表紙/目次

Size: px
Start display at page:

Download "表紙/目次"

Transcription

1

2 PC 25 ii

3 Lagrage x y y=ax+b (2009) 21) (1)~(3) 9, 10, iii

4 1 1 2 Ca 2+ 2 (1)Ca 2+ (2) (3) 3 11 (1) (2) 4 14 (1) (2) (3) 5 21 (1) (2) 6 25 (1) (2) (3) (4) (5) (6) (7) 7 36 (1) (2) ( ) 8 39 (1) (2) (3) iv

5 9 48 (1) (2) a j (j=1,2,, ) (3) (4) (5) (6) (1) L(III) 1-4. Jørgese 1-5. Jørgese (2) Jørgese-Kawabe REE 2-1. REE artifact 2-2. REE (1) x y=ax+b (2) y x y=ax+b 2-1. Lagrage Lagrage 2-4. Newto 2-5 a, b a, b 2-6 a, b (1) 66 (2) 78 (3)-1 X Y major axis 110 (3) (3)-3 Wedt v

6 Jacobi vi

7 1 (1-1) PC 6 6 sigificat figures (1) Theory of experimetal errors 18 systematic errors Ca 2+ EDTA EDTA Z 2+ Z 2+ EDTA Z 2+ EDTA 1

8 radom errors (1-2) 0 (1-3) (Gaussia distributio) Ca 2+ 2

9 Ca 2+ EDTA Ca 2+ EDTA EDTA Ca 2+ EDTA 1 EDTA Ca 2+ 1 EDTA (V EDTA ) EDTA (M EDTA ) (V sample ) Ca 2+ (M ca ) M ca (V EDTA ) (M EDTA ) (V sample ) 2-1 NN Ca 2+ EDTA EDTA Ca 2+ Ca 2+ Ca 2+ Ca 2+ EDTA Ca 2+ Ca 2+ EDTA 1) 2) Ca 2+ 3

10 (=0.02ml) (=0.02ml) 0 3) Ca Ca 2+ EDTA 2+ CN - EDTA CN - 2+ Ca 2+ KCN Fe 3+ Fe 2 KCN 4) KCN HCN 2+ KCN

11 ) 25ml b 150ml c) 20 25ml d) ph e f g (100ml, 500ml) h a) 0.01M EDTA b) NN c) ph12 b) d) (100ml ) e) KCN 10wt f) 10wt 1) 0.01M EDTA 2) 20ml 25ml 3 1 ml KCN 4 ph12 4 ml, 5 NN 0.1g 6 EDTA 0.01M EDTA EDTA 7) 0.01MEDTA (V EDTA ) 2-1 Ca 2+ (M ca ) 5

12 Ca 2+ (M ca ) EDTA Ca 2+ 0 (0.02ml) 10ml ml 2ml 10ml 0.1ml 0.1ml 1/10 1/ mg 6

13 10g 0.1mg 1 M ca (V EDTA ) (M EDTA ) (V sample ) 2-1 (2-1) (V EDTA ) (M EDTA ) (V sample ) (2-1) y x y=ax+b (2 2) b (2 2) 7

14 (Method of least squares) EDTA EDTA EDTA 8

15 (i) 0.1mg 10g 0.1mg 10g g (ii) 200 9

16 iii 3 10

17 3 (1) ml 1/10 1/ S h d S h d 1/2 S h d d h h/2 3-1 S h d S h d h d 11

18 d 3~5mm Ar 1 h 10mm 0.1 h 3 d 3~5mm d 2 10 S h d (3 ) (2 ) (2 ) S 2 d d 1 d 3 S (2) CRT M M m 3-2 A M 0.05ppm B M 0.03ppm C 12

19 A: M(0.05 ppm) B: M(0.03ppm) C: 3-2 M B C C (Noise) S sigal 2S S/N=2 3-2 M 0.03ppm ppm 0.003ppm. 2 13

20 4 accidetal or radom error mistake 2 - (6) (1) x 1, x 2, " " " ", x m " i, " i = x i # m, (i =1, 2, $ $ $, ) (4-1) " i (4-1) x i = m + " i (i =1, 2, # # #, ) (x i )

21 0 m (4-1) " i " i = x i # m 4-1 x i " # i = x i $ m m " i = 0 =0 (ε i ) 4-2 x i i i i i i p i p i = i / (1/) p i = i / 4-1 i " p i = i / i i " =1 (4 1) i p i = i / d", f (") d" f (")d" p i = i / f ("). (4 1) 15

22 +$ % f (")d" =1 (4 2) #$ f (") (Probability desity fuctio) f (") (2) 1/2 1/2 m ( ) " " = #$ + (m % ) # (%$) = (2 % m) #$ (4 3) P P = m C " (1#1/2) m# " (1/2) = m C " (1/2) m (4 4) +1) ( - -1) " +1, P +1, " +1 = ( +1) #$ + (m % %1) # (%$) = (2 % m + 2) #$ (4 5) P +1 = m C +1 " (1#1/2) m##1 " (1/2) +1 = m C +1 " (1/2) m (4 6) m C = m!/[(m " )!!] 3 (4 3) (4 5) (4 4) (4 6) " +1 = " + 2# (4 7) 16

23 P +1 P = m " +1 (4 8) " f (") (4 7) (4 8) " # " = (2 $ m) % & " +1 # " + 2$ (4 9) P +1 P = f (" + 2#) f (") (4 10) = m $ +1 f (" + 2#) = ( m $ +1 ) % f (") (4 11) f (" + 2#) $ f (") f (" + 2#) + f (") = ( m $ $ $1) /(m m $ 2 $1 +1) = = m $ 2 m +1 m (4 10) (4 11) (4 12) m (4 12) (m " 2) (4 9) (4 12) (2 " m) = "( # $ ) (4 13) f (" + 2#) $ f (") f (" + 2#) + f (") = $( " m# ) (4 14) f (" + 2#) Taylor (4 14) f (") f (" + 2#) = f (") + (2#) $ f '(") + (1/2!) $ (2#) 2 $ f ''(") + $ $ f (" + 2#) $ f (") % (2#) & f '(") f (" + 2#) + f (") $ 2 f (") (4 14) f '(") f (") = # " m$ (4-15) 2 1 f " df = # $ m% 2 " d$ 17

24 ε2 log f = 2mδ + C 2 f f (") = A # exp($ "2 2m% 2 ) (4-16) A (4 2) 1/(2m" 2 ) # h 2 (4-17) f (") = A # exp($h 2 " 2 ) (4-18) A (4 2) +$ % f (")d" = A % exp(#h 2 " 2 )d" =1 #$ +$ #$ A +$ % exp("h 2 # 2 )d# = & h "$ 1 2 A = h " f (") = h # $ exp(%h 2 " 2 ) (4-19) h h 2 "1/(2m# 2 ) (4-17) m 1/2 (Gaussia distributio) (Normal distributio),

25 h h (4 2) h h h Precisio costat h / " "=0 4 3 (4-19) h (4 2) h h (4-19) 3 4 (3) (4 19) X 100 X ph 19

26 -log 10 X X X 20

27 5 (1) f (ε) = h π exp( h 2 ε 2 ) (5 1) 2 (mea) (expectatio) (variace) x (radom variable) P(x) E(x) σ 2 (x), E(x) σ 2 (x) + x P(x)dx (5-2) + [x E(x)] 2 P(x)dx (5-3) x (5 1) h E(ε) + ε f (ε)dε = h ε exp( h 2 ε 2 )dε = 0 (5-4) π + (5 1) f (ε) ε = 0 f (ε) = f ( ε) ε f (ε) = ε f ( ε) ε ε ε f ( ε) = ε f (ε) ε f (ε) f( ) 0 0 σ 2 (ε) + [ε E(ε)] 2 f (ε)dε = ε 2 f (ε)dε = h ε 2 exp( h 2 ε 2 )dε (5-5) π + + ε 2 exp( h 2 ε 2 )dε = π 2h

28 1 h (5-5) + σ 2 (ε) = ε 2 f (ε)dε = 1 2h (5-6) 2 0 σ 2 (ε) =1/(2h 2 ) (5-1) f (ε) h (5-6) σ 2 (ε) σ 2 f (ε) = h π exp( h 2 ε 2 ) = 1 ε2 exp( 2π σ 2σ ) (5-7) 2 (5-7) x m x m m =0 (5-2) x m=0 m x x g(x) (5-7) g(x) = 1 (x m)2 exp[ ] (5-8) 2π σ 2σ 2 x m (5-7) (5-7) g(x) (5-8) m 2 x (5-7) (5-8) 3 4 x σ 2 (x) (5-6) h σ 2 (x) σ 2 (x) σ(x) σ(x) Stadard deviatio σ(x) root mea square error 22

29 (2) x g(x) x x 1 x x 2 P(x 1 x x 2 ) g(x) P(x 1 x x 2 ) = x2 1 (x m)2 exp[ ]dx (5-9) π σ 2σ 2 x1 t = (x m) /σ t 1 = (x 1 m) /σ, t 2 = (x 2 m) /σ (5-9) P(t 1 t t 2 ) = Φ(t) = t 2 t 1 t2 1 2π exp( t 2 2 )dt 1 2π exp( t 2 2 )dt t1 1 2π exp( t 2 2 )dt = Φ(t 2 ) Φ(t 1 ) (5-10) t 1 2π exp( t 2 2 )dt (5-11), Error fuctio Gauss Error itegral of Gauss (5-11) 3 (5-10) t = (x m) /σ =0 =1 N(0,1) = 1 2π exp( t 2 2 ) (5-12) N (Noral distributio) t = (x m) /σ =m 2 23

30 N(m, σ 2 ) = 1 (x m)2 exp[ ] (5-13) π σ 2σ 2 t = (x m) /σ N(m, σ 2 ) N(0,1) =m 2 x =m 2 x m σ x m + σ t = (x m) /σ P(m σ x m + σ) = Φ(1) Φ( 1) (5-14-1) P(m 2σ x m + 2σ) = Φ(2) Φ( 2) ( P(m 3σ x m + 3σ) = Φ(3) Φ( 3) (5-14-3) m m ± σ 68 m ± 2σ 95 ( 5-15) m ± 3σ 99 N(m, σ 2 ) =m 2 =m 2 24

31 6 ( ) (1) (x 1, x 2, """", x ) m (x 1, x 2, """", x ) the most probable value x i ( i =1, 2, """", ) N(m," 2 ) x i ( i =1, 2, """", ) N(m," 2 ) (m, " 2 ) Maximum likelihood method " f (x; ") (x 1, x 2, """", x ) (6-1) L("; x 1, x 2,# ##, x ) $ f (x 1 ; ") # f (x 2 ; ") # f (x 3 ; ") # # # # f (x ; ") (6-2) (6-1) (x 1, x 2, """", x ) L("; x 1,x 2,###,x ) " " L("; x 1,x 2,###,x ) L("; x 1,x 2,###,x ) (Likelihood fuctio) 25

32 L("; x 1,x 2,###,x ) L =logl L("; x 1,x 2,###,x ) L'("; x 1,x 2,###, x ) $ log[ f (x 1 ; ") # f (x 2 ; ") # f (x 3 ; ") # # # # f (x ; ")] (6-3) L("; x 1,x 2,###,x ) L("; x 1,x 2,###,x ) (6-1) (x 1, x 2, """", x ) (6-4) (Maximum liklihood estimate) (x 1, x 2, """", x ) N(m, " 2 ) # = log f (x i ; ") "L(#; x 1,x 2,$$$,x ) "# L("; x 1,x 2,###,x ) = $ = ( (6-5) (6-6) (6-6) m 0 m (6-7) m m ˆ = 0 1 logl("; x 1,x 2,###,x ) = # log( " logl "m = 1 %(x # 2 i $ m) = 0 2% #& exp[' (x i ' m)2 2& 2 ] 1 2" #$ ) # exp[% 1 &(x 2$ 2 i % m) 2 ] #(x i " m ˆ ) = 0 #(x i " m ˆ ) = # x i " $ m ˆ = 0 1 2$ #% ) & 1 '(x 2% 2 i & m) 2 (6-7) 26

33 ˆ m = 1 " x i (6-8) " 2 " ˆ 2 (6-6) logl " 2 m (6-8) 0 " logl(#; x 1,x 2,$$$,x ) "(% 2 ) 1 "[$ log( = 2& $% )] "[' 1 ((x 2% 2 i ' m) 2 ] + = 0 "(% 2 ) "(% 2 ) (6-9) 2 " log( (6-9) (6-10) " 2 " ˆ 2 (6-10) 2" 4 m (6-8) m ˆ 1 2# "$ ) = " log[(2# "$ 2 ) %1/ 2 ] = % 2 " log(2# "$ 2 ) " "(# 2 ) [ $ log( 1 2% $# )] = " "(# 2 ) [& 2 $ log(2% $# 2 )] = & 2# 2 " "(# 2 ) [$ 1 %(x 2# 2 i $ m) 2 ] = 1 %(x 2# 4 i $ m) 2 " logl(#; x 1,x 2,$$$,x ) "(% 2 ) "# 2 + $ (x i " m ˆ ) 2 = 0 ˆ " 2 = 1 $ ˆ " 2 (x i # m ˆ ) 2 = & 2% + 1 '(x 2 2% 4 i & m) 2 = 0 ˆ " 2 (6-11) 27

34 (x 1, x 2, """ x ) m ˆ " ˆ 2 (6-8) (6-11) m ˆ = 1 " x i = x ˆ " 2 = 1 $ (x i # m ˆ ) 2 = 1 $ (x i # x ) 2 (2) x i (i =1, 2, " " ", N) N x i N(m i, " 2 i ) y = c 0 + c 1 x 1 + c 2 x 2 + """ + c N x N (6-12) y N(m y, " 2 y ) c 0, c 1, c 2, """", c N y m y = c 0 + c 1 m 1 + c 2 m 2 + """ + c N m N (6-13-1) " 2 y = c 2 1 " c 2 2 " ### + c 2 2 N " N (6-13-1) 晛 (1973) 5 (3) 1 1 N ( m ˆ = x ) ( " ˆ 2 ) 28

35 N N m ˆ = x σ ˆ 2 m ˆ = x = 1 " x i = 1 x x + #### x (6-14). x i (i =1,2,"""",) N(m, " 2 ) m ˆ = x m ˆ = x E(x ) m ˆ = x " 2 (x) E(x ) = m + m + """" + m = m ( ) ( ) m ˆ = x N(m, " 2 /) (i) " 2 (x ) = " 2 + " # ### + " 2 2 = " 2 2 (ii), lim "# $ 2 (x ) = lim "# ($ 2 /) = 0 (6-16) 0 (i) ubiased character (ii) cosistecy (6-16) (4) 29

