スライド 1

Size: px
Start display at page:

Download "スライド 1"

Transcription

1 都市安会議室 不飽和土の数理モデルに基づく締固め土構造物の力学挙動評価

2 発表構成 1: 研究背景 目的 2: 土 / 水連成有限要素解析 3: 土 / 水 / 空気連成有限要素解析 4: 土の締固めと不飽和土の力学を考慮した締固めメカニズム 5: 不飽和土を考慮した築堤シミュレーション 6: 結論

3 研究背景 目的 土構造物 安定性や変形特性の向上を目的 ( 締固め土で構成 ) 降雨や地震によって 機能が低下しているものも少なくない 締固め土の評価 (1) 規格化された室内締固め試験結果を現場に適用する管理 (2)Proctor の手法など... (3) 工法規定管理などを通してその特性を評価する手法 経験的管理 締固め土の強度発現メカニズムが解明されていない 安定解析の場合 (1) 斜面を有する構造物では初期応力状態の推定が重要 (2) 斜面を有する盛土では主応力方向を一義的に決定することができない 通常, 斜面を有する地形の解析は弾性体として境界値問題を解く 得られた解を初期応力状態とすることが一般的である 盛土構造物は不飽和地盤である 不飽和土の力学から締固めメカニズムを説明する 盛土を再現 得られる応力状態に及ぼす影響について検討する

4 土 / 水連成解析 地表面不等沈下 降雨 谷埋め土 ( 不飽和 ) case1 Surface movement (m) Distance from center (m) Ⅰ Ⅱ Ⅲ Total head (m) Ⅰ 3 Ⅱ Ⅲ Time (day) case2 Surface movement (m) 不等沈下の発生 -5 5 Distance from center (m) Ⅰ Ⅱ Ⅲ Total head (m) 降雨履歴 Ⅰ Ⅲ 3 Ⅱ Time (day)

5 土 / 水連成解析 植生の蒸散による地表面沈下 1m poznan clay boulder clay 1m 飽和度 5m 232m 体積ひずみ Residual surface settlement (m) Buliding X (m) 地表面沈下量 casea caseb casec

6 土 / 水 / 空気連成有限要素解析 不飽和土 / 水連成排水 非排水 / 排気条件の解析手法 ( 完全排気条件 ) しかし 豪雨地盤内に間隙空気が封入圧力が大きくなる 土構造物の崩壊などを誘発 ( 斜面などの盛土 ) 浸水性が低下し浸透施設の機能が低下 ( 浸透ます等の雨水施設 ) 不飽和土 / 水 / 空気連成間隙空気の圧縮性等を考慮する (1) 供試体内の不均一性 (2) 間隙空気封入による変形特性の違い 間隙空気圧 間隙空気圧を考慮するため有限要素法に取り込む 間隙空気圧が供試体等に及ぼす影響を検討する

7 土 / 水 / 空気連成有限要素解析 Borja,24 気相を考慮した連続条件式の導出導出条件各相の質量保存則空気の圧縮性の考慮理想気体の温度一定を仮定 M 質量 M a M w M s 気相 液相 固相 V a V w V s 体積 V 気相 + 固相 : 連続条件式 ( ) ( )( ) n 1 Sr 1 n 1 Sr 1 ns r + p a + p sd + ( 1 Sr) divv+ divwa = K K ρ a sd a 固相と液相の非圧縮性( Ksd =, Kw = ), 不飽和状態 ( S ) r 1 ˆ, w = ρ ( v v ) ˆ ρ = n( 1 S ) a a a ρ a r a 気相を考慮した連続条件式 pa ( 1 S ) ε r v + ns r n( 1 Sr) div n( 1 Sr)( a ) p v v = a

8 不飽和土 / 水 / 空気連成有限要素解析 不飽和土 / 水 / 空気連成初期値 境界値問題 土は土粒子とその間隙を埋める間隙水と間隙空気からなる. 地盤の挙動を微分方程式によって記述するために土の構造骨格と間隙水と間隙空気とを連続体として取り扱う 土の構造骨格 つりあい式 div σ = T ( σ = σ ) 変位 - ひずみ関係式 ( u) S 間隙水 連続条件式 ε = ε = divv ns v r 土 不飽和弾塑性構成式 ep σ = D : ε CS e 間隙空気 気相を考慮した連続条件式 ( ) ε ( ) ダルシー則 不飽和土 / 水 / 空気連成有限要素解析プログラム 間隙空気 間隙水 DACSAR-MP p a 1 Sr v + nsr n 1 Sr divv a = K ダルシー則 v = k gradp a a a a v = k gradh ( K = p + p ) a a a 境界条件 応力境界流量境界空気圧境界 変位境界水頭境界空気量境界 初期条件 σ = σ 有効応力 t= 全水頭 h = h t = 空気圧 Pa = P a t =

