ) (00 α) z(α) t χ *. t (i)x N(µ, σ ) x µ σ N(0, ) (ii)x,, x N(µ, σ ) x = x+ +x N(µ, σ ) (iii) (i),(ii) z = x µ N(0, ) σ N(0, ) ( 9 97.
x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)
2011 I 2 II III 17, 18, 19 7 7 1 2 2 2 1 2 1 1 1.1.............................. 2 1.2 : 1.................... 4 1.2.1 2............................... 5 1.3 : 2.................... 5 1.3.1 2.....................................
数値計算:有限要素法
( ) 1 / 61 1 2 3 4 ( ) 2 / 61 ( ) 3 / 61 P(0) P(x) u(x) P(L) f P(0) P(x) P(L) ( ) 4 / 61 L P(x) E(x) A(x) x P(x) P(x) u(x) P(x) u(x) (0 x L) ( ) 5 / 61 u(x) 0 L x ( ) 6 / 61 P(0) P(L) f d dx ( EA du dx
2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+
R 3 R n C n V??,?? k, l K x, y, z K n, i x + y + z x + y + z iv x V, x + x o x V v kx + y kx + ky vi k + lx kx + lx vii klx klx viii x x ii x + y y + x, V iii o K n, x K n, x + o x iv x K n, x + x o x
D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j
6 6.. [, b] [, d] ij P ij ξ ij, η ij f Sf,, {P ij } Sf,, {P ij } k m i j m fξ ij, η ij i i j j i j i m i j k i i j j m i i j j k i i j j kb d {P ij } lim Sf,, {P ij} kb d f, k [, b] [, d] f, d kb d 6..
1 a b = max{a, b}, a b = mi{a, b} a 1 a 2 a a 1 a = max{a 1,... a }, a 1 a = mi{a 1,... a }. A sup A, if A A A A A sup A sup A = + A if A = ± y = arct
27 6 2 1 2 2 5 3 8 4 13 5 16 6 19 7 23 8 27 N Z = {, ±1, ±2,... }, R =, R + = [, + ), R = [, ], C =. a b = max{a, b}, a b = mi{a, b}, a a, a a. f : X R [a < f < b] = {x X; a < f(x) < b}. X [f] = [f ],
(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t
6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]
9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x
2009 9 6 16 7 1 7.1 1 1 1 9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x(cos y y sin y) y dy 1 sin
Part () () Γ Part ,
Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35
3/4/8:9 { } { } β β β α β α β β
α β : α β β α β α, [ ] [ ] V, [ ] α α β [ ] β 3/4/8:9 3/4/8:9 { } { } β β β α β α β β [] β [] β β β β α ( ( ( ( ( ( [ ] [ ] [ β ] [ α β β ] [ α ( β β ] [ α] [ ( β β ] [] α [ β β ] ( / α α [ β β ] [ ] 3
n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................
Go a σ(a). σ(a) = 2a, 6,28,496, = 2 (2 2 1), 28 = 2 2 (2 3 1), 496 = 2 4 (2 5 1), 8128 = 2 6 (2 7 1). 2 1 Q = 2 e+1 1 a = 2
Go 2016 8 26 28 8 29 1 a σ(a) σ(a) = 2a, 6,28,496,8128 6 = 2 (2 2 1), 28 = 2 2 (2 3 1), 496 = 2 4 (2 5 1), 8128 = 2 6 (2 7 1) 2 1 Q = 2 e+1 1 a = 2 e Q (perfect numbers ) Q = 2 e+1 1 Q 2 e+1 1 e + 1 Q
() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (
3 n nc k+ k + 3 () n C r n C n r nc r C r + C r ( r n ) () n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (4) n C n n C + n C + n C + + n C n (5) k k n C k n C k (6) n C + nc
tokei01.dvi