36 2 (6-17) s 2 s (6-17) s 2 (6-18) s 2 (6-19) m 0= -m+m (6-19) (6-19) " ˆ 2 = s' 2 = (1/) $ (x i # x ) 2 m(s 2 ') = (1/N) "[s' 2 (1) + s' 2 (2) + """ + s' 2 (N)] = 1 N s' 2 (k) (6-20) 2 2 (6-20) (6-18) N # s' 2 = (1/)# (x i " x ) 2 = (1/)#[(x i " m) + (m " x )] 2 = (1/)# (x i " m) 2 + (2 /)(m " x )#(x i " m) + (1/)# (m " x ) 2 (2 /)(m " x )#(x i " m) = 2(m " x ) $ (1/)# (x i " m) (1/)# (m " x ) 2 = (m " x ) 2 k=1 = 2(m " x ) #[(1/) $ x i " m] = " 2m(m " x ) 2 s' 2 = (1/)# (x i " x ) 2 = (1/)# (x i " m) 2 " (m " x ) 2 = $ 2 " (m " x ) 2 N m(s 2 ') = 1 " s' 2 (k) = 1 " N N [# 2 $ (m $ x k ) 2 ] k=1 = " 2 # 1 N N $ k=1 N k=1 (m # x k ) 2 30

37 ( ), (6-21) m (ubiased estimate) s 2 m(s 2 ') = " 2 # " 2 1/ 1/(-1) s 2 = (6-17) (6-22) ( 1) s2 ' (6-23) s 2 N m(s 2 ) (6-23) m(s 2 ) = ( 1) m(s2 ') (6-21) m(s 2 ') = [( 1) /] σ 2 (6-24) (6-22) /(-1) (6-23) s 2 ( #1) = $" 2 " ˆ 2 = s' 2 = 1 $ (x i # x ) 2 1 s 2 " ( #1 ) $ (x # x i ) 2 m(s 2 ) = " 2 ˆ " 2 # s 2 = 1 ( $1) % (x i $ x ) 2 m(s 2 ') " # 2 m(s 2 ') < " 2 (6-25) 31

38 s 2 s 2 (-1) =1 =1 s 2 =0 s 2 s 2 (-1) m (6-25) " 2 (x ) = " 2 / " ˆ 2 (x) = s2 = 1 ( #1) $ % (x # x i )2 ( ) (6-26) (5) (i) m ˆ m ˆ = (1/)" x i = x (ii) ˆ " 2 = s 2 = i 1 ( #1) $ % (x # x i )2 i " ˆ ˆ " = s = 1 ( #1) $ % (x # x i )2 i (root mea square error of a idividual measuremet) (iii) x " ˆ 2 (x) " ˆ 2 (x) = s2 = 1 ( #1) $ % (x # x i )2 i 32

39 " ˆ (x) " ˆ (x) = s = 1 ( #1) $ % (x i # x ) 2 i (root mea square error for the average) (6) 2 1/100 M Ca 2+ f= x10-2 M Ca 2+ EDTA EDTA ml s = No (=12) x = #(x i " x ) 2 = , ( "1) # $ (x " x i )2 = (ml) s/ = (ml) (I) x i (ml) x i " x (x i " x ) ± 0.06 ml ( =12) 33

40 II ± 0.02 ml ( =12) (I) (II) EDTA (II) (I) (7) 1/ " ˆ 2 (x) = s2 = 1 ( #1) $ % (x # x i )2 (6-26) 0 s 2 1/ (a) 1 mm (b) 1/10 1 mm 2 ( ) 2 ( ) (6-26) 1/ 34

41 (6-26) (6-26) PC 1 (6-26) (6-26)

42 7 i) ii) (1) (x 1, x 2, " " ", x i, " ", x ) x i " i i " i x i, m N(m," 2 i) m L(m; x 1, x 2, " "", x, # 1, # 2, " " ", # ) m logl = log{ " 1 exp[& (m & x i )2 ]} 2# $% i 2% 2 i x i " i x i " i 36

43 = " log( 1 ) & 2# $% i " [(m & x i )2 ] 2% 2 i (7-1) m m logl m " logl "m = #2 $ ( m # x i ) = # 2% $ (m # x i ) = 0 2 i % 2 i (7-2) m" ( 1 ) = " x i # 2 i # 2 i m m ˆ ˆ m = " [( 1 # 2 i ) $ x i ]/" ( 1 ) (7-2) (7-3) 1/" 2 i (weight) w i = 1 " 2 i ˆ m = "(w # x ) i i (7-4) (7-5) m ˆ w i =1/" 2 i (7-5) x i /" w i # 2 i x i w i (2) ( m ˆ ) ( m ˆ ) (7-5) m ˆ = w 1 # x 1 + w 2 " w # x 2 + # # # + w i " w i " w i # x (7-6) (x 1, x 2, " " ", x i, " ", x ) a i = w i /" w i (7-7) 37

44 x i, m N(m," 2 i) ( m ˆ ) 6 (2) w m ˆ = a 1 x 1 + a 2 x 2 + +a x = ( i w ) m = m (7-8) j σ 2 ( ˆ m ) = (a 1 ) 2 σ (a 2 ) 2 σ (a ) 2 σ 2 j= w = ( i 1 1 ) 2 σ 2 i = ( w i w )2 (1/σ 2 i) 2 σ 2 i = ( i w )2 (1/σ 2 i) i j=1 j=1 1 = (1/σ 2 i) =1/ (1/σ 2 i) (7-9) [ (1/σ 2 i)] 2 j=1 i (7-3) (7-9) σ 2 i σ 2 m ˆ = ( 1 ) x σ 2 i / ( 1 ) = ( 1 i σ 2 i σ ) x 2 i /( /σ 2 ) = 1 x i = x σ 2 ( m ˆ ) =1/ (1/σ 2 i) = σ 2 ( ) ( ) (7-3) (7-9) (7-3) (7-9) j=1 i 38

45 8 Ca 2+ ( 2) 2 Ca 2+ (M ca ) Ca 2+ 1 M ca (V EDTA ) (M EDTA ) (V sample ) 2-1 (V EDTA ) (M EDTA ) (V sample ) 2-1 Ca 2+ (M ca ) Propagatio of errors 2-1 (1) (x 1, x 2,, x ) y (x 1, x 2,, x ) y = f (x 1, x 2,, x ) (8-1) (8-1) (x 1, x 2,, x ) Taylor y = f (x 1, x 2,, x ) + f x 1 (x 1 x 1 ) + f x 2 (x 2 x 2 ) + + f x (x x ) + higher terms (8-2) (x 1, x 2,, x ) f ( f ) x1 = x x i x 1, x 2 = x 2,, x = x (8-3) i (8-1) (x 1, x 2,, x ) y y = f (x 1, x 2,, x ) (8-4) (8-2) y y y f x 1 (x 1 x 1 ) + f x 2 (x 2 x 2 ) + + f x (x x ) (8-5) 39

46 (y y ) 2 ( f x 1 ) 2 (x 1 x 1 ) 2 + ( f x 2 ) 2 (x 2 x 2 ) 2 + +( f x ) 2 (x x ) 2 +2( f x 1 )( f x 2 )(x 1 x 1 )(x 2 x 2 ) + (8-6) x i m (8-6) m. m x i k x i, k y m k y y k x i x j k ( f x 1 )( f x 2 )(x 1, k x 1 )(x 2, k x 2 ) m m (8-6) ( ) m m m 1 m (y y k )2 1 m m ( f ) 2 (x 1, k x 1 ) m x 1 m ( f ) 2 (x 2, k x 2 ) 2 + x 2 k=1 + 1 m k=1 m k=1 ( f x ) 2 (x, k x ) 2 k=1 + 2 m m ( f )( f )(x 1, k x 1 )(x 2, k x 2 ) + (8-7) x 1 x 2 k=1 (8-3) m 1 m (y y k )2 ( f ) 2 1 m x 1 m (x x 1, k 1 )2 + ( f ) 2 1 m x 2 m (x x 2, k 2 )2 + k=1 k=1 +( f ) 2 1 m x m (x x, k )2 k=1 m +( f )( f ) 2 x 1 x 2 m (x x )(x x ) 1, k 1 2, k 2 + (8-8) k=1 (1/m) m m 1 m (y y k )2 σ 2 (y), k=1 m k=1 1 m (x x i, k i )2 σ 2 (x i ) (i =1, 2,, ) (8-9) k=1 40

47 m 1 m (x x )(x x ) 1, k 1 2, k 2 cov(x 1, x 2 ) (8-10) k=1 x 1 x 2 Covariace X Y Correlatio coefficiet ρ X X i (, 2,., ), Y Y i (, 2,., ) Cov(X, Y) 1 (X i X )(Y i Y ) (8-11-1) ρ(x,y) Cov(X,Y) σ(x) σ(y) (8-11-2) (8-11-2) (8-8) m 1 m (x x )(x x ) 1, k 1 2, k 2 cov(x 1, x 2 ) = ρ(x 1, x 2 ) σ(x 1 ) σ(x 2 ) (8-12) k=1 (8-8) σ 2 (y) ( f x 1 ) 2 σ 2 (x 1 ) + ( f x 2 ) 2 σ 2 (x 2 ) + +( f x ) 2 σ 2 (x ) +2( f x 1 )( f x 2 ) ρ(x 1, x 2 ) σ(x 1 ) σ(x 2 ) + (8-13) y = f (x 1, x 2,, x ) (x 1, x 2,, x ) y y (2) (8-11-1) (8-11-2) X Y, ρ(x,y) Cov(X,Y) X X i (, 2,., ), Y Y i (, 2,., ) pairs (X 1, Y 1 ), (X 2, Y 2 ),, (X, Y ) (8-11-1) Cov(X, Y) 1 (X i X )(Y i Y ) 41

48 T P 30 T P pair data 30 Cov(T,P) = (T i T ) (P i P ) 8 1 Y (a) (X i X )(Y i Y ) > 0 (X i,y i ) (X,Y ) X (b) (X i X )(Y i Y ) < 0 (c) Y (X,Y ) (X,Y ) (X i,y i ) X 8 1. X Y (a) X Y (X i X )(Y i Y ) > 0 b X Y (X i X )(Y i Y ) < 0 c (X i X )(Y i Y ) X Y 42

49 8 1 (a) (X i X )(Y i Y ) Cov(X,Y) = 1 (X i X )(Y i Y ) > 0 =1 X Y b (X i X )(Y i Y ) Cov(X,Y) = 1 (X i X )(Y i Y ) < 0 =1 c (X i X )(Y i Y ) > 0 (X i X )(Y i Y ) < 0 Cov(X,Y) = 1 (X i X )(Y i Y ) 0 =1 (8-14) Cov(X, X) Cov(Y, Y) Cov(X,X) = 1 =1 (X i X )(X i X ) = σ 2 (X) X X X ρ(x,y) Cov(X,Y) σ(x) σ(y) Cov(X,Y) = 0 ρ(x,y) = 0 (8-13) X Y Y = a + b X Y i = a + bx i Y = (1/) Y i = (1/) (a + bx i ) = a + bx Cov(X,Y) = (1/) (X i X )(Y i Y ) = (1/) (X i X )(a + bx i a bx ) = (1/) b(x i X )(X i X ) = b σ 2 (X) 43

50 σ 2 (Y) = b 2 σ 2 (X) ρ(x,y) Cov(X,Y) σ(x) σ(y) = b σ 2 (X) σ(x) b σ(x) = b b =1 (b > 0) or -1(b < 0) b>0 = + b< (8-13) σ 2 (y) ( f x 1 ) 2 σ 2 (x 1 ) + ( f x 2 ) 2 σ 2 (x 2 ) + +( f x ) 2 σ 2 (x ) + 2( f x 1 )( f x 2 ) ρ(x 1, x 2 ) σ(x 1 ) σ(x 2 ) + (8-13) ρ(x 1, x 2 ) = 0 pairs (i j) ρ(x i, x j ) = 0 σ 2 (y) ( f x 1 ) 2 σ 2 (x 1 ) + ( f x 2 ) 2 σ 2 (x 2 ) + +( f x ) 2 σ 2 (x ) (8-15) ρ(x i, x j ) = 0 f (x 1, x 2,, x ) (x 1, x 2,, x ) (8-15) (1) f = a x ± b y ± c z a, b, c x, y, z σ(x), σ(y), σ(z) 44

51 σ 2 ( f ) = a 2 σ 2 (x) + b 2 σ 2 (y) + c 2 σ 2 (z) σ( f ) = a 2 σ 2 (x) + b 2 σ 2 (y) + c 2 σ 2 (z) a = b =1, c = 0 σ(x ± y) = σ 2 (x) + σ 2 (y) (8-16) (2) f = x y z σ 2 ( f ) = ( f x )2 σ 2 (x) + ( f y )2 σ 2 (y) + ( f z )2 σ 2 (z) = ( y z )2 σ 2 (x) + ( x z )2 σ 2 (y) + ( x y z 2 )2 σ 2 (z) = ( x y ) 2 [ σ 2 (x) + σ 2 (y) + σ 2 (z) ] z x 2 y 2 z 2 σ( f ) = ( x y ) z σ 2 (x) x 2 + σ 2 (y) y 2 + σ 2 (z) z 2 z =1 σ(x y) = (x y ) ( σ(x) x ) 2 + ( σ(y) ) 2 (8-17) y y=1 σ(x /z) z y σ( x y ) = ( x y ) (σ(x) ) 2 + ( σ(y) ) 2 (8-18) x y (8-16), (8-17), (8-18) Covariace matrix (8-13) (8-15) 45

52 (x i =1,2,,) x i, x j cov(x i, x j ) C(x) cov(x 1, x 1 ) cov(x 1,x 2 ) cov(x 1,x ) cov(x 2, x 1 ) cov(x 2,x 2 ) C(x)= cov(x, x 1 ) cov(x,x ) (8-19) cov(x i, x i ) = σ 2 (x i ) σ 2 (x i ) cov(x i, x j ) = cov(x j, x i ) σ 2 (x 1 ) cov(x 1, x 2 ) cov(x 1, x ) cov(x C(x)= 2,x 1 ) σ 2 (x 2 ) cov(x,x 1 ) σ 2 (x ) (8-20) (8-13) T T = ( f x 1, f x 2,, f x ) (8-21-1) T T T T T = f x 1 f x 2 f x (8-21-2) (8-13) σ 2 (y) T T C(x) T σ 2 (y) = T(1,) C(x)(,) T T (,1) = T C(x) T T (8-22) ρ(x 1,x 2 ) cov(x 1,x 2 ) /[σ(x 1 ) σ(x 2 )] ρ(x 1,x 2 ) σ(x 1 ) σ(x 2 ) = cov(x 1,x 2 ) (8-13) cov(x i, x j ) 2 46