9 有限要素解析フロー 釣合式 連続式 ( 固相 + 液相 ) 連続式 ( 固相 + 気相 ) KUKUHKUA u Δ KHUKhtKhKHA h Δ θ 2 Δ tt t=+δ KAUKAHKAtKA p Δ θ Δ a FKhKp tq= Δ + + Δ 1 t Δ 1NNUHUAΔ + { γ w} + at{ } t K1NNh2tKh1hKHAp{ } ( ( θ) ){ γ w} at{ } tqnnakahhkatkap{ } { γ w} + ( + Δ ( θ) at){ } t 釣合式 連続式 ( 固相 + 液相 ) 連続式 ( 固相 + 気相 ) 変位 -ひずみ関係式構成式 1 S ep s ε = ( u ) σ = D : ε C 2 S e 有効応力 N = + p s σ σ 1 水頭 - 水圧 p w = ρ gh w M 水分特性曲線 S r Sr = p s w 不飽和土弾塑性構成モデル S e -hモデルの降伏関数 p p q p f ( σ, Se, εv ) = MDln + D εv = ζ p p sat 前進型 Euler 法 εσ,, p, S w r Δu, Δh, Δpa : 未知数

10 土 / 水 / 空気連成有限要素解析プログラム (DACSAR-MP) による検証

11 土 / 水 / 空気連成有限要素解析プログラム (DACSAR-MP) による検証 非排水 非排気,1 次元圧縮のシミュレーション ( 状態方程式の確認 ).1m メッシュ図 解析条件 m 材料定数 初期条件 λ 水分特性曲線 上辺に.1mm/min の変位速度を与え, 体積を変化させる 初期サクション, 飽和度を 1~4 の 4 パターン与え解析 Degree of saturation S r (-) κ M ν m a n k( cm day) Sr D A D B W A W B e 1. ka Suction s (kpa) 1 5 ( cm day) 1 3

12 土 / 水 / 空気連成有限要素解析プログラム (DACSAR-MP) による検証 非排水 非排気,1 次元圧縮のシミュレーション ( 状態方程式の確認 ) 解析結果 Air Volume (m 3 ) Air pressure P a (kpa) Displacement(m) 変位 - 間隙空気体積 体積変化量は等しく与えられている Air Volume (m 3 ) Displacement(m) 変位 - 間隙空気圧 間隙空気体積が減少すると間隙空気圧が増加 Air pressure P a (kpa) theory 間隙空気体積 - 間隙空気圧 PV= 一定の曲線

13 土 / 水 / 空気連成有限要素解析プログラム (DACSAR-MP) による検証.1m サクション変化時のシミュレーション メッシュ図 材料定数 初期条件 λ.1m Degree of saturation S rf =1. Wetting: A=-24., B=4.6 Drying: A=-34.7, B= Suction (kpa) 解析条件 初期サクション:3kPa 全端 4 点 : 水圧上昇と減少 : 空気圧上昇と減少 Logistic curve Eq. S S r = rf - S rc +Src 1+exp(A+Blns) 水分特性曲線 κ M ν m a n k( cm day) Sr D A D B W A W B e 1. ka 1 5 ( cm day) 1 3 S rc =.15 サクション上昇 サクション減少 Degree of Saturation Sr(-) 初期 Suction s (kpa) Degree of Saturation Sr(-) 空気圧増加水圧減少理論脱水曲線 水分特性曲線移動結果 空気圧減少水圧増加理論吸水曲線 Suction s (kpa) 水分特性曲線移動結果 初期

14 土 / 水 / 空気連成有限要素解析プログラム (DACSAR-MP) による検証 排水 排気境界で釣合式の確認.1m m Suction s (kpa) メッシュ図 Degree of saturation S r (-) 水分特性曲線 材料定数 初期条件 λ κ M ν m a n k( cm day) Sr D A D B W A W B e 1. ka 1 5 ( cm day) 1 3 解析条件 上辺に荷重を与える サクション変化が等しくなるように水圧もしくは空気圧を作用させる 空気圧と有効応力

15 土 / 水 / 空気連成有限要素解析プログラム (DACSAR-MP) による検証 排水 排気境界で釣合式の確認 4 Suction(kPa) 荷重 + 空気圧 1 荷重 + 水圧 2 荷重 + 空気圧 2 荷重 + 水圧 3 荷重 + 空気圧 3 荷重 + 水圧 4 荷重 + 空気圧 4 荷重 + 水圧 解析結果 1 2 Time(day) サクション変化有効応力が等しく増加 Effective means stress p'(kpa) Time(day) 有効応力変化 Displacement(m) Time(day) 沈下量