2. :,,,. :.... Apr. - Jul., 26FY Dept. of Mechanical Engineering, Saga Univ., JAPAN 4 3. (probability),, 1. : : n, α A, A a/n. :, p, p Apr. - Jul., 26FY Dept. of Mechanical Engineering, Saga Univ., JAPAN
1. A0 A B A0 A : A1,...,A5 B : B1,...,B12 2. 5 3. 4. 5. A0 (1) A, B A B f K K A ϕ 1, ϕ 2 f ϕ 1 = f ϕ 2 ϕ 1 = ϕ 2 (2) N A 1, A 2, A 3,... N A n X N n X N, A n N n=1 1 A1 d (d 2) A (, k A k = O), A O. f
p q p q p q p q p q p q p q p q p q x y p q t u r s p q p p q p q p q p p p q q p p p q P Q [] p, q P Q [] P Q P Q [ p q] P Q Q P [ q p] p q imply / m
P P N p() N : p() N : p() N 3,4,5, L N : N : N p() N : p() N : p() N p() N p() p( ) N : p() k N : p(k) p( k ) k p(k) k k p( k ) k k k 5 k 5 N : p() p() p( ) p q p q p q p q p q p q p q p q p q x y p q
all.dvi
72 9 Hooke,,,. Hooke. 9.1 Hooke 1 Hooke. 1, 1 Hooke. σ, ε, Young. σ ε (9.1), Young. τ γ G τ Gγ (9.2) X 1, X 2. Poisson, Poisson ν. ν ε 22 (9.) ε 11 F F X 2 X 1 9.1: Poisson 9.1. Hooke 7 Young Poisson G
微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.
微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)
A(6, 13) B(1, 1) 65 y C 2 A(2, 1) B( 3, 2) C 66 x + 2y 1 = 0 2 A(1, 1) B(3, 0) P 67 3 A(3, 3) B(1, 2) C(4, 0) (1) ABC G (2) 3 A B C P 6
1 1 1.1 64 A6, 1) B1, 1) 65 C A, 1) B, ) C 66 + 1 = 0 A1, 1) B, 0) P 67 A, ) B1, ) C4, 0) 1) ABC G ) A B C P 64 A 1, 1) B, ) AB AB = 1) + 1) A 1, 1) 1 B, ) 1 65 66 65 C0, k) 66 1 p, p) 1 1 A B AB A 67
TOP URL 1
TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7
(個別のテーマ) 放射線検査に関連した医療事故
- 131 - III - 132 - - 133 - III - 134 - - 135 - III - 136 - - 137 - III - 138 - - 139 - III - 140 - - 141 - III - 142 - - 143 - III - 144 - - 145 - III - 146 - - 147 - III - 148 - - 149 - III - 150 - -
(個別のテーマ) 薬剤に関連した医療事故
- 67 - III - 68 - - 69 - III - 70 - - 71 - III - 72 - - 73 - III - 74 - - 75 - III - 76 - - 77 - III - 78 - - 79 - III - 80 - - 81 - III - 82 - - 83 - III - 84 - - 85 - - 86 - III - 87 - III - 88 - - 89
EV200R I II III 1 2 3 4 5 6 7 8 9 10 1 2 3 11 4 5 12 6 13 1 2 14 3 4 15 5 16 1 2 17 3 18 4 5 19 6 20 21 22 123 456 123 456 23 1 2 24 3 4 25 5 3 26 4 5 6 27 7 8 9 28 29 30 31 32 1 2 33 3 4 34 1 35 2 1
変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,
変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, z + dz) Q! (x + d x + u + du, y + dy + v + dv, z +
読めば必ずわかる 分散分析の基礎 第2版
2 2003 12 5 ( ) ( ) 2 I 3 1 3 2 2? 6 3 11 4? 12 II 14 5 15 6 16 7 17 8 19 9 21 10 22 11 F 25 12 : 1 26 3 I 1 17 11 x 1, x 2,, x n x( ) x = 1 n n i=1 x i 12 (SD ) x 1, x 2,, x n s 2 s 2 = 1 n n (x i x)
表紙/目次
2013 9 27 PC 25 ii 20 30 5 9 11 Lagrage x y y=ax+b 10 1 4 (2009) 21) (1)~(3) 9, 10, 11 2013 9 27 iii 1 1 2 Ca 2+ 2 (1)Ca 2+ (2) (3) 3 11 (1) (2) 4 14 (1) (2) (3) 5 21 (1) (2) 6 25 (1) (2) (3) (4) (5) (6)