53 (8-22) (8-20) cov(x i,x j ) = cov(x j,x i ), i j 0 (8-15) σ 2 (y) 47

54 9 S.G. (2012) 18 (1795 ) (1) (9-1) t y y = a 1 f 1 (t) + a 2 f 2 (t) + +a j f j (t) + + a f (t) (9-1) a j (j=1,2,, ) f j (t) (j=1,2,, ) t y=a 1 +a 2 t y (9-1) t=t i y=y i ˆ y i ε i (9-1) ˆ y i = a 1 f 1 (t i ) + a 2 f 2 (t i ) + +a j f j (t i ) + + a f (t i ) + ε i (9-2) y i = a 1 f 1 (t i ) + a 2 f 2 (t i ) + + a j f j (t i ) + + a f (t i ) (9-3) ˆ y i = y i + ε i (9-4) y i, ε i y ˆ i ε i y ˆ i ε i = y ˆ i y i ε i, g(ε i ) = 1 exp[ ( y ˆ y i i )2 ] = 2π σ i 2(σ i ) 2 1 2π σ i exp[ (ε i )2 2(σ i ) 2 ] (9-5) E(ε i ) = 0, σ 2 (ε i ) = (σ i ) 2 ˆ y i (i =1, 2,, m) m, (9-2)~(9-4) y ˆ 1 [a 1 f 1 (t 1 ) + a 2 f 2 (t 1 ) + + a j f j (t 1 ) + +a f (t 1 )] = ε 1 y ˆ 2 [a 1 f 1 (t 2 ) + a 2 f 2 (t 2 ) + + a j f j (t 2 ) + +a f (t 2 )] = ε 2 y ˆ i [a 1 f 1 (t i ) + a 2 f 2 (t i ) + + a j f j (t i ) + +a f (t i )] = ε i (9-6) y ˆ m [a 1 f 1 (t m ) + a 2 f 2 (t m ) + + a j f j (t m ) + +a f (t m )] = ε m 48

55 ˆ y i (i =1, 2,, m) a j (j=1,2,, ) m (9-7) (9-6) m ε i (i =1, 2,, m) ε i (i =1, 2,, m), L a j (j=1,2,, ) a j (j=1,2,, ) 0 a j (j=1,2,, ) (9-5) ε i (i =1, 2,, m) m L = Π g(ε m i) = Π { 1 exp[ (ε i )2 ]} (9-8) 2 2π σ i 2(σ i ) m 1 logl = ( ) 1 m (ε i ) 2 (9-9) 2π σ i 2 (σ i ) 2 ε i = y ˆ i y i = y ˆ i [a 1 f 1 (t i ) + a 2 f 2 (t i ) + + a j f j (t i ) + +a f (t i )] a j (j=1,2,, ) logl logl / a j = 0 (j =1,2,, ) (9-10) a j (j=1,2,, ) (9-9) logl m (ε i ) 2 (σ i ) mi. (9-11) 2 (9-9) logl ˆ y i (σ i ) 2 (σ y ) 2 m (ε i ) 2 m m = (σ (σ i ) 2 y ) 2 (ε i ) 2 = (σ y ) 2 ( y ˆ i y i ) 2 mi. ˆ y i y i = a 1 f 1 (t i ) + a 2 f 2 (t i ) + + a j f j (t i ) + +a f (t i ) 49

56 m ( y ˆ i y i ) 2 mi. (9-12) (9-11) (9-12) a j (j=1,2,, ) 0 a j (j=1,2,, ) (2) a j (j=1,2,, ) (9-9) logl a j (j=1,2,, ) m 1 logl = ( ) 1 m (ε i ) 2 (9-9) 2π σ i 2 (σ i ) 2 ε i = ˆ y i y i = ˆ y i [a 1 f 1 (t i ) + a 2 f 2 (t i ) + + a j f j (t i ) + +a f (t i )] (9-6) logl / a j = 0 [ a j m 1 (σ i ) 2 { ˆ y i [a 1 f 1 (t i ) + a 2 f 2 (t i ) + a j f j (t i ) + a f (t i )]} 2 = 0 (9-13) (9-13) a j (j=1,,) m 1 (σ i ) 2 { ˆ y i [a 1 f 1 (t i ) + a 2 f 2 (t i ) + a j f j (t i ) + a f (t i )]} f j (t i ) = 0 m m y ˆ i 1 f (σ i ) 2 j (t i ) = (σ i ) [a 2 1 f 1 (t i ) + a 2 f 2 (t i ) + a j f j (t i ) + a f (t i )] f j (t i ) (9-14) m m y ˆ i a f j (t i ) = {[ k f k (t i ) ] f j (t i )} (9-15) 2 σ i k=1 σ i 2 Z j S j Z j = S j m m y ˆ Z j = i a f j (t i ), S j = {[ k f k (t i ) ] f j (t i )} (9-16) 2 σ i j (j=1,2,., ) logl / a j = 0 (9-16) a j (j=1,2,, ) X(,1) m k=1 σ i 2 50

57 ( y ˆ i : i =1,2,, m) Y(m,1) m 1 (σ i ) 2 G(m,m) X(,1) = a 1 a 2 a 2 1/σ /σ G(m,m) = /σ m y ˆ 1 y ˆ 2 (9-17), Y(m,1) = ˆ f j (t i ) C(m,) f 1 (t 1 ) f 2 (t 1 ) f (t 1 ) f C(m,) = 1 (t 2 ) f 2 (t 2 ) f (t 2 ) f 1 (t m ) f 2 (t m ) f (t m ) y m (9-18) (9-19) (9-20) C(m,) C T (,m) f 1 (t 1 ) f 1 (t 2 ) f 1 (t m ) f C T (,m) = 2 (t 1 ) f 2 (t 2 ) f 2 (t m ) f (t 1 ) f (t 2 ) f (t m ) 2 y ˆ 1 /σ 1 2 y ˆ G(m,m) Y(m,1) = GY(m,1) = 2 /σ 2 2 y ˆ m /σ m (9-21) (9-22) (9-16) Z j C T (,m) GY(m,1) j C T (,m) GY(m,1) = C T GY(,1) = m m m ( y ˆ i /σ 2 i ) f 1 (t i ) ( y ˆ i /σ 2 i ) f j (t i ) ( y ˆ i /σ 2 i ) f (t i ) (9-23) 51

58 (9-16) m m y ˆ Z j = i a f j (t i ) = S j = {[ k f k (t i ) ] f j (t i )} (9-16) 2 σ i S j y ˆ i a k f k (t i ) k=1 σ i 2 j k=1 σ i 2 C(m,) X(,1) = CX(m,1) CX(m,1) = k=1 k=1 f k (t 1 )a k = f k (t m )a k k=1 k=1 a k f k (t 1 ) a k f k (t m ) G(m m) G(m,m) CX(m,1) = GCX(m,1) = C T (,m) C T (,m) GCX(m,1) = C T GCX(,1) = m m m k=1 k=1 2 a k f k (t 1 ) /σ 1 2 a k f k (t m ) /σ m f 1 (t i ){ a k f k (t i ) /σ 2 i } k=1 f j (t i ){ a k f k (t i ) /σ 2 i } k=1 f (t i ){ a k f k (t i ) /σ 2 i } k=1 j m S j = {[ k=1 a k f k (t i ) σ i 2 ] f j (t i )} (9-16),(9-23),(9-24) C T GY(,1)= C T GCX(,1) (9-24) (9-17) X(,1) C T GCX(,1)= C T GY(,1) (9-25) C T GC (,m)(m,m)(m,)=(,) (C T GC) -1 52

59 X(,1)= (C T GC) -1 C T GY(m,1) (9-26) C T GC(,) (9-26) a j (j=1,2,, ) (3) C T GC(,) G(m,m) C(m,) = GC(m,) = f 1 (t 1 ) σ 1 2 f 2 (t 1 ) σ 1 2 f j (t 1 ) σ 1 2 f (t 1 ) σ 1 2 f 1 (t i ) f 2 (t i ) f j (t i ) f (t i ) 2 σ i 2 σ i 2 σ i f 2 (t m ) f 2 j (t m ) f 2 (t m ) 2 σ m σ m σ m σ i 2 f 1 (t m ) σ m 2 (9-27) GC(m,) C T (.m) C T GC(,) (i,j) m (C T G C) ij = (C T 2 ) ik (GC) kj = f i (t k ) f j (t k ) /σ k (j,i) k=1 k=1 m (C T G C) ji = (C T 2 ) jk (GC) ki = f j (t k ) f i (t k ) /σ k k=1 k=1 m m (9-28) (C T G C) ij = (C T G C) ji (9-29) C T GC(,) C T GC 0 det C T G C 0 (C T G C) -1 A(,) A -1 AX=E X A adja A deta A A -1 =adja/ deta (9-30) adja adjoit of A A adja (,) i,j (adja) ij =(-1) i+j (M) ji (9-31) 53

60 (M) ji A(,) j i (-1,-1) i,j j,i =2 A = a 11 a 12, X = x 11 x 12, AX = E = 1 0 a 21 a 22 x 21 x X A -1 (9-30) deta= A ( 1) 2 a 22 A A 1 = ( 1) 3 a 21 A ( 1) 3 a 12 A = 1 a 22 a 12 ( 1) 2 a 11 A a 21 a 11 A A -1 X AX = 1 a 11 a 22 a 12 a 21 a 11 a 12 + a 11 a 12 = 1 A 0 = E A a 21 a 22 aa 21 a 22 a 21 a 12 + a 11 a 22 A 0 A AX=E (9-32) (9 32) X A=E A -1 deta= A =0 A -1 >2 (9-30) (9-30) 54

61 (4) C T GC(,)=B(,) B(,) 4-1. B(,) x=(x 1, x 2,, x ) T 0 Bx = λx (9-33) B(,) x=(x 1, x 2,, x ) T (9-33) B x x E (,) (9-33) Bx = λex x (B λe)x = 0 (9-34) x=(x 1, x 2,, x ) T (9-34) B λe b 11 λ b 12 b 1 F(λ) = B λe = b 21 b 22 λ b 2 b 1 b 2 b λ = 0 (9-35) F( )=0 ( i :,2,,) B F( ) k (9-33) Bx = λ k x (9-36) b 11 x 1 + b 12 x 2 + +b 1 x = λ k x 1 b 21 x 1 + b 22 x 2 + +b 2 x = λ k x 2 (9-37) b 1 x 1 + b 2 x 2 + +b x = λ k x 0 x=(x 1, x 2,, x ) T k (9-37) k x=(x 1, x 2,, 55

62 x ) T (9-33) cx 4-2. x=(x 1, x 2,, x ) T x i (k k k x ) i (k x ) (k i x ) (k i / ( x ) i ) 2 l i,k (9-38) 2 2 (l i,k ) 2 = x (k) i / ( x (k) i ) 2 (k [1/ ( x ) i ) 2 (k ] ( x ) i ) 2 =1 (9-38) 4-3. k l k (,1) Bl k λ k El k = 0 ( λ 1, l 1 ) ( λ 2, l 2 ) Bl 1 = λ 1 l 1, Bl 2 = λ 2 l 2 (9-39) 0 56

63 l 1 l 1 = l j1 l j 2 j=1 1 l 12 l 22 = (l 11,l 21,,l,1 ) = l T 1 l 2 (9-40) l 2 (9-40) l 1 T l 2 B B=B T, (Bl 1 ) T l 2 (Bl 1 ) T l 2 = (λ 1 l 1 ) T l 2 = λ 1 (l 1 T l 2 ) (9-41) (Bl 1 ) T l 2 (Bl 1 ) T l 2 = (l 1 ) T B T l 2 = (l 1 ) T (B l 2 ) = (l 1 ) T (λ 2 l 2 ) = λ 2 (l 1 T l 2 ) (9-42), λ 1 (l 1 T l 2 ) = λ 2 (l 1 T l 2 ) (λ 1 λ 2 )(l 1 T l 2 ) = 0 λ 1 λ 2 (l 1 T l 2 ) = ( k ) (l k ) (,1) l i,k (9-38) (l k ) k=1,2, (,) L ( ) = L = l 1 l 2 l l 1,1 l 1,2 l 1, l 2,1 l 2,2 l 2, l,1 l,2 l, L, A (9-43) A T A = E (9-44) A A (i) A T = A 1, (ii) A T A = AA T, (iii) deta = ±1 (9-45) 57

64 (i) A A 1 A = A 1 A = E A T A = E (ii) (i) A A 1 A = A 1 A = E (iii) det A = det A T, det(a T A) = det(a T ) det(a) AT A = E det(a T A) = det(a T ) det(a) = [det(a)] 2 = det(e) =1 L (9 44) L T L (L T L) ij (L T L) ij = l ki l kj = 0 (i j), 1(i = j) k =1 i j i = j L T L = E (9-46) L (9 41) (9-45) L 4-5. B(,) ( i ) (9-47) λ λ Λ = λ (9-47) Bx λex = 0 Bl k λ k El k = 0 B L B BL = LΛ (9-48) Bl k = λ k El k b 11 b 12 b 1 l 11 l 12 l 1 b 1k l k1 b k 1k l k 2 b k 1k l k k b BL = 21 b 22 b 2 l 21 l 22 l 2 b = 2k l k1 b k 2k l k 2 b k 2k l k k b 1 b 2 b l 1 l 2 l b k l k k1 b k l k k 2 b k l k k 58

65 l 11 l 12 l 1 λ λ 1 l 11 λ 2 l 12 λ l 1 l 21 l 22 l 2 LΛ = 0 λ 2 0 = λ 1 l 21 λ 2 l 22 λ l 2 l 1 l 2 l λ 2 λ 1 l 1 λ 2 l 2 λ l Bl k = λ k El k (9-48) (9-48), L L L L T = E, L 1 = L T (9-49) BL = LΛ L T BL L T = B = LΛ L T B 1 = (LΛ L T ) 1 = (L T ) 1 (LΛ) 1 = (L T ) 1 (Λ) 1 (L) 1 = L(Λ) 1 L T (9-50) ( ) -1 B B (9-50) =0 Schmidt >2 Schmidt (2006) 22) (2012) 23) 9-4 =2 3 PC 59