16 土 / 水 / 空気連成有限要素解析プログラム (DACSAR-MP) による検証 DACSAR-UA との比較 ( 排水 非排水 / 排気せん断 ).1m.1m Suction s(kpa) メッシュ図水分特性曲線 材料定数 初期条件 λ κ M ν m a n k( cm day) Sr D A D B W A W B Degree of Saturation Sr e CASE ka CASE3 1 5 ( cm day) 1 3 CASE4 CASE2 解析条件 正規状態, 過圧密状態ともに解析 上辺に.1mm/minの変位速度を与える

17 土 / 水 / 空気連成有限要素解析プログラム (DACSAR-MP) による検証 DACSAR-UA との比較 ( 排水 排気せん断 ) 解析結果 Deviator stress q(kpa) Deviator stress q(kpa) MP 過圧密 MP 正規 UA Shear strain ε s せん断ひずみ - 軸差応力 (CASE1) MP 過圧密 MP 正規圧密 UA Deviator stress q(kpa) Deviator stress q(kpa) MP 過圧密 MP 正規 UA Shear strain ε s せん断ひずみ - 軸差応力 (CASE2) MP 過圧密 MP 正規圧密 UA Shear strain ε s せん断ひずみ- 軸差応力 (CASE3) Shear strain ε s せん断ひずみ- 軸差応力 (CASE4)

18 土 / 水 / 空気連成有限要素解析プログラム (DACSAR-MP) による検証 DACSAR-UA との比較 ( 非排水 排気せん断 ) 6 8 Deviator stress q(kpa) MP 過圧密 MP 正規 - UA Deviator stress q(kpa) MP 過圧密 MP 正規 - UA 解析結果 Deviator stress q(kpa) Shear strain ε s せん断ひずみ- 軸差応力 (CASE1) 12 8 MP 過圧密 MP 正規 - UA Shear strain ε s せん断ひずみ- 軸差応力 (CASE3) Deviator stress q(kpa) Shear strain ε s せん断ひずみ- 軸差応力 (CASE2) MP 過圧密 2 MP 正規 - UA Shear strain ε s せん断ひずみ- 軸差応力 (CASE4)

19 土 / 水 / 空気連成有限要素解析プログラムによるパフォーマンス 間隙空気圧の影響 ( 沈下量の比較 ) 1.m 1.m 1.m Degree of saturation S rf =1. Wetting: A=-24., B=4.6 Drying: A=-34.7, B= Suction (kpa) 水分特性曲線 Logistic curve Eq. S S r = rf - S rc +Src 1+exp(A+Blns) S rc =.15 1.m メッシュ図 λ 材料定数 初期条件 κ M ν m a n k( cm day) Sr D A D B W A W B e 1. ka 1 5 ( cm day) 1 3 解析条件 上面に荷重載荷 透気係数を変化させる:k a =1.,.1,.1(cm/day)

20 土 / 水 / 空気連成有限要素解析プログラムによるパフォーマンス 間隙空気圧の影響 ( 沈下量の比較 ) 18 解析結果 Air pressure P a (kpa) Effective means stress p'(kpa) ka=1. ka=.1 ka= Time(day) 間隙空気圧 - 時間 ka=1. ka=.1 ka= Time(day) Displacement(m) ka=1..4 ka=.1 ka=.1 UA Time(day) 変位 - 時間 透気係数が低くなる 間隙空気の応力分担により沈下が抑えられる 有効応力 - 時間

21 不飽和土の力学を考慮した締固めのメカニズム

22 土の締固め 締固め強度基準 < 締固めにおける施工管理 > D 値 = 強度? 1. 現場での盛土の締固め基準 : 密度指標 ( 締固め 密度増加 強度 変形性の改善 ) 2. 飽和度 間隙空気率による管理 3. 工法規定方式 ( 土の撒出し厚さや転圧回数などの施工法を事前に決定 ) 現場での盛土の締固め基準は経験的に決定 D 値の概念図 締固めの研究土の締固めは不飽和土の力学という視点から考慮できなかった 締固めに要求されたのはメカニズムではなく, いかに締固まらせるか (1) 経験的管理が重要 (2) 強度発現についてのメカニズムは考慮されない 締固め機構はどうなっているか?