66 PC (1969) 19), (1987) 20) (1971) 18) (5) σ 2 ( ˆ y i ) = σ i 2 σ 2 ( ˆ y i ) = σ i 2 (i) σ 2 ( ˆ y i ) = σ i 2 (9-26) a j (j=1,2,, ) X(,1) X(,1)= (C T GC) -1 C T GY(,1) (9-26) (C T GC) -1 (.) C T (.m) G (m,m) Y (m,1) Y (C T GC) -1 C T G (,m) (9-26) P(,m) (C T GC) -1 C T G(,m) (9-51) a 1 a 2 a j a X=PY (9-52) p 11 p 12 p 1i p 1m y ˆ 1 p 21 p 22 p 2m ˆ y 2 = p j1 p j 2 p ji p jm ˆ y i ˆ p 1 p 2 p i p m Y ˆ y i a j m y m (9-53) a j = p j i y ˆ i (9-54) ˆ y i 60

67 a j m σ 2 (a j ) = ( p j i ) 2 σ 2 ( y ˆ i ) = (p j i ) 2 2 σ i σ 2 2 ( y ˆ i ) = σ i (9-55) a j m (9-55) (ii) σ 2 ( ˆ y i ) = σ i 2 σ 2 2 ( y ˆ i ) = σ i ˆ y i G 1/σ 2 ( ˆ y i ) =1/σ i 2 G E E (9-25) G C T GCX(,1)= C T GY(,1) C T CX(,1)= C T Y(,1) (9-56) (9-25) ε i = ˆ y i y i = ˆ y [a 1 f 1 (t i ) + a 2 f 2 (t i ) + + a f (t i )] (9-6) a j (j=1,2,, ) (9-6) y i (obs) = ˆ y i y i (calc) = [a 1 f 1 (t i ) + a 2 f 2 (t i ) + + a f (t i )] (9-57) y i (obs) y i (calc) = ε i m m/(m-) s 2 σ 2 (y) (9-55) a j (9-55) G E m σ 2 (a j ) = ( p j i ) 2 σ 2 i = σ 2 (y) (p j i ) 2 (9-58) σ 2 (y) m (i) (ii) 61

68 (6) (i) y = a 1 + a 2 x a 1, a 2 y(obs) x σ(y) y(obs) x y(obs) σ(y) /(0.3) Y =, X = a 1, G = 0 1/(0.4) a /(0.5) /(0.6) C =, C T = C T GY = C T GCX X = (C T GC) -1 C T GY 0.9/(0.3) 2 C T GY = /(0.4) 2 = /(0.5) /(0.6) 2 62

69 1/(0.3) 2 0 C T GC = /(0.4) 2 5/(0.4) = /(0.5) 2 10/(0.5) /(0.6) 2 15/(0.6) (C T GC) -1 = = (9-32) X = (C T GC) -1 C T GY = = = a a 2 P = (C T GC) -1 C T G 1/(0.3) C T G = /(0.4) /(0.5) /(0.6) 2 = 1/(0.3)2 1/(0.4) 2 1/(0.5) 2 1/(0.6) 2 0 5/(0.4) 2 10/(0.5) 2 15/(0.6) P = X = PY σ 2 (a 1 ) = ( p 1i ) 2 σ 2 (y i ) = , σ(a 1 ) = σ 2 (a 2 ) = ( p 2i ) 2 σ 2 (y i ) = , σ(a 2 ) = y = (0.96 ± 0.27) + (0.606 ± 0.039)x 63

70 (ii) y = a 1 + a 2 x a 1, a 2 y(obs) x y(obs) x y(obs) X = (C T GC) -1 C T GY G=E X = (C T C) -1 C T Y a 1, a 2 y(calc) y(obs) - y(calc) σ 2 (y) σ 2 (a 1 ), σ 2 (a 2 ) X = (C T C) -1 C T Y 1 0 C T C = = = (C T C) -1 = =, C T Y = = X = a = 22.0 = a 2 y= x 64

71 x y(obs) y(calc) = y(obs)- y(calc) s 2 = [y i (obs) y i (calc)] 2 = (4 2) 2 2 (y )/ (y 2) 1/(4-2) σ(y) = s 2 = X = (C T C) -1 C T Y X = PY P = (C T C) -1 C T = = a 1 a = y 1 y 2 y 3 y 3 σ 2 (a 1 ) = {(0.7) 2 + (0.4) 2 + (0.1) 2 + ( 0.2) 2 }σ 2 (y) = , σ(a 1 ) = σ 2 (a 2 ) = {( 0.06) 2 + ( 0.02) 2 + (0.02) 2 + (0.06) 2 }σ 2 (y) = , σ(a 2 ) = y = (0.94 ± 0.39) + (0.608 ± 0.042)x (i) y = (0.96 ± 0.27) + (0.606 ± 0.039)x 65

72 (1) R 24) R Califoria Berkeley 66

73 10 9 y = a 1 f 1 (t) + a 2 f 2 (t) + + a f (t) =5 lathaide tetrad effect 11 (1) L(III) L(III) 30 25) Rare earth elemets REE 3 4, 5, 6 Sc, Y, La~Lu 17 Z=57~71 La~Lu 15 (lathaides L) (REE) (L) La~Lu 15 [Xe](4f q ) q=0 La 3+ (Z=57) q=14 Lu 3+ (Z=71) 4f Z 4f 67

74 3 4f L(III) L(III) 6 L 2 O 3 (cub), 8 LF 3 (rhm) (10-1) L(III) 6, 8 L(III) L 2 O 3 L-O 6 LF 3 (rhm) L-F NaCl (10-1) 25) L(III) [Xe](4f q ) 4f [Ar](3d q ) 68

75 4f [Xe] 5s 5p 3d [Xe](4f q ) [Ar](3d q ). d f d f L(III) [Xe](4f q ) 1-3. L(III) 4f L(III) atomic-like L(III) 4f L(III) L(III) (4f 4f) L(III) ephelauxetic effect 4f Racah parameters [Xe](4f q ) ( ) (4f 4f) 69

76 LF 3 LCl 3 L(III) L 2 O 3 L 2 S 3 L(III) L(III) L(III) tetrad effect Gd Gd break L(III) L(III). L(III) L 2 O 3 (cub) L(III) O LF 3 (rhm) L(III) F (1/2)L 2 O 3 (cub)=l 3+ (g)+(3/2)o 2- (g) (10-2) LF 3 (rhm)= L 3+ (g)+3f - (g) (10-3) 0K 1 25, L(III) O L(III) F M r M/r 9~10 M(1-1/)/r r (10-2) (10-3) L 3+ (g) L(III) L 3+ (g) L 3+ (g) L(III) (1/2)L 2 O 3 (cub) LF 3 (rhm) L(III) L 3+ (g) L 2 O 3 L-O 70

77 6 LF 3 (rhm) L-F 8 L 3+ (g) L 2 O 3 L(III) 4f LF 3 L(III) L(III) (4f 4f) L(III) [Xe](4f q ) Al(III) Al 2 O 3, AlF 3 (1/2)Al 2 O 3 (s)= Al 3+ (g)+(3/2)o 2- (g) (10-4) AlF 3 (s)=al 3+ (g)+3f - (g) (10-5) Al 3+ [Ne] Al Sc, Y Sc 3+, Y 3+ [Ar], [Kr] [Xe](4f q ) L(III) [Ar](3d q ) 6 8 L(III) 30) L(III) 25) 1-4. Jørgese Peppard et al.(1969) 26) L(III) logk d La-Ce-Pr-Nd Pm-Sm-Eu-Gd Gd-Tb-Dy-Ho Er-Tm-Yb-Lu logk d L(III) logk d logk d = ΔG/(RT) L(III) L(III) Jørgese(1970) 28) Nuget(1970) 29) Jørgese(1962) 27) 71

78 Peppard et al.(1969) Jørgese(1962) 27) Refied spi-pairig eergy theory (RSPET) L (I 3 ) L(III) I 3 L 2+ L 3+ +e - (10-6) e - I 3 [Xe](4f q ) [Xe](4f q-1 ) (10-7) La 2+ Gd 2+ L 2+ [Xe](4f q ) 10-1 La 2+ [Xe](5d4f 0 ) Gd 2+ [Xe](5d4f 7 ) (10-7) La 2+ [Xe](4f) Gd 2+ [Xe](4f 8 ) Lu 2+ [Xe](4f 14 6s) Lu 2+ L 2+ [Xe](4f q ) L 3+ [Xe](4f q-1 ) [Xe](4f 14 ) Lu 3+ (10-7) q 1~14 La~Yb I L 3+ [Xe](4f q ) L 2+ La 2+ Gd 2+ [Xe](4f q+1 ) q 0~13 [Xe](4f q+1 ) [Xe](4f q ) (10-7 ) Jørgese(1962) (10-7) (10-7) I 3 (10-7) ΔE 1 (q)=e(4f q-1 ) E(4f q ) (10-8) [Xe] Jørgese(1962) L(III) L(III) L(III) + e - = L(II) (10-9) (10-6) I 3 72

79 L(III) ( I 3 ) Jørgese (1962) (10-8) [Xe](4f q ) E [(4f) q, LS(max), lowest J] = E [(4f) q, LS(max)] + p(s, L, J) 4f = W + qw + (1/2)q(q-1) [ E 0 + (9/13)E 1 ] + (9/13)(S) E 1 + m(l)e 3 + p(s, L, J) 4f (10-10) LS(max) [Xe](4f q ) (S) (L) LS (10-10) p(s, L, J) 4f W [Xe] W [Xe] 4f (1/2)q(q-1) 4f q [E 0 +(9/13)E 1 ] 4f Cofiguratio average eergy (9/13)(S)E 1 m(l)e 3 LS (S) m(l) LS L S E 1 E 3 (10-10) 1 5 LS E 0 E 1 E 2 E 3 4 E 2 p(s, L, J) 4f J J p(s, L, J) (S, L, J) 4f (10-10) [Xe] (4f q ) 1 S L J Hud (10-10) Hud 25 (Slater-Codo-Racah Theory) Jørgese(1962) L 3+ 73

80 (S L J) (S) m(l) p(s, L, J) 10-1, 10-1 (10-8) ΔE 1 (q)=e(4f q-1 ) E(4f q ) (10-10) I 3 4f q E(4f q-1 ) E(4f q ) ΔE 1 (q)= I 3 =E(4f q-1 ) E(4f q ) = {W + (q-1)w + (1/2)(q-1)(q-2) [E 0 + (9/13)E 1 ] + (9/13)(S) E 1 + m(l)e 3 + p(s, L, J) 4f } q-1 {W + qw + (1/2)q(q-1) [ E 0 + (9/13)E 1 ] + (9/13)(S) E 1 + m(l)e 3 + p(s, L, J) 4f } q Jørgese(1962) L 3+ L 2+ W c, W 0, (E 0 E 1 E 3 ), 4f ΔE 1 (q) = I 3 ( W ) (q-1) [E 0 + (9/13)E 1 ] + (9/13){(S) q-1 (S) q }E 1 + {m(l) q-1 m(l) q }E 3 + {p(s, L, J) q-1 p(s, L, J) q} 4f (10-11), (-W 0 )>0 2 W E* (q-1) (-W 0 )=W+E*(q-1) (10-12) 4f [E 0 + (9/13)E 1 ] A (10-13) Jørgese(1962) I 3 ΔE 1 (q) = I 3 =E(4f q-1 ) E(4f q ) W+(E*-A)+ (9/13){(S) q-1 (S) q }E 1 + {m(l) q-1 m(l) q }E 3 + {p(s, L, J) q-1 p(s, L, J) q} 4f (10-14) {(S) q-1 (S) q } N(S) q, {m(l) q-1 m(l) q } M(L) q ( ) {p(s, L, J) q-1 p(s, L, J) q} P(S, L, J) q (10-14) ΔE 1 (q) = I 3 =E(4f q-1 ) E(4f q ) W+(E*-A)+ (9/13) N(S) q E 1 + M(L) q E 3 + P(S, L, J) q 4f ( ), 10-1 Jørgese(1962) ( ) L(III) 74

81 I 3 Refied spi-pairig eergy theory (RSPET) ( ) I 3 Peppard (1969) L(III) logk d (10-14) E(4f q-1 ) E(4f q ) L 3+ E(4f q ) Jørgese(1962) L 3+ ΔE 2 (q) E(4 f q )aq E(4 f q )org. = ΔW C + q ΔW 0 + (1/2)q(q 1)[E 0 + (9/13)ΔE 1 ] +(S) (9 /13)ΔE 1 + m(l) ΔE 3 + p(s,l,j) Δζ 4 f (10-15) Δ L(III) (9/13)(S)ΔE 1 + m(l)δe (S) m(l) p(s, L, J) Δ 4 Δ 4f p(s, L, J) p(s, L, J)Δ 4f (9/13)(S)ΔE 1 + m(l)δe 3 Δ 4f 0 (9/13)(S)ΔE 1 + m(l)δe 3 Peppard et al. (1969) Jørgese(1970) Nuget (1970) 10-1 (S) m(l) Slater-Codo-Racah L 3+ E(4f q ) ΔE 2 (q) (10-15) q ΔE 1 (q) = I 3 (10-14) Jørgese(1962) Peppard et al. (1969), logk d = ΔG/(RT), Jørgese RSPET 1-5. Jørgese (10-15) ΔE 2 (q) q ΔE 1 (q) = I 3 (10-14) ΔE 2 (q) (10-15) 75

82 Jørgese(1970) Nuget (1970) Jørgese(1962) (10-12) (10-13) (10-15) 30) (10-15) ΔE 2 (q) q (Z-S 4f ) ΔE 2 (q) q 2 S 4f S 4f q ΔE 2 (q) Jørgese (Kawabe,1992) 30). (10-15) ΔW C ΔW C ΔW C = 0 (10-16). W 0 (Z S 4 f ) 2 E 0, E 1, E 3 (Z S 4 f ) (10-17) ζ 4 f (Z S 4 f ) 4 (S 4f ) L 3+ ζ 4f S 4f = 32, Z S 4f = q + 25 (10-18) 30) L 3+ q ΔW 0 = (C W + C' W q + C'' W q 2 + )(q + 25) 2 ΔE 0 + (9 /13)ΔE 1 = (C a + C' a q + C'' a q 2 + )(q + 25) ΔE 1 = (C 1 + C' 1 q + C'' 1 q 2 + )(q + 25) (10-19) ΔE 3 = (C 3 + C' 3 q + C'' 3 q 2 + )(q + 25) Δζ 4 f = (C ls + C' ls q + C'' ls q 2 + )(q + 25)

83 q ΔW 0 + (1/2)q(q 1)[E 0 + (9 /13)ΔE 1 ] = q(q + 25)(a + bq + cq 2 + ) cq 2 (10-15) ΔE 2 (q) ΔY(obs) ΔY(obs) = A 0 (q) + ΔE 2 (q) = A 0 (q) + q(a + bq)(q + 25) + (9 /13)(S)C 1 (q + 25) +m(l)c 3 (q + 25) + p(s,l,j)c ls (q + 25) 4 (10-20) A 0 (q) ΔE 2 (q) L 3+ A 0 (q) A 0 Δ 4f 0 C ls = 0 30) L 3+ ΔY(obs) ΔH 0 f (A) ΔH 0 f (B) = A 0 + q(a + bq)(q + 25) +(9 /13)(S)C 1 (q + 25) + m(l)c 3 (q + 25) (10-21) 3 (A 0, a, b, C 1, C 3 ) ΔE 1 =C 1 (q+25), ΔE 3 =C 3 (q+25) (10-22) E 1 E 3 (10-22) E 1 E 3 L(III) 10 2 (10-21) Jørgese Jørgese-Kawabe 9 y = a 1 " f 1 (t) + a 2 " f 2 (t) + " " " + a " f (t) (10-21) (q+25) Δ(Y) obs /(q + 25) = A 0 /(q + 25) + q(a + bq) + (9/13)(S)C 1 + m(l)c 3 77

84 =5 (A 0, a, b, C 1, C 3 ). Peppard et al.(1969) L(III) logk d logk d = ΔG/(RT) ΔG (10-21) (Kawabe ad Masuda, 2001) 31). (2) (1)1-1, (3) 11 78

85 10-1. (4f) q (S) (9/13) E 1 + m(l) E 3 p(s, L, J) 4f (S), m(l), p(s, L, J) L 2+ L 3+ (4f) q (S) m(l) p(s, L, J) --- La 3+ (4f) 0 1 S (La 2+ ) Ce 3+ (4f) 1 2 F 5/ Ce 2+ Pr 3+ (4f) 2 3 H Pr 2+ Nd 3+ (4f) 3 4 I 9/ /2 Nd 2+ Pm 3+ (4f) 4 5 I /2 Pm 2+ Sm 3+ (4f) 5 6 H 5/ Sm 2+ Eu 3+ (4f) 6 7 F Eu 2+ Gd 3+ (4f) 7 8 S 7/ (Gd 2+ ) Tb 3+ (4f) 8 7 F /2 Tb 2+ Dy 3+ (4f) 9 6 H 15/ /2 Dy 2+ Ho 3+ (4f) 10 5 I Ho 2+ Er 3+ (4f) 11 4 I 15/ Er 2+ Tm 3+ (4f) 12 3 H /2 Tm 2+ Yb 3+ (4f) 13 2 F 7/ /2 Yb 2+ Lu 3+ (4f) 14 1 S (La 2+ ) (Gd 2+ ) (4f) q (5d), (5d)(4f) 7 L 2+ L 3+ (4f) q [Xe] 79

86 0 (S) m(l) p(l,s,j ) q (4f) q J [(S)(9 /13)E 1 + m(l)e 3 + p(l,s,j)ζ 4 f ] (S) m(l) p(l,s,j ). (S) m(l) 80

87 10-2. LF 3 L(OH) 3 LCl 3 L(OH) 3 (10-21) Jorgese-Kawabe (10-21) 1 2 (10-21) 3 4 LF 3 LCl 3 L 3+ (E 1, E 3 ) L(OH) 3 L(OH) 3 +3F - = LF 3 +3(OH) - ΔH r L 3+ (E 1,E 3 ) 4f 4f L 3+ (1/2)L 2 O 3 (s)=l 3+ (g)+(3/2)o 2- (g) L 3+ (g) O 2- LO 3 (s) L 3+ 6 ΔH r L 3+ 8 LF 3 (s)=l 3+ (g)+3f - (g) ΔH r (2) Jørgese-Kawabe REE Jørgese Jørgese-Kawabe (10-22) ΔY(obs) = A 0 + q(a + bq)(q + 25) + (9/13)(S)C 1 (q + 25) + m(l)c 3 (q + 25) (10-22) 81

88 ΔY 0 L(III) ΔH r, ΔG r, logk d L 3+ L(III) L 3+ L 3+ L(III) L L L(III) L LF 3 (rhm) L(OH) 3 (hex) LCl 3 (hex) L(III) L L(III) (10-22) L 2-1. REE artifact SiO 2, REE REE REE REE REE log(ree sample /REE chodrite ) Peppard et al. (1969) REE MORB( ) (Kawabe et al., 2008) 32) log(ree sample /REE chodrite ) Jørgese-Kawabe (10-22) 82

89 La~Ce La~Ce L L McLea (1994) 33) ad, McLea ad Taylor (2012) 34) REE REE REE REE artifact McLea REE REE REE 2-2. REE [lathaite (La, Ce) 2 (CO 3 ) 3 8H 2 O] [kimuraite CaY 2 (CO 3 ) 4 6H 2 O] Nagashima et al. (1986) 35), Akagi et al. (1993 ad 1996) 36, 37), Graham et al (2007) 38) Y REE(III) REE ID-TIMS ICP-AES ICP-MS ID-TIMS REE (Pr, Tb, Ho, Tm) ICP-AES ICP-MS REE (Pr, Tb, Ho, Tm) 83

90 REE Akagi et al. (1993 ad 1996) REE Jørgese-Kawabe (10-22) REE 2-2-a Graham et al. (2007) 38) Whitiaga Akagi et al. (1994) 37) Whitiaga 38) ( ) 37) B CI REE 39) A/B REE Whitiaga REE 84

91 10-3 B REE CI REE 39) REE 10-3 Whitiaga REE Whitiaga (A) ICP-MS Tm REE B ID-TIMS REE (Pr, Tb, Ho, Tm) Ce La Pr Ce Ce Ce(IV) REE(III) REE(III) REE (A) Tm Er Yb REE (A) (Ce, Tm) Jørgese-Kawabe (10-22) 41) (B), Ce REE (Pr, Tb, Ho, Tm) Ce, Pr, Tb, Ho, Tm (10-22) 5 REE B 10-3 (A/B) Jørgese-Kawabe Ce REE (Pr, Tb, Ho, Tm) (A) (B) REE (B) (A/B) [(La, Ce) 2 (CO 3 ) 3 8H 2 O] REE REE La, Ce 10 (A/B) REE log(a/b) REE 85

92 log(a/b) (10-22) log(a/b) 10-3 REE Jørgese-Kawabe 2-2-b REE Akagi et l. (1993) 36) 3 REE ID-MS ICP-MS REE REE Akagi et l. (1993) 36)

93 kimuraite-a (middle layer ier layer) kimuraite-b kimuraite-a, -B kimuraite-a (middle layer ier layer) 10-5 ICP-MS ICP-AES REE (Kimuraite-NU) 40) REE ICP-MS Akagi et l. (1993) 36) B Ce REE 87

94 Type : Kimuraite-A(middle layer), Kimuraite-B Type II: Kimuraite-A(ier layer), Kimuraite-NU I Ce Jørgese-Kawabe (10-22) II (La~Pr) Kimuite-NU 40) II REE I Kimuraite-A(middle layer) II La~Pr (kimuraite-b) Kimuraite-A(middle layer) 88

95 Kimuraite-NU 40) II Ca EPMA (Ca+Y) REE I Kimuraite-A(middle layer) II Kimuraite-NU REE II La~Pr I REE 10-3 REE REE Akagi et al. (1993) 36) Kimuraite-A(ier layer) Kimuraite-NU Kimuraite-NU Jørgese-Kawabe (10-22) Akagi et al. (1993) 36) Kimuraite-A(middle layer), Kimuraite-B, Kimuraite-A(ier layer) 3 REE Kimuraite-A(ier layer) Kimuraite-NU Nagashima et al. (1986) 35) REE I 10-7 A Jørgese-Kawabe (10-22) Ce Nagashima et al. (1986) 10-7 (A) (B), (C) REE (B) REE (C) Jørgese-Kawabe (10-22) 89

96 10-7 Nagashima et al. (1986) 35) REE A Kimuraite-A(middle layer) B C Ce Jørgese-Kawabe (10-22) 5 REE 3 Jørgese-Kawabe (10-22) 2 (La~Pr) 3 Jørgese-Kawabe L(III) 90

97 4f L(III) Jørgese-Kawabe 2-2-c 10-7 (A) B C Peppard et al. (1969), logk d =log(ree org /REE aq ) 2 REE 41) 10-7(A) REE REE (B) (A) REE (B), (C), (C) Peppard et al. (1969) logk=log(ree kimuraite /REE lathaite ) K 41) REE (A) REE Jørgese-Kawabe (10-22) (9/13)(S)C 1 (q+25)+m(l)c 3 (q+25), (C) C 1 C 3 A 0 +q(a+bq)(q+25) (10-22) (A) REE 91

98 Jørgese-Kawabe (10-22) Jørgese-Kawabe (10-22) REE 10 92

99 (x,y) x y=ax+b 9 (a±σ a ) (b±σ b ) a b σ a σ b σ a σ b (a±σ a ) (b±σ b ) 9 y x x 9 (x,y) y=ax+b two-error regressio treatmet or method (1) x y=ax+b 9 (2), y x,,2,.,, y=ax+b (a±σ a ) (b±σ b ) (x i, y i ) y ε j ε i (x i, y i ) y=ax+b x 11 y=ax+b ε i y i 93

100 9 (ii) (a±σ a ) (b±σ b ) 11 y y 1 (ax 1 + b) = ε 1 y 2 (ax 2 + b) = ε y i (ax i + b) = ε i..... (11-1) y (ax + b) = ε (ε i ) 2 mi. a [ (ε i) 2 ] = 0 (11-2) b [ (ε i) 2 ] = 0 (11-3) 2(y i ax i b)( x i ) = 0 2(y i ax i b)( 1) = 0 2 y i x i + a (x i ) 2 + b x i = 0 (11-4-1) y i + a x i + b 1= 0 (11-4-2) (11-4-2) b = 1 y i a x i (11-5) b (11-4-1) a (x i y i ) (1/)( x i )( y i ) a = (x i ) 2 (1/)( x i ) 2 (11-6) 94

101 (x i y i ) (1/)( x i )( y i ) = (x i y i ) {(1/)( x i )(1/)( y i )} ( (1/)( x i ) = x, (1/)( y i ) = y ) = (x i y i ) x y = (x i y i ) x y + { x y + x y } ( { x y + x y } = 0. 1 = ) = (x i y i ) x y i x i y + x y = (x i x ) (y i y ) (11-7) (11-6) =1 (x i ) 2 (1/)( x i ) 2 = (x i ) 2 (1/ 2 )( x i ) 2 =1 = (x i ) 2 (x) 2 = (x i ) 2 (x) 2 + { (x) + (x)} (x i ) 2 2 (x) 2 + (x) 2 = (x i ) 2 2 x i x + (x) 2 = (x i x ) 2 (11-8) (11-6) b (11-5) a = ˆ a (x i x ) (y i y ) a a ˆ =1 = (x i x ) 2 (11-9-1) b b ˆ = y a ˆ x (11-9-2) a a ˆ, b b ˆ σ 2 (a), σ 2 (b) y σ 2 (y) σ 2 (y) = (ε i ) 2 = (y i m ˆ i ) 2 = {y i ( b ˆ + a ˆ x i )} 2 (11-10) ( 2) ( 2) ( 2) m ˆ i = b ˆ + a ˆ x i y (-2) y (-2) =1 =1 95

102 (11-10) (11-9-2) ˆ b 1 σ 2 (y) = {y i ( ˆ 1 b + a ˆ x i )} 2 = ( 2) ( 2) 1 = ( 2) {y i y a ˆ (x i x )} 2 {(y i y ) 2 2a ˆ (y i y )(x i x ) + a ˆ 2 (x i x ) 2 } a (11-9-1) 1 σ 2 (y) = {(y i y ) 2 a ˆ (y i y )(x i x )} (11-11) ( 2) a y i (11-11) σ 2 (y) σ 2 (a) (11-6) x c (11-8) c = (x i x ) 2 (11-12) (11-6) a a a ˆ = (1/c) { x i y i (1/)( x i )( y i )} = (1/c) { = (1/c) (x i y i x y i ) = (1/c) (x i x )y i x i y i x y i } y i (1/c) (x i x ) σ 2 (a) = {(1/c) (x i x )} 2 σ 2 (y) = σ 2 (y) (x c 2 i x ) 2 (11-12) i= = σ 2 (y) / (x i x ) 2 (11-13) σ 2 (b) (11-9-2) ˆ b = y ˆ a x b ˆ = y a ˆ x = (1/) y i ˆ a x i= 96

103 σ 2 (b) = (1/ 2 ) σ 2 (y) + (x) 2 σ 2 (a) = (1/) σ 2 (y) + i (x) 2 σ 2 (y) = { 1 (x i x ) 2 + (x) 2 } σ 2 (y) (11-14) (x i x ) 2 x y=ax+b x, y i ˆ a = i i (x i x )(y i y ) (x i x ) 2 ( ) ˆ b = y ˆ a x ( ) 1 σ 2 (y) = {(y i y ) 2 a ˆ (y i y )(x i x )} ( ) ( 2) σ 2 ( ˆ a ) = i 1 σ 2 (y) ( ) (x i x ) 2 σ 2 ( b ˆ ) = { 1 + (x) 2 } σ 2 (y) ( ) (x i x ) 2 i a b σ 2 (y),σ 2 ( a ˆ ),σ 2 ( b ˆ ) 2 DEVSQ = (x i x ), AVERAGE = (1/) xi i i COUNT=, COVAR=(1/) (x i x )(y i i y ) ˆ a, ˆ b, σ( ˆ a ), σ( ˆ b ) 97