23 不飽和土の力学を考慮した締固めのメカニズム 低含水比 w = 9.85% 載荷, 除荷に応じてサクションは減少 増加 192 高含水比 サクション変化が大きい Hight of specimen(mm) Hight of specimen(mm) Time(min ) Suction s (kpa) Time t (min ) Load (N) e t ( ) Time t (min ) (a) 供試体高さ変化 (b) サクション変化 (c) 載荷重変化 高含水比 w = 23.53% Time(min ) Suction s (kpa) 低含水比が同じ乾燥密度になるまでの載荷重が大きい Time t (min ) Load (N) Time t (min ) Time t (min ) (a) 供試体高さ変化 (b) サクション変化 (c) 載荷重変化 静的締固め実験 ( 河井ら,22)

24 不飽和土の力学を考慮した締固めのメカニズム 荷重 cm Load (kpa) 2 1 5cm 材料パラメータ 初期条件 λ κ M ν k G s p sat (kpa) a m 載荷 5 分 Time t (min) (m/day) γ t (kn/m3 ) 14.7 e k (m/day) a 除荷 5 分 非排水境界 : 上下左右, 排気境界 : 上面 初期含水比:1~42%(2% 間隔 ) の計 17case 初期全水頭: 各含水比ごとに水分特性曲線 ( 吸水曲線 ) より設定 全水頭一定になるまで必要な時間をおく 間隙水圧が正になる場合は それと同時に水頭を設定し排水条件とする

25 解析結果 締固め中のサクション変化 要素 1 25 w=16% 要素 2 25 w=16% Suction s (kpa) w=24% w=32% w=4% w=42% Suction s (kpa) w=24% w=32% w=4% w=42% Loading-5min Unloading-5min Loading-5min Unloading-5min 締固め中の飽和度変化 要素 1 Degree of saturation S r (-) Time t (min) w=42% 要素 2 w=4% w=42% でサクション低下が抑えられている Time t (min) Degree of saturation S r (-) 1 w=42% w=4% Loading-5min Unloading-5min Loading-5min Unloading-5min Time t (min) Time t (min)

26 締固め中の間隙空気圧変化 解析結果 要素 1 Air pressure P a (kpa) :w=16% :w=24% :w=32% :w=4% :w=42% 間隙空気圧の封入差 要素 2 Air pressure P a (kpa) :w=16% :w=24% :w=32% :w=4% :w=42% 8 8 Loading-5min Unloading-5min Loading-5min Unloading-5min 要素 1 Time t (min) 締固め中の間隙水圧変化 Water pressure P w (kpa) :w=16% :w=24% :w=32% :w=4% :w=42% 要素 2 Water pressure P w (kpa) :w=16% :w=24% :w=32% :w=4% :w=42% Time t (min) -2-2 Loading-5min Unloading-5min Loading-5min Unloading-5min Time t (min) Time t (min)

27 解析結果 - 新 締固め中の間隙比変化 降伏応力が大きい 圧縮量が抑えられている 要素 1 締固め中の水分特性曲線 要素 1 Void ratio e (-) Degree of saturation S r (-) w=42% lower higher Water content :w=16% :w=24% :w=32% :w=4% :w=42% log p' (kpa) w=4% w=32% w=24% w=16% Suction s (kpa) 要素 2 要素 2 Void ratio e (-) Degree of saturation S r (-) w=42% lower higher Water content :w=16% :w=24% :w=32% :w=4% :w=42% log p' (kpa) 圧縮量が抑えられている (42%) w=4% w=32% w=24% w=16% Suction s (kpa)

28 解析結果 各応力の時間変化 ( ) N T = + ps = pa + s pa pw σ σ 1 σ 1 1 要素 1 要素 2 σ',σ N,p s,σ T (kpa) :σ' :σ N :p s σ',σ N,p s,σ T (kpa) :σ' :σ N :p s Loading-5min Unloading-5min Time t (min) Loading-5min Unloading-5min Time t (min) 特徴 (1) 有効応力に差がない 圧縮量が抑えられる結果 間隙空気圧の応力分担

29 解析結果 締固め曲線 特徴 Dry density ρ d (g/cm 3 ) 降伏応力減少 間隙比 小 Water content w (%) (1) 含水比に対して乾燥密度がピーク点を持っている (2) ゼロ空気間隙曲線に近い 使用している水分特性曲線モデル 不飽和土の力学を用いることで締固め曲線が説明できる 外力の有効応力への変換割合が小さい 間隙空気圧が応力分担 圧縮量にピーク

30 締固め速度による違い 荷重 3kPa 2cm 材料定数 初期条件 λ Gs κ M ν m e a n ne k( cm sec) ka ( cm sec) cm 非排水境界: 上下左右, 排気境界 : 上面 初期含水比:6~34%(1% 間隔と2% 間隔 ) の計 17case 初期全水頭: 各含水比ごとに水分特性曲線 ( 吸水曲線 ) より設定 全水頭一定になるまで必要な時間をおく 載荷速度: 載荷 5 分 =1 倍,2 倍,5 倍,1 倍