104 (2) y x y=ax+b 9 y x x 9 (x,y) y=ax+b y x y=ax+b Lagrage two-error regressio treatmet ) York(1966) 42) (2-1) Lagrage X i Y i (, 2, 3,.., ) y i =ax i +b X i, Y i (X i, Y i ) (, 2, 3,.., ) (x i, y i ) (, 2, 3,.., ) S a, b 42) S = {ω(x i )(X i x i ) 2 + ω(y i )(Y i y i ) 2 } mi. (11-16) ω(x i ) ω(y i ) (X i, Y i ) y (x i, y i ) y=ax+b (X i, Y i ) x 11-2 (X i, Y i ) (, 2, 3,.., ) y i =ax i +b (Y i -y i )/(X i - x i )=(-1/a)ω(X i )/ω(y i ) 98

105 (residual) y x 11-2 a ω(x i )/ω(y i ) (Y i - y i )/ (X i - x i )=(-1/a)ω(X i )/ω(y i ) (11-17) Lagrage (2-2) (11-16) ω(x i ) ω(y i ) (X i, Y i ) (, 2, 3,.., ) a, b (11-16) (X i, Y i ) y i =ax i +b (11-18) (x i, y i ) (, 2, 3,.., ) S S S(x 1, x 2,.., x, y 1, y 2,.., y ) (δx i, δy i ) (, 2, 3,.., ) S δs (X i, Y i ) (, 2, 3,.., ) a, b (11-16) δs = [( S )δx i + ( S )δy i ] = 0 x i y i δs = {ω(x i )( 2)(X i x i )δx i + ω(y i )( 2)(Y i y i )δy i } = 2 {ω(x i )(x i X i )δx i + ω(y i )(y i Y i )δy i } = 0 2 {ω(x i )(x i X i )δx i + ω(y i )(y i Y i )δy i } = 0 (11-19) (x i, y i ) (, 2, 3,.., ) (11-18) y i =ax i +b δy i = x i δa + aδx i + δb x i δa + aδx i δy i + δb = 0 (11-20) a, b, x i, y i 0 λ i 0 λ i (x i δa + aδx i δy i + δb) = 0 (11-21) 99

106 (11-21) 0 λ i (x i δa + aδx i δy i + δb) = 0 (11-22) (11-19) (11-22) 0 {ω(x i )(x i X i )δx i + ω(y i )(y i Y i )δy i + λ i (x i δa + aδx i δy i + δb) } = 0 (11-23) {ω(x i )(x i X i ) + aλ i }δx i + {ω(y i )(y i Y i ) λ i }δy i + (λ i x i )δa + λ i δb = 0 (11-24) 0 δx i, δy i, δa, δb 0 ω(x i )(x i X i ) + aλ i = 0 ( ) ω(y i )(y i Y i ) λ i = 0 ( ) (λ i x i ) = 0 ( ) λ i = 0 ( ) a, b, x i, y i 2+2 ( ) ( ) 2+2 a, b, x i, y i λ i Lagrage λ i Lagrage (udetermied multipliers) S. (1976) 18 (11-16) (2-2) 11-2 ( ) ( ) 100

107 Y i y i λ = i /ω(y i ) X i x i ( aλ i ) /ω(x i ) = 1 ( a) ω(x i) ω(y i ) (11-26) (11-17) 11-3 (X i, Y i ) y i =ax i +b (x i, y i ) (x i, y i ) (11-26) (Y i - y i )/ (X i - x i )=(-1/a)ω(X i )/ω(y i ) (x i, y i ) A ω(x i ) x y 9 B ω(x i ) ω(y i ) (-1/a) y=ax+b ω(x i ) ω(y i )=1 major axis method 42) C ( 7) ω(x i ) 1/σ 2 (x), ω(y i ) 1/σ 2 (y) D ω(y i ) A (x i, y i ) B y y=ax+b D C (X i, Y i ) x 11-3 (X i, Y i ) y i =ax i +b (x i, y i ) (x i, y i ) (X i, Y i ) (-1/a)ω(X i )/ω(y i ) A ω(x i ) x y 9 B ω(x i ) ω(y i ) (-1/a) y=ax+b C D ω(y i ) y x 101

108 y x ω(y i ) =1/σ 2 (y) σ 2 (y) 0 ω(y i ) y A ω(x i ) = ω(x i ) =1/σ 2 (x) σ 2 (x) 0, ω(x i ) (2-3) Lagrage ( ) ( ) (x i, y i ) (11-18) y i =ax i +b (x i, y i ) Y i + λ i /ω(y i ) = a[x i λ i a /ω(x i )] + b λ i = ax i + b Y i a 2 /ω(x i ) +1/ω(Y i ) = W i (ax i + b Y i ) (11-27) W i = ω(x i ) ω(y i ) a 2 ω(y i ) + ω(x i ) (11-28) ( ) ( ) i ( ) λ i x i = λ i [X i λ i a /ω(x i )] = λ i X i (λ i ) 2 a /ω(x i ) = W i (ax 2 i + bx i Y i X i ) + W 2 i (ax i + b Y i ) 2 ( a) /ω(x i ) = 0 ( ) λ i = W i (ax i + b Y i ) (11-29) = 0 (11-30) (11-30) b W i b = W i Y i W i a X i W i Y i aw i X i b = W i (11-31) 102

109 b (11-29) a Y = W i Y i, X = W i X i W i W i (11-32) Y i X i b = Y ax (11-33) (11-29) b a W i [ax 2 i + (Y ax )X i Y i X i ] + W 2 i [ax i + (Y ax ) Y i ] 2 ( a) /ω(x i ) = 0 (11-34) W i [ax i 2 + (Y ax )X i Y i X i ] = W i [ax i (X i X ) (Y i Y )X i ] = W i X i [a(x i X ) (Y i Y )] = W i X i (au i V i ) (11-35) U i X i X, V i Y i Y (11-36) (X,Y ) x y W i 2 [ax i + (Y ax ) Y i ] 2 ( a) /ω(x i ) = W i 2 [a(x i X ) (Y i Y )] 2 ( a) /ω(x i ) = W i 2 (au i V i ) 2 ( a) /ω(x i ) = W 2 i (a 2 U 2 i 2aU i V i + V 2 i )( a) /ω(x i ) (11-37) (11-34) 103

110 [W i (au i V i )] X i + [W i (au i V i )] 2 ( a) /ω(x i ) = 0 (11-38) [W i (au i V i )] 1 [W i (au i V i )] [W i (au i V i )] (X,Y ) W i (11-35) (11-37) a a 2 2 W a 3 i ω(x i ) U 2 W i + 2a 2 i ω(x i ) U iv i +a[ W i 2 W i X i U i ω(x i ) V 2 i ] W i X i V i = 0 (11-39) X i 3 5 X i (= U i + X ) 3 4 aw i X i U i W i X i V i = aw i (U i + X )U i W i (U i + X )V i 0 = aw i U 2 i + aw i X U i W i U i V i W i X V i 2 = aw i U i W i U i V i + aw i X U i W i X V i 2 = aw i U i W i U i V i + W i X (au i V i ) W i X (au i V i ) = W i X [a(x i X ) (Y i Y )] = W i X (ax i Y i + Y ax ) (b = Y ax ) = W i X (ax i + b Y i ) = X W i (ax i + b Y i ) = X W i i W i i (11-38) (-1) W i (ax i + b Y i ) = X ( W i i )(ax + b Y ) = W a 3 i ω(x i ) U 2 W i 2a 2 i ω(x i ) U V 2 W i i a[ W i U i i ω(x i ) V 2 i ] + W i U i V i = 0 (11-41) 104

111 a a 3 (11-28) W i a a (2-4) Newto (11-41) f(a), f (a) = 0 (11-42). a 0 (11-45) y 9 (11-41) a 0 Taylor f (a) = f (a 0 ) + f '(a 0 ) (a a 0 ) + (1/2) f ''(a 0 ) (a a 0 ) f (a) = 0 = f (a 0 ) + f '(a 0 ) (a a 0 ) a = a 0 f (a 0 ) / f '(a 0 ) (11-43) a a 1 a 1 = a 0 f (a 0 ) / f '(a 0 ) k a k +1 = a k f (a k ) / f '(a k ) (11-44) a (11-44) Newto Newto-Raphso 20) (11-41) f(a) f (a) f '(a k ) f (a k ) f (a k 1 ) a k a k 1 (11-44) a k +1 a k [ a k a k 1 f (a k ) f (a k 1 ) ] f (a k) = a f (a ) a f (a ) k 1 k k k 1 f (a k ) f (a k 1 ) b (11-44 ) (11-33) 105

112 (2-5) a, b a, b a, b (11-38) [W i (au i V i )] X i + [W i (au i V i )] 2 ( a) /ω(x i ) = 0 (11-38) [W i (au i V i )] W i (X,Y ) 1 2 (11-40) W i (au i V i ) X = 0 [W i (au i V i )] (X i X ) = W i (au i V i ) U i 0 a a W i U 2 i W i V i U i a ( W i V i U i ) /( W i U 2 i ) (11-45) b (11-33) b = Y ax b = Y X ( W i V i U i ) /( W i U 2 i ) (11-46) a, b b = Y ax b a a b σ 2 (b) = ( b a )2 σ 2 (a) = (X ) 2 σ 2 (a) (11-47). X, Y a a (11-16) S S = {ω(x i )(X i x i ) 2 + ω(y i )(Y i y i ) 2 } (11-16) ( , -2) x i y i i (11-27) S = W i (ax i + b Y i ) 2 = W i (au i V i ) 2 = (ε i ) 2 (11-48) b = Y ax b (ε i ) 2 106

113 S = (ε i ) 2 = [ W i (au i V i )] 2 (11-49) ε i = W i (au i V i ) (11-50) S S = (ε i ) 2 = ( 2){ (ε i ) 2 }/( 2) = ( 2)σ 2 (ε) (11-51) 1 σ 2 (ε) = S /( 2) = ( 2) W i(au i V i ) 2 (11-52) (11-50) δε i = ( ε i / a)δa = [ W i (au i V i ) a = [ W i U i + (au i V i ) ( W ) i ]δa a W i U i δa + (au i V i ) ( W ) i ]δa a a δε i = W i U i δa (δε i ) 2 = W i U 2 i (δa) 2 δε i = ε i ε i, ε i 0 δε i ε i (δε i ) 2 (ε i ) 2 = ( 2)σ 2 (ε) = S = W i U 2 i (δa) 2 = (δa) 2 2 W i U i δa = a a (δa) 2 = (1/)(a a ) 2 1= (1/) (a a ) 2 (1/) (a i a ) 2 σ 2 (a) (11-54) σ 2 2 (a) S / W i U i = W i (au i V i ) 2 2 / W i U i σ 2 (ε) σ 2 (a) (11-53) (11-54) (11-55) (11-56) 107

114 σ 2 2 (a) {( 2) / W i U i } σ 2 (ε) ( ) 1 σ 2 (ε) ( 2) { W 2 iu i }σ 2 (a) ( ) σ 2 (a), σ 2 (b) York (1966) York (1966) σ 2 (a), σ 2 (b) S σ 2 (a) ( 2) / W 2 iu i = W i (au i V i ) 2 /{( 2) W i U 2 i } (11-58) σ 2 2 (b) { W i X i / W i } σ 2 (a) (11-59) i. York(1966) y=a+bx (11-58), (11-59) y=ax+b York (1966) (11-58) (11-56) σ 2 (a) 1/( 2) (11-47) σ 2 (b) = (X) 2 σ 2 (a) York (1966) (11-59) (2-6) a, b (11-56) ε i a. (11-50) δε i = [ W i U i + (au i V i ) ( W ) i ]δa a (δε i ) 2 = [ W i U i + (au i V i ) ( W i ) ] 2 (δa) 2 (11-60) a ( 2)σ 2 (ε) = S = (ε i ) 2 = σ 2 (a) [ W i U i + (au i V i ) ( W i ) a σ 2 (a) = S [ W i U i + (au i V i ) ( W i ) a ] 2 ] 2 (11-61) 108

115 W i a = [ 2a ω(x i ) ](W i) 3 / 2 (11-62) (11-61) (11-50) ε i W i U i b (11-47) b = Y ax (11-33) δb = ( b )δa = ( Y a a X a X a )δa (11-63) σ 2 (b) = ( b a )2 σ 2 (a) = ( Y a X a X a )2 σ 2 (a) (11-64) Y = ( W i Y i i ) / W i i, X = ( W i X i i ) / W i i (11-32) W i W i a Y a = Y W i, i W i a X a = X W i (11-64) i W i a Y = [Y i ( W i ) ( W W i i i Y i )]/( W i i ) 2 = V i /( W i i ) i (11-65) X = [X i ( W i ) ( W W i i i X i )]/( W i i ) 2 = U i / W i i (11-66) i W i a = W 2 i /ω(x i ) (11-67) ( Y a X a X a ) (11-61) σ2 (a) σ 2 (b) ( Y a X a X a ) = (1/ W i i) [ W i ω(x i ) (au V )] i i i X 2 = {X [ W 2 i ω(x i ) (au i V i ) /( W i i i )]} 109

116 σ 2 (b) = ( Y a X a X a )2 σ 2 (a) = {X [ W 2 i ω(x i ) (au V ) i i i /( W i i )]} 2 σ 2 (a) (11-68) X (11-47) (11-68) York(1966) 42) two-error regressio method York(1969) 43) σ 2 (y) σ 2 (x) Brooks et al. (1972) 44, ω(x i ) 1/σ 2 (x), ω(y i ) 1/σ 2 (y) 11-3 C σ 2 (a), σ 2 (b) 11 (2) York(1966) 42) Brooks et al. (1972) 44) 40 3 (3)-1 X Y major axis 1974 X Y X Y y X Y 11 3 major axis X Y 110

117 (3)-2 Chemical Abstract Chem. Ab. Brooks et al. (1972) 44) Realistic use of two-error regressio treatmets as applied to 45) Google two-error regressio Net 46) Net 111

118 3 40 (3)-3 Wedt-2 Brooks et al. (1972) 44) York(1966) 42) 11-(2-5) Brooks et al. (1972) Wedt-2 Brooks et al. (1972) 44) Wedt Busesastalt für Bodeforshug Wedt-2 Wedt Wedt-2 FORTRAN Wedt X Y Wedt-2 figure captio Wedt-2 York York Wedt-2 40 York Wedt-2 10 (2)

119 113

120 + I = exp( x 2 ) dx,. I 2 = + exp( x 2 )dx exp( y 2 )dy = exp[ (x 2 + y 2 )]dxdy (A1-1) x y r θ x=r cosθ y= r siθ ( A1-1) r = (x 2 + y 2 ) 1/ 2 xy 0 r <, 0 θ < 2π rdθdr dxdy=rdθdr A1 1 Jacobo J y dθ θ rdθ dr rdθ dy dr θ dx O x A1-1 dxdy = J drdθ J = (x,y) (r,θ) = x r y r x θ = y θ (A1-1) + + cosθ rsiθ siθ rcosθ = r(cos2 θ + si 2 θ) = r J = r (A1-2) I 2 = exp[ (x 2 + y 2 )]dxdy = exp( r 2 )rdrdθ 2π r= 0 0 = exp( r 2 )rdr dθ = 2π exp( r 2 )rdr. (A1-3) r= 0 2π 0 r= 0 113

121 r 2 = u du /dr = 2r I = I 2 = 2π exp( r 2 )rdr = π exp( u)du = π[ e u ] 0 = π. (A1-4) r= 0 u= 0 + exp( x 2 )dx = π. (A1-5) exp( x 2 ) x=0 (0, ) (A1-5) + exp( x 2 )dx = π 2. (A1-6) 0 ( 1-6) exp( x 2 ), I 0 = + 0 exp( αx 2 )dx u = α x du = α dx (1-6) I 0 = + exp( αx 2 )dx = 1 2 π α 0 exp( αx 2 ) x, I 1 = + 0 (A1-7) x exp( αx 2 )dx,, u = αx 2 du /dx = 2α x I 1 = + x exp( αx 2 )dx = 1 + 2α exp( u)du = 1 2α 0 0 (A1-8) exp( αx 2 ) x 2, I 2 = I 3 = x 2 exp( αx 2 )dx x 3 exp( αx 2 )dx, I 4 = x 4 exp( αx 2 )dx,

122 I = + 1 x exp( αx 2 )dx = x ( 2α x ) d[exp( α x 2 )] dx (A1-9) dx + 0 (A1-9) 0 I = ( α ){[x dx 1 exp( α x 2 )] + 0 ( dx ) exp( α x 2 )dx} 2 0 I = ( 1 2α ) + 0 x 2 exp( α x 2 )dx = ( 1 2α ) I 2 (A1-10) (A1-7) (A1-8) I 0 I 1 (A1-10) I = ( 1 2α ) I 2 I ( 2) + I 0 = e α x 2 dx = ( 1 2 )(π α )1/ I 1 = x e α x 2 dx = 1 2α 0 + I 2 = x 2 e α x 2 dx = π 1/ 2 0 4α 3 / 2 + I 3 = x 3 e α x 2 dx = 1 2α 2 0 I 4 = x 4 e α x 2 dx = + 0 3π 1/ 2 8α 5 / 2 (A1-11) 115

123 Jacobi x, y (u,v) x = p(u,v), y = q(u,v) (A2 1) x, y f (x, y) x, y (A2 1) u, v u, v dxdy dudv x = x(u) x dx = (dx /du)du u (dx /du) (A 2 1) (u,v) u = p 1 (x, y), v = q 1 (x, y) (A 2-2) u v xy v u A2-1 x y (u,v) (u,v) y M 4 u+du u dσ M 1 M 2 M 3 v v+dv O A2-1. (u,v) x 116

124 A2-1 (u,v) dσ M 1 M M M dσ M 1 M M M p(u,v), q(u,v) M 1 x 1 = p(u,v), y 1 = q(u,v) M 2 M 3 M 4 x 2 = p(u + du,v) = p(u,v) + p(u,v) u y 2 = q(u + du,v) = q(u,v) + q(u,v) u du du x 3 = p(u + du,v + dv) = p(u,v) + p(u,v) u y 3 = q(u + du,v + dv) = q(u,v) + q(u,v) u x 4 = p(u,v + dv) = p(u,v) + p(u,v) v dv du + p(u,v) v du + q(u,v) v dv (A 2-3) dv y 4 = q(u,v + dv) = q(u,v) + q(u,v) v M 1 M M M dv y dσ M 1 a 1 θ a 2 M 3 O M 2 A2-2 x M 1 M M A2-2 M 2 117

125 M 1 a 1 M M a 2 dσ = a 1 a 2 siθ (A2-4) 2 (dσ) 2 = (a 1 ) 2 (a 2 ) 2 si 2 θ = (a 1 ) 2 (a 2 ) 2 (a 1 ) 2 (a 2 ) 2 cos 2 θ (A2-5) a b a b cosθ = (a,b) (A2-5) (dσ) 2 = (a 1,a 1 ) (a 1.a 2 ) (a 2,a 1 ) (a 2,a 2 ) (A2-6) a 1 = a 11 i + a 21 j, a 2 = a 12 i + a 22 j x y (A2-6) (dσ) 2 = (a 11 )2 + (a 21 ) 2 a 12 a 11 + a 22 a 21 a 12 a 11 + a 22 a 21 (a 12 ) 2 + (a 22 ) 2 = (a 11 ) 2 (a 22 ) 2 + (a 21 ) 2 (a 12 ) 2 2(a 12 )(a 11 )(a 22 )(a 21 ) = a 2 11 a 12 (A2-7) a 21 a 22 dσ = a 11 a 12 a 21 a 22, (A2-8) M 2 M 1 a 1 M M a 2 (A2-3) a 11 = x 1 x 2 = p(u,v) u a 12 = x 3 x 2 = p(u,v) v du, dv, a 21 = y 1 y 2 = q(u,v) u a 22 = y 3 y 2 = q(u,v) v dv, du, (2-8) dσ = p(u,v) u q(u,v) u du du p(u,v) dv q(u,v) v dv v = p(u,v) u q(u,v) u p(u,v) v dudv q(u,v) v (A2-9) (2-9) dσ /(dudv) Jacobi 118

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x ( II (1 4 ) 1. p.13 1 (x, y) (a, b) ε(x, y; a, b) f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a x a A = f x (a, b) y x 3 3y 3 (x, y) (, ) f (x, y) = x + y (x, y) = (, )

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1 1/5 ( ) Taylor ( 7.1) (x, y) f(x, y) f(x, y) x + y, xy, e x y,... 1 R {(x, y) x, y R} f(x, y) x y,xy e y log x,... R {(x, y, z) (x, y),z f(x, y)} R 3 z 1 (x + y ) z ax + by + c x 1 z ax + by + c y x +

More information

(I) (II) 2 (I) 2 (II) 2 (III) (I) (II) (II) : 2 Typeset by Akio Namba usig Powerdot. 2 / 47

(I) (II) 2 (I) 2 (II) 2 (III) (I) (II) (II) : 2 Typeset by Akio Namba usig Powerdot. 2 / 47 4 Typeset by Akio Namba usig Powerdot. / 47 (I) (II) 2 (I) 2 (II) 2 (III) (I) (II) (II) : 2 Typeset by Akio Namba usig Powerdot. 2 / 47 (I) (II) 2 (I) 2 (II) 2 (III) (I) (II) (II) : 2 (radom variable):

More information

st.dvi

st.dvi 9 3 5................................... 5............................. 5....................................... 5.................................. 7.........................................................................

More information

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K II. () 7 F 7 = { 0,, 2, 3, 4, 5, 6 }., F 7 a, b F 7, a b, F 7,. (a) a, b,,. (b) 7., 4 5 = 20 = 2 7 + 6, 4 5 = 6 F 7., F 7,., 0 a F 7, ab = F 7 b F 7. (2) 7, 6 F 6 = { 0,, 2, 3, 4, 5 },,., F 6., 0 0 a F

More information

v er.1/ c /(21)

v er.1/ c /(21) 12 -- 1 1 2009 1 17 1-1 1-2 1-3 1-4 2 2 2 1-5 1 1-6 1 1-7 1-1 1-2 1-3 1-4 1-5 1-6 1-7 c 2011 1/(21) 12 -- 1 -- 1 1--1 1--1--1 1 2009 1 n n α { n } α α { n } lim n = α, n α n n ε n > N n α < ε N {1, 1,

More information

入試の軌跡

入試の軌跡 4 y O x 4 Typed by L A TEX ε ) ) ) 6 4 ) 4 75 ) http://kumamoto.s.xrea.com/plan/.. PDF) Ctrl +L) Ctrl +) Ctrl + Ctrl + ) ) Alt + ) Alt + ) ESC. http://kumamoto.s.xrea.com/nyusi/kumadai kiseki ri i.pdf

More information

ad bc A A A = ad bc ( d ) b c a n A n A n A A det A A ( ) a b A = c d det A = ad bc σ {,,,, n} {,,, } {,,, } {,,, } ( ) σ = σ() = σ() = n sign σ sign(

ad bc A A A = ad bc ( d ) b c a n A n A n A A det A A ( ) a b A = c d det A = ad bc σ {,,,, n} {,,, } {,,, } {,,, } ( ) σ = σ() = σ() = n sign σ sign( I n n A AX = I, YA = I () n XY A () X = IX = (YA)X = Y(AX) = YI = Y X Y () XY A A AB AB BA (AB)(B A ) = A(BB )A = AA = I (BA)(A B ) = B(AA )B = BB = I (AB) = B A (BA) = A B A B A = B = 5 5 A B AB BA A

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 -

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 - M3............................................................................................ 3.3................................................... 3 6........................................... 6..........................................

More information

ii

ii ii iii 1 1 1.1..................................... 1 1.2................................... 3 1.3........................... 4 2 9 2.1.................................. 9 2.2...............................

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq 49 2 I II 2.1 3 e e = 1.602 10 19 A s (2.1 50 2 I SI MKSA 2.1.1 r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = 3 10 8 m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq F = k r

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

(Basic of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Weak Law

(Basic of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Weak Law I (Radom Walks ad Percolatios) 3 4 7 ( -2 ) (Preface),.,,,...,,.,,,,.,.,,.,,. (,.) (Basic of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios, Meas).............................

More information

K E N Z OU

K E N Z OU K E N Z OU 11 1 1 1.1..................................... 1.1.1............................ 1.1..................................................................................... 4 1.........................................

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b) 2011 I 2 II III 17, 18, 19 7 7 1 2 2 2 1 2 1 1 1.1.............................. 2 1.2 : 1.................... 4 1.2.1 2............................... 5 1.3 : 2.................... 5 1.3.1 2.....................................

More information

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g( 06 5.. ( y = x x y 5 y 5 = (x y = x + ( y = x + y = x y.. ( Y = C + I = 50 + 0.5Y + 50 r r = 00 0.5Y ( L = M Y r = 00 r = 0.5Y 50 (3 00 0.5Y = 0.5Y 50 Y = 50, r = 5 .3. (x, x = (, u = = 4 (, x x = 4 x,

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1)

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1) D d dx 1 1.1 n d n y a 0 dx n + a d n 1 y 1 dx n 1 +... + a dy n 1 dx + a ny = f(x)...(1) dk y dx k = y (k) a 0 y (n) + a 1 y (n 1) +... + a n 1 y + a n y = f(x)...(2) (2) (2) f(x) 0 a 0 y (n) + a 1 y

More information

i 18 2H 2 + O 2 2H 2 + ( ) 3K

i 18 2H 2 + O 2 2H 2 + ( ) 3K i 18 2H 2 + O 2 2H 2 + ( ) 3K ii 1 1 1.1.................................. 1 1.2........................................ 3 1.3......................................... 3 1.4....................................

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

i I II I II II IC IIC I II ii 5 8 5 3 7 8 iii I 3........................... 5......................... 7........................... 4........................ 8.3......................... 33.4...................

More information

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d A 2. x F (t) =f sin ωt x(0) = ẋ(0) = 0 ω θ sin θ θ 3! θ3 v = f mω cos ωt x = f mω (t sin ωt) ω t 0 = f ( cos ωt) mω x ma2-2 t ω x f (t mω ω (ωt ) 6 (ωt)3 = f 6m ωt3 2.2 u ( v w) = v ( w u) = w ( u v) ma22-9

More information

sec13.dvi

sec13.dvi 13 13.1 O r F R = m d 2 r dt 2 m r m = F = m r M M d2 R dt 2 = m d 2 r dt 2 = F = F (13.1) F O L = r p = m r ṙ dl dt = m ṙ ṙ + m r r = r (m r ) = r F N. (13.2) N N = R F 13.2 O ˆn ω L O r u u = ω r 1 1:

More information

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4 35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m

More information

II 2 II

II 2 II II 2 II 2005 yugami@cc.utsunomiya-u.ac.jp 2005 4 1 1 2 5 2.1.................................... 5 2.2................................. 6 2.3............................. 6 2.4.................................

More information

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C 8 ( ) 8 5 4 I II III A B C( ),,, 5 I II A B ( ),, I II A B (8 ) 6 8 I II III A B C(8 ) n ( + x) n () n C + n C + + n C n = 7 n () 7 9 C : y = x x A(, 6) () A C () C P AP Q () () () 4 A(,, ) B(,, ) C(,,

More information

1 1 3 1.1 (Frequecy Tabulatios)................................ 3 1........................................ 8 1.3.....................................

1 1 3 1.1 (Frequecy Tabulatios)................................ 3 1........................................ 8 1.3..................................... 1 1 3 1.1 (Frequecy Tabulatios)................................ 3 1........................................ 8 1.3........................................... 1 17.1................................................

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

all.dvi

all.dvi 5,, Euclid.,..,... Euclid,.,.,, e i (i =,, ). 6 x a x e e e x.:,,. a,,. a a = a e + a e + a e = {e, e, e } a (.) = a i e i = a i e i (.) i= {a,a,a } T ( T ),.,,,,. (.),.,...,,. a 0 0 a = a 0 + a + a 0

More information

4................................. 4................................. 4 6................................. 6................................. 9.................................................... 3..3..........................

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

II 1 II 2012 II Gauss-Bonnet II

II 1 II 2012 II Gauss-Bonnet II II 1 II 212 II Gauss-Bonnet II 1 1 1.1......................................... 1 1.2............................................ 2 1.3.................................. 3 1.4.............................................

More information

Chap11.dvi

Chap11.dvi . () x 3 + dx () (x )(x ) dx + sin x sin x( + cos x) dx () x 3 3 x + + 3 x + 3 x x + x 3 + dx 3 x + dx 6 x x x + dx + 3 log x + 6 log x x + + 3 rctn ( ) dx x + 3 4 ( x 3 ) + C x () t x t tn x dx x. t x

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

populatio sample II, B II? [1] I. [2] 1 [3] David J. Had [4] 2 [5] 3 2

populatio sample II, B II?  [1] I. [2] 1 [3] David J. Had [4] 2 [5] 3 2 (2015 ) 1 NHK 2012 5 28 2013 7 3 2014 9 17 2015 4 8!? New York Times 2009 8 5 For Today s Graduate, Just Oe Word: Statistics Google Hal Varia I keep sayig that the sexy job i the ext 10 years will be statisticias.