31 解析結果 締固め中のサクション変化 締固め中の飽和度変化 Suction s (kpa) 載荷速度 1 倍載荷速度 2 倍載荷速度 5 倍載荷速度 1 倍 Degree of saturation S r (-) 載荷速度 1 倍.85 載荷速度 2 倍載荷速度 5 倍載荷速度 1 倍 Time t (min) Time t (min) 締固め中の間隙空気圧変化 締固め中の間隙水圧変化 Air pressure P a (kpa) 載荷速度 1 倍載荷速度 2 倍載荷速度 5 倍載荷速度 1 倍 Water pressure p w (kpa) 5-5 載荷速度 1 倍載荷速度 2 倍載荷速度 5 倍載荷速度 1 倍 Time t (min) Time t (min)

32 解析結果 締固め中の沈下量 締固め中の間隙比変化 Displacement(m) 載荷速度 1 倍載荷速度 2 倍載荷速度 5 倍載荷速度 1 倍 Void ratio e (-) 1.9 載荷速度 1 倍載荷速度 2 倍載荷速度 5 倍載荷速度 1 倍 Time t (min) 5 1 Time t (min) 締固め中の有効応力変化 Effective means stress p'(kpa) Time t (min) 載荷速度 1 倍載荷速度 2 倍載荷速度 5 倍載荷速度 1 倍

33 解析結果 締固め曲線 Dry density ρ d (g/cm 3 ) 載荷速度 1 倍載荷速度 2 倍載荷速度 5 倍載荷速度 1 倍 Water content w (%) 拡大図 Dry density ρ d (g/cm 3 ) 載荷速度 1 倍載荷速度 2 倍載荷速度 5 倍載荷速度 1 倍 Water content w (%) 特徴 (1) 載荷速度によって, 締固め曲線が変わる (2) 静的締固めシミュレーション 載荷速度が速いほど締め固まらない施工速度が影響を与える結果

34 締固め土とせん断強度関係 1.m 等体積せん断解析 λ 1.m メッシュ図 入力パラメータ Degree of saturation S rf =1. Wetting: A=-24., B=4.6 κ M ν m a k ( m day) Drying: A=-34.7, B= Suction (kpa) ka Logistic curve Eq. S S r = rf - S rc +Src 1+exp(A+Blns) 水分特性曲線 ( m day).69 S rc =.15 初期条件 締固め荷重 ( kpa) w (%) p sat ( kpa ) ( kpa) Sr p s ( kpa) 解析条件 締固め荷重 (3,45,6kPa) で締固めた後の応力状態を初期条件とする

35 締固め土のせん断強度関係 等体積せん断結果 Deviator stress q(kpa) kPa 24% 36% 38% 4% 42% Deviator stress q(kpa) kPa 24% 36% 38% 4% 42% Deviator stress q(kpa) kPa 24% 36% 38% 4% 42% Shear strain ε s Shear strain ε s Shear strain ε s Deviator stress q(kpa) % 36% 38% 4% 42% Deviator stress q(kpa) % 36% 38% 4% 42% Deviator stress q(kpa) % 36% 38% 4% 42% 1 2 Effective means stress p'(kpa) Effective means stress p'(kpa) Effective means stress p'(kpa)

36 不飽和土弾塑性構成モデルを用いた築堤シミュレーション

37 不飽和土弾塑性構成モデルを用いた築堤シミュレーション 斜面崩壊 盛土斜面 豪雨 盛土斜面 越流 水面上昇 コラプス 河川堤防 河川堤防

38 不飽和土弾塑性構成モデルを用いた築堤シミュレーション 斜面を有する構造物は不飽和土で構成 力学的挙動が複雑 構築時の初期応力状態を判断することが困難 しかし よって 通常の解析 弾性解析を行い, 初期応力状態を推定 1) 盛土構築の材料は, 弾塑性体かつ不飽和土 2) 不飽和土は特有の性質を持つ 3) 弾性係数が盛土全体で一定 一様でない 入力パラメータ弾塑性解析 実際の盛土施工は弾性解析だけでは表わすことができない 土 / 水 / 空気連成有限要素解析プログラム (DACSAR-MP) 不飽和土弾塑性構成モデル 盛土を再現することによって得られる応力状態に及ぼす影響について検討する

39 不飽和土弾塑性構成モデルを用いた築堤シミュレーション 解析対象 材料定数 初期条件 3m 3m λ p sat κ M ν m a k ( m day) kpa p ( kpa) γ 2 t ka ( m day) ( ) 44.1 (kn / m ) 1.5 e n S r 有限要素メッシュ 75m Degree of Saturation Sr 水分特性曲線 S rf =1. Logistic curve Eq. Srf Src Sr = + S 1+ exp + ln ( A B s) S rc = Suction s (kpa) rc

40 不飽和土弾塑性構成モデルを用いた築堤シミュレーション 解析手法 盛り立ての方法 盛土の全ての段で, 同じ材料を用いる = 同じ初期サクション 初期飽和度を持つ 1 段目飽和度.6 初期サクション 34kN/ m2 First step 2 段目 飽和度.6 初期サクション 34kN/ m2 初期の圧力水頭が一定 初期の水収支を想定 Second step Third step lift increments

41 不飽和土弾塑性構成モデルを用いた築堤シミュレーション 解析条件 パターン 載荷日数 / 層 内容 case-1 2 days case-2 2 days 2 日放置 / 層 case-3 2 days case-4 2 days 2 日放置 / 層 Case-5 2 days case-1 の築堤完了直後 First step Second step Third step 載荷日数 / 層 : 1 層を盛り立てするのにかける時間放置 : : 1 層毎にある程度の放置をとった築堤完了直後 : 全 15 層の盛り立てが終了した時

42 不飽和土弾塑性構成モデルを用いた築堤シミュレーション 水平応力分布 (kn/m 2 ) 中心部に応力卓越全体的に高い応力 (kn/m 2 ) CASE1:2 日載荷 CASE4:2 日載荷 +2 日放置 (kn/m 2 ) (kpa) (kn/m 2 ) CASE2:2 日載荷 +2 日放置 CASE5:CASE1の築堤完了直後 ( tf ) CASE3:2 日載荷 弾性解析結果

43 不飽和土弾塑性構成モデルを用いた築堤シミュレーション 鉛直応力分布 中心部に応力卓越 (kn/m 2 ) (kn/m 2 ) CASE1:2 日載荷 CASE4:2 日載荷 +2 日放置 (kn/m 2 ) (kpa) (kn/m 2 ) CASE2:2 日載荷 +2 日放置 CASE5:CASE1 の築堤完了直後 ( tf ) CASE3:2 日載荷 弾性解析結果

44 不飽和土弾塑性構成モデルを用いた築堤シミュレーション 飽和度分布 CASE1:2 水分移動が起こっている日載荷 CASE4:2 日載荷 +2 日放置まだ定常状態ではない CASE2:2 日載荷 +2 日放置 CASE5:CASE1 の築堤完了直後 CASE3:2 日載荷

45 不飽和土弾塑性構成モデルを用いた築堤シミュレーション サクション応力分布 (kn/m 2 ) (kn/m 2 ) CASE1:2 日載荷 CASE4:2 日載荷 +2 日放置 (kn/m 2 ) (kpa) CASE2:2 日載荷 +2 日放置 CASE5:CASE1 の築堤完了直後 (kn/m 2 ) CASE3:2 日載荷

46 不飽和土弾塑性構成モデルを用いた築堤シミュレーション 間隙空気圧の時間的変化 (kpa) (kpa) 2 days 1 days (kpa) (kpa) 3 days 12 days (kpa) (kpa) 8 days 15 days

47 結 論 不飽和土 / 水 / 空気連成有限要素解析 (1) 間隙空気圧を考慮した連続条件式を導いた (2) 有限要素法に組み込み, その有用性とともにその影響を検討した 締固めのメカニズムを不飽和土の力学から説明 (1) どの含水比をみても締固めによって初期のサクションよりも大きなサクションが発揮されている 河井らの実験結果とも傾向が一致している結果を示せた (2) ゼロ空気間隙曲線近傍の高含水比では, 供試体内の間隙空気の封入による影響が顕著に表れた 結果 解析によって締固め曲線が描けた 不飽和土の力学から説明した 締固めの速度の影響 (1) 締固めスピードを変えると, 締固め度合いに違いが生じる (2) 載荷速度によって, 締固め曲線が変わる施工速度が影響を与える結果 ( 間隙空気の封入 )

48 結 論 締固め土のせん断強度関係 (1) 不飽和化による剛性と, サクション応力の関係 (2) 土の水分特性に依存する結果 (1) 締固め曲線のピークよりも低い含水比で締固め土の強度のピークが現れた 盛土の初期応力状態の推定 (1) 不飽和弾塑性構成モデルを用いた (2) 築堤シミュレーションによって初期応力分布の推定を行った 結果 弾性体では得られない結果となった 築堤修了時においてサクション応力が全体的に高い 不飽和弾塑性構成モデル 段階載荷によって初期応力を求める手法を示した

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 不飽和土の力学を用いた 締固めメカニズムの解明 締固めとは 土に力を加え 間隙中の空気を追い出すことで土の密度を高めること 不飽和土 圧縮性の減少透水性の減少せん断 変形抵抗の増大 などに効果あり 締固め土は土構造物の材料として用いられている 研究背景 現場締固め管理 締固め必須基準 D 値 施工含水比 施工層厚 水平まきだし ( ρdf ) 盛土の乾燥密度 D値 = 室内締固め試験による最大乾燥密度

More information

Microsoft PowerPoint - suta.ppt [互換モード]