More information

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 ( 1 1.1 (1) (1 + x) + (1 + y) = 0 () x + y = 0 (3) xy = x (4) x(y + 3) + y(y + 3) = 0 (5) (a + y ) = x ax a (6) x y 1 + y x 1 = 0 (7) cos x + sin x cos y = 0 (8) = tan y tan x (9) = (y 1) tan x (10) (1 +

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

( 12 ( ( ( ( Levi-Civita grad div rot ( ( = 4 : 6 3 1 1.1 f(x n f (n (x, d n f(x (1.1 dxn f (2 (x f (x 1.1 f(x = e x f (n (x = e x d dx (fg = f g + fg (1.2 d dx d 2 dx (fg = f g + 2f g + fg 2... d n n

More information

( )

( ) 18 10 01 ( ) 1 2018 4 1.1 2018............................... 4 1.2 2018......................... 5 2 2017 7 2.1 2017............................... 7 2.2 2017......................... 8 3 2016 9 3.1 2016...............................

More information

Gmech08.dvi

Gmech08.dvi 145 13 13.1 13.1.1 0 m mg S 13.1 F 13.1 F /m S F F 13.1 F mg S F F mg 13.1: m d2 r 2 = F + F = 0 (13.1) 146 13 F = F (13.2) S S S S S P r S P r r = r 0 + r (13.3) r 0 S S m d2 r 2 = F (13.4) (13.3) d 2

More information

Microsoft Word - 表紙.docx

Microsoft Word - 表紙.docx 黒住英司 [ 著 ] サピエンティア 計量経済学 訂正および練習問題解答 (206/2/2 版 ) 訂正 練習問題解答 3 .69, 3.8 4 (X i X)U i i i (X i μ x )U i ( X μx ) U i. i E [ ] (X i μ x )U i i E[(X i μ x )]E[U i ]0. i V [ ] (X i μ x )U i i 2 i j E [(X i

More information

B ver B

B ver B B ver. 2017.02.24 B Contents 1 11 1.1....................... 11 1.1.1............. 11 1.1.2.......................... 12 1.2............................. 14 1.2.1................ 14 1.2.2.......................

More information

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1 1 I 1.1 ± e = = - =1.602 10 19 C C MKA [m], [Kg] [s] [A] 1C 1A 1 MKA 1C 1C +q q +q q 1 1.1 r 1,2 q 1, q 2 r 12 2 q 1, q 2 2 F 12 = k q 1q 2 r 12 2 (1.1) k 2 k 2 ( r 1 r 2 ) ( r 2 r 1 ) q 1 q 2 (q 1 q 2

More information

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n ( 3 n nc k+ k + 3 () n C r n C n r nc r C r + C r ( r n ) () n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (4) n C n n C + n C + n C + + n C n (5) k k n C k n C k (6) n C + nc

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

A

A A 2563 15 4 21 1 3 1.1................................................ 3 1.2............................................. 3 2 3 2.1......................................... 3 2.2............................................

More information

73

73 73 74 ( u w + bw) d = Ɣ t tw dɣ u = N u + N u + N 3 u 3 + N 4 u 4 + [K ] {u = {F 75 u δu L σ (L) σ dx σ + dσ x δu b δu + d(δu) ALW W = L b δu dv + Aσ (L)δu(L) δu = (= ) W = A L b δu dx + Aσ (L)δu(L) Aσ

More information

36 th IChO : - 3 ( ) , G O O D L U C K final 1

36 th IChO : - 3 ( ) , G O O D L U C K final 1 36 th ICh - - 5 - - : - 3 ( ) - 169 - -, - - - - - - - G D L U C K final 1 1 1.01 2 e 4.00 3 Li 6.94 4 Be 9.01 5 B 10.81 6 C 12.01 7 N 14.01 8 16.00 9 F 19.00 10 Ne 20.18 11 Na 22.99 12 Mg 24.31 Periodic

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

(2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y

(2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y (2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = a c b d (a c, b d) P = (a, b) O P a p = b P = (a, b) p = a b R 2 { } R 2 x = x, y R y 2 a p =, c q = b d p + a + c q = b + d q p P q a p = c R c b

More information

4 5.............................................. 5............................................ 6.............................................. 7......................................... 8.3.................................................4.........................................4..............................................4................................................4.3...............................................

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2 7 1995, 2017 7 21 1 2 2 3 3 4 4 6 (1).................................... 6 (2)..................................... 6 (3) t................. 9 5 11 (1)......................................... 11 (2)

More information

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi I (Basics of Probability Theory ad Radom Walks) 25 4 5 ( 4 ) (Preface),.,,,.,,,...,,.,.,,.,,. (,.) (Basics of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios,

More information

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA appointment Cafe D

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA  appointment Cafe D 1W II K200 : October 6, 2004 Version : 1.2, kawahira@math.nagoa-u.ac.jp, http://www.math.nagoa-u.ac.jp/~kawahira/courses.htm TA M1, m0418c@math.nagoa-u.ac.jp TA Talor Jacobian 4 45 25 30 20 K2-1W04-00

More information

notekiso1_09.dvi

notekiso1_09.dvi 39 3 3.1 2 Ax 1,y 1 Bx 2,y 2 x y fx, y z fx, y x 1,y 1, 0 x 1,y 1,fx 1,y 1 x 2,y 2, 0 x 2,y 2,fx 2,y 2 A s I fx, yds lim fx i,y i Δs. 3.1.1 Δs 0 x i,y i N Δs 1 I lim Δx 2 +Δy 2 0 x 1 fx i,y i Δx i 2 +Δy

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) ( 6 20 ( ) sin, cos, tan sin, cos, tan, arcsin, arccos, arctan. π 2 sin π 2, 0 cos π, π 2 < tan < π 2 () ( 2 2 lim 2 ( 2 ) ) 2 = 3 sin (2) lim 5 0 = 2 2 0 0 2 2 3 3 4 5 5 2 5 6 3 5 7 4 5 8 4 9 3 4 a 3 b

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds 127 3 II 3.1 3.1.1 Φ(t) ϕ em = dφ dt (3.1) B( r) Φ = { B( r) n( r)}ds (3.2) S S n( r) Φ 128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds

More information

I

I I io@hiroshima-u.ac.jp 27 6 A A. /a δx = lim a + a exp π x2 a 2 = lim a + a = lim a + a exp a 2 π 2 x 2 + a 2 2 x a x = lim a + a Sic a x = lim a + a Rect a Gaussia Loretzia Bilateral expoetial Normalized

More information

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) = 1 1 1.1 I R 1.1.1 c : I R 2 (i) c C (ii) t I c (t) (0, 0) c (t) c(i) c c(t) 1.1.2 (1) (2) (3) (1) r > 0 c : R R 2 : t (r cos t, r sin t) (2) C f : I R c : I R 2 : t (t, f(t)) (3) y = x c : R R 2 : t (t,

More information

2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a

More information

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi II (Basics of Probability Theory ad Radom Walks) (Preface),.,,,.,,,...,,.,.,,.,,. (Basics of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios, Meas).............................

More information

(2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y

(2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y (2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = a c b d (a c, b d) P = (a, b) O P a p = b P = (a, b) p = a b R 2 { } R 2 x = x, y R y 2 a p =, c q = b d p + a + c q = b + d q p P q a p = c R c b

More information

( 28 ) ( ) ( ) 0 This note is c 2016, 2017 by Setsuo Taniguchi. It may be used for personal or classroom purposes, but not for commercial purp

( 28 ) ( ) ( ) 0 This note is c 2016, 2017 by Setsuo Taniguchi. It may be used for personal or classroom purposes, but not for commercial purp ( 28) ( ) ( 28 9 22 ) 0 This ote is c 2016, 2017 by Setsuo Taiguchi. It may be used for persoal or classroom purposes, but ot for commercial purposes. i (http://www.stat.go.jp/teacher/c2epi1.htm ) = statistics

More information

C : q i (t) C : q i (t) q i (t) q i(t) q i(t) q i (t)+δq i (t) (2) δq i (t) δq i (t) C, C δq i (t 0 )0, δq i (t 1 ) 0 (3) δs S[C ] S[C] t1 t 0 t1 t 0

C : q i (t) C : q i (t) q i (t) q i(t) q i(t) q i (t)+δq i (t) (2) δq i (t) δq i (t) C, C δq i (t 0 )0, δq i (t 1 ) 0 (3) δs S[C ] S[C] t1 t 0 t1 t 0 1 2003 4 24 ( ) 1 1.1 q i (i 1,,N) N [ ] t t 0 q i (t 0 )q 0 i t 1 q i (t 1 )q 1 i t 0 t t 1 t t 0 q 0 i t 1 q 1 i S[q(t)] t1 t 0 L(q(t), q(t),t)dt (1) S[q(t)] L(q(t), q(t),t) q 1.,q N q 1,, q N t C :

More information

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18 2013 8 29y, 2016 10 29 1 2 2 Jordan 3 21 3 3 Jordan (1) 3 31 Jordan 4 32 Jordan 4 33 Jordan 6 34 Jordan 8 35 9 4 Jordan (2) 10 41 x 11 42 x 12 43 16 44 19 441 19 442 20 443 25 45 25 5 Jordan 26 A 26 A1

More information

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+ R 3 R n C n V??,?? k, l K x, y, z K n, i x + y + z x + y + z iv x V, x + x o x V v kx + y kx + ky vi k + lx kx + lx vii klx klx viii x x ii x + y y + x, V iii o K n, x K n, x + o x iv x K n, x + x o x

More information

2 Chapter 4 (f4a). 2. (f4cone) ( θ) () g M. 2. (f4b) T M L P a θ (f4eki) ρ H A a g. v ( ) 2. H(t) ( )

2 Chapter 4 (f4a). 2. (f4cone) ( θ) () g M. 2. (f4b) T M L P a θ (f4eki) ρ H A a g. v ( ) 2. H(t) ( ) http://astr-www.kj.yamagata-u.ac.jp/~shibata f4a f4b 2 f4cone f4eki f4end 4 f5meanfp f6coin () f6a f7a f7b f7d f8a f8b f9a f9b f9c f9kep f0a f0bt version feqmo fvec4 fvec fvec6 fvec2 fvec3 f3a (-D) f3b

More information

( ) ,

( ) , II 2007 4 0. 0 1 0 2 ( ) 0 3 1 2 3 4, - 5 6 7 1 1 1 1 1) 2) 3) 4) ( ) () H 2.79 10 10 He 2.72 10 9 C 1.01 10 7 N 3.13 10 6 O 2.38 10 7 Ne 3.44 10 6 Mg 1.076 10 6 Si 1 10 6 S 5.15 10 5 Ar 1.01 10 5 Fe 9.00

More information

³ÎΨÏÀ

³ÎΨÏÀ 2017 12 12 Makoto Nakashima 2017 12 12 1 / 22 2.1. C, D π- C, D. A 1, A 2 C A 1 A 2 C A 3, A 4 D A 1 A 2 D Makoto Nakashima 2017 12 12 2 / 22 . (,, L p - ). Makoto Nakashima 2017 12 12 3 / 22 . (,, L p

More information

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s [ ]. lim e 3 IC ) s49). y = e + ) ) y = / + ).3 d 4 ) e sin d 3) sin d ) s49) s493).4 z = y z z y s494).5 + y = 4 =.6 s495) dy = 3e ) d dy d = y s496).7 lim ) lim e s49).8 y = e sin ) y = sin e 3) y =

More information

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π 4 4.1 4.1.1 A = f() = f() = a f (a) = f() (a, f(a)) = f() (a, f(a)) f(a) = f 0 (a)( a) 4.1 (4, ) = f() = f () = 1 = f (4) = 1 4 4 (4, ) = 1 ( 4) 4 = 1 4 + 1 17 18 4 4.1 A (1) = 4 A( 1, 4) 1 A 4 () = tan

More information

solutionJIS.dvi

solutionJIS.dvi May 0, 006 6 morimune@econ.kyoto-u.ac.jp /9/005 (7 0/5/006 1 1.1 (a) (b) (c) c + c + + c = nc (x 1 x)+(x x)+ +(x n x) =(x 1 + x + + x n ) nx = nx nx =0 c(x 1 x)+c(x x)+ + c(x n x) =c (x i x) =0 y i (x

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2 1 1.1 R(x) = 0 y + P (x)y + Q(x)y = R(x)...(1) y + P (x)y + Q(x)y = 0...(2) 1 2 u(x) v(x) c 1 u(x)+ c 2 v(x) = 0 c 1 = c 2 = 0 c 1 = c 2 = 0 2 0 2 u(x) v(x) u(x) u (x) W (u, v)(x) = v(x) v (x) 0 1 1.2

More information

1 n A a 11 a 1n A =.. a m1 a mn Ax = λx (1) x n λ (eigenvalue problem) x = 0 ( x 0 ) λ A ( ) λ Ax = λx x Ax = λx y T A = λy T x Ax = λx cx ( 1) 1.1 Th

1 n A a 11 a 1n A =.. a m1 a mn Ax = λx (1) x n λ (eigenvalue problem) x = 0 ( x 0 ) λ A ( ) λ Ax = λx x Ax = λx y T A = λy T x Ax = λx cx ( 1) 1.1 Th 1 n A a 11 a 1n A = a m1 a mn Ax = λx (1) x n λ (eigenvalue problem) x = ( x ) λ A ( ) λ Ax = λx x Ax = λx y T A = λy T x Ax = λx cx ( 1) 11 Th9-1 Ax = λx λe n A = λ a 11 a 12 a 1n a 21 λ a 22 a n1 a n2

More information

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a = II 6 ishimori@phys.titech.ac.jp 6.. 5.4.. f Rx = f Lx = fx fx + lim = lim x x + x x f c = f x + x < c < x x x + lim x x fx fx x x = lim x x f c = f x x < c < x cosmx cosxdx = {cosm x + cosm + x} dx = [

More information

統計的データ解析

統計的データ解析 ds45 xspec qdp guplot oocalc (Error) gg (Radom Error)(Systematc Error) x, x,, x ( x, x,..., x x = s x x µ = lm = σ µ x x = lm ( x ) = σ ( ) = - x = js j ( ) = j= ( j) x x + xj x + xj j x + xj = ( x x

More information