Microsoft PowerPoint - suta.ppt [互換モード] 弾塑性不飽和土構成モデルの一般化と土 / 水連成解析への適用 研究の背景 不飽和状態にある土構造物の弾塑性挙動 ロックフィルダム 道路盛土 長期的に正確な予測 不飽和土弾塑性構成モデル 水頭変動 雨水の浸潤 乾湿の繰り返し 土構造物の品質変化 不飽和土の特徴的な力学特性 不飽和土の特性 サクション サクション s w C 飽和度が低い状態 飽和度が高い状態 サクションの効果 空気侵入値 B. サクション増加

More information

Microsoft PowerPoint - H24 aragane.pptx

Microsoft PowerPoint - H24 aragane.pptx 海上人工島の経年品質変化 研究背景 目的 解析条件 ( 境界条件 構成モデル 施工履歴 材料パラメータ ) 実測値と解析値の比較 ( 沈下量 ) 将来の不等沈下予測 ケーススタディー ( 埋土施工前に地盤改良を行う : 一面に海上 SD を打設 ) 研究背景 目的 解析条件 ( 境界条件 構成モデル 施工履歴 材料パラメータ ) 実測値と解析値の比較 ( 沈下量 ) 将来の不等沈下予測 ケーススタディー

More information

<4D F736F F D E682568FCD CC82B982F192668BAD93785F F2E646F63>

<4D F736F F D E682568FCD CC82B982F192668BAD93785F F2E646F63> 7. 粘土のせん断強度 ( 続き ) 盛土 Y τ X 掘削 飽和粘土地盤 せん断応力 τ( 最大値はせん断強度 τ f ) 直応力 σ(σ) 一面せん断 図 強固な地盤 2 建物の建設 現在の水平な地表面 ( 建物が建設されている過程では 地下水面の位置は常に一定とする ) 堆積 Y 鉛直全応力 σ ( σ ) 水平全応力 σ ( σ ) 間隙水圧 図 2 鉛直全応力 σ ( σ ) 水平全応力

More information

Microsoft PowerPoint - 2_6_shibata.ppt [互換モード]

Microsoft PowerPoint - 2_6_shibata.ppt [互換モード] 圧密問題への逆問題の適用 一次元圧密と神戸空港の沈下予測 1. 一次元圧密の解析 2. 二次元圧密問題への適用 3. 神戸空港の沈下予測 1. 一次元圧密の解析 一次元圧密の実験 試験システムの概要 分割型圧密試験 逆解析の条件 未知量 ( 同定パラメータ ) 圧縮指数 :, 透水係数 :k 初期体積ひずみ速度 : 二次圧密係数 : 観測量沈下量 ( 計 4 点 ) 逆解析手法 粒子フィルタ (SIS)

More information

<4D F736F F F696E74202D E94D58B9393AE82F AC82B782E982BD82DF82CC8AEE E707074>

<4D F736F F F696E74202D E94D58B9393AE82F AC82B782E982BD82DF82CC8AEE E707074> 地盤数値解析学特論 防災環境地盤工学研究室村上哲 Mrakam, Satoh. 地盤挙動を把握するための基礎. 変位とひずみ. 力と応力. 地盤の変形と応力. 変位とひずみ 変形勾配テンソルひずみテンソル ひずみテンソル : 材料線素の長さの 乗の変化量の尺度 Green-Lagrange のひずみテンソルと Alman のひずみテンソル 微小変形状態でのひずみテンソル ひずみテンソルの物理的な意味

More information

スライド 1

スライド 1 1. 右図のように透水係数 (k) 断面積(A) 厚さ(L) が異なる 種の砂からなる 層試料 ( 砂 砂 ) に対して 図示された条件で定水位透水試験を行った その結果 Q0.18m /hrの流量速度を得た 断面変化部の影響は無視でき 試料内では流れはすべて鉛直方向に一次元的に生じていると仮定して 以下の問に答えよ 尚 二つの砂とも単位体積重量はγ at 0kN/m 水の単位体積重量はγ kn/m

More information

4. 粘土の圧密 4.1 圧密試験 沈下量 問 1 以下の問いに答えよ 1) 図中の括弧内に入る適切な語句を答えよ 2) C v( 圧密係数 ) を 圧密試験の結果から求める方法には 圧密度 U=90% の時間 t 90 から求める ( 5 ) 法と 一次圧密理論曲線を描いて作成される ( 6 )

4. 粘土の圧密 4.1 圧密試験 沈下量 問 1 以下の問いに答えよ 1) 図中の括弧内に入る適切な語句を答えよ 2) C v( 圧密係数 ) を 圧密試験の結果から求める方法には 圧密度 U=90% の時間 t 90 から求める ( 5 ) 法と 一次圧密理論曲線を描いて作成される ( 6 ) 4. 粘土の圧密 4. 圧密試験 沈下量 問 以下の問いに答えよ ) 図中の括弧内に入る適切な語句を答えよ ) ( 圧密係数 ) を 圧密試験の結果から求める方法には 圧密度 U9% の時間 9 から求める ( 5 ) 法と 一次圧密理論曲線を描いて作成される ( 6 ) と実験曲線を重ね合わせて圧密度 5% の 5 を決定する ( 6 ) 法がある ) 層厚 の粘土層がある この粘土層上の載荷重により粘土層の初期間隙比.

More information

土の段階載荷による圧密試験

土の段階載荷による圧密試験 J I S A 1 1 7 土の段階載荷による圧密試験 ( 計算書 ) サンプルデータ試験年月日平成 6 年 9 月 6 日 試料番号 ( 深さ ) T1- (14.00~14.85m) 試験者藤代哲也初試験機 No. 1 直径 D cm 6.000 含水比 w0 % 5.3 供期最低 ~ 最高室温 0.5~1.0断面積 A cm 8.7 間隙比 e 0, 体積比 f 0 0.930 状土質名称粘性土まじり砂質礫

More information

NC L b R

NC L b R GEOASIA -2-3 3 Vs 3m / sec ( ) () / () () () 7m 8.5m 6m 24.5m 237m 5.6m 276m 1:1.91 1:1.81 9.5 2334 247 2676 2834 6.5m 2289 2432 1m m 26.6m (As) 15m 1:1.75 (B) (Dg) (As) (W) -8.5m ~.m (B).m ~ 1.m (Ac1)

More information

土の三軸圧縮試験

土の三軸圧縮試験 J G S 5 土の三軸試験の供試体作製 設置 サンプルデータ試験年月日平成 6 年 9 月 6 日 試料番号 ( 深さ ) T- (8.~8.7m) 試験者藤代哲也 供試体を用いる試験の基準番号と名称 試料の状態 供試体の作製 土質名称 置 飽和過程圧密前(試験前供試体 No. 直径 平均直径 D i 初高さ 期平均高さ H i 状体積 V i 含水比 w i 質量 m i 態) 湿潤密度 ρ ti

More information

スライド 1

スライド 1 土質力学 Ⅰ 土の基本的性質 (4) ( 締固め ) 澁谷啓教授 2019 年 4 月 22 日 締固めた土の性質 土の締固め 既に存在している自然状態の土の対比としての 材料としての土 = ダム 鉄道 道路盛土 宅地等の建設の為の材料としての土 : a) この場合 製造のプロセス ( 盛土材料の選択と締固め作業 ) が 製品 ( 盛土 ) の性能 ( 安定性と変形性 ) を決める b) なんやかや言うが

More information

<94F E4F8EB25F >

<94F E4F8EB25F > JGS 5 土の三軸試験の供試体作製 設置 初期状態% 設)炉容器 No. 後供試体を用いる試験の基準番号と名称 JGS 51-9 土の繰返し非排水三軸試験 試 料 の 状 態 1) 乱さない 土粒子の密度 ρ s g/cm 供 試 体 の 作 製 ) トリミング 液 性 限 界 w L ) % 土 質 名 称 礫まじり粘土質砂 塑 性 限 界 w P ) % 1 5.1.96.98 質量 m i

More information

. 室内試験 本研究では, 著者らが実施した, 異なる拘束圧での排水 三軸圧縮試験結果 ) を用いて, 軟岩の構成式の修正および 検証を行った ここでは, 試験試料や試験概要, 試験結果 等について説明する. 試験概要 試験試料には, 大谷石を用いた 大谷石は, 比較的均一 で目立った空隙がなく,

. 室内試験 本研究では, 著者らが実施した, 異なる拘束圧での排水 三軸圧縮試験結果 ) を用いて, 軟岩の構成式の修正および 検証を行った ここでは, 試験試料や試験概要, 試験結果 等について説明する. 試験概要 試験試料には, 大谷石を用いた 大谷石は, 比較的均一 で目立った空隙がなく, 排水三軸圧縮試験結果に基づく軟岩の構成式の高度化 odification of constitutive model for soft rock based on drained triaxial comression test 岩田麻衣子, 林宏樹, 沢田和秀 3, 森口周二, 八嶋厚 5, 張鋒, 檜尾正也 7 岐阜大学 工学部 iwata_m@gifu-u.ac.j 東海旅客鉄道 3 岐阜大学

More information

Kobe University Repository : Kernel タイトル Title 著者 Author(s) 掲載誌 巻号 ページ Citation 刊行日 Issue date 資源タイプ Resource Type 版区分 Resource Version 権利 Rights DOI

Kobe University Repository : Kernel タイトル Title 著者 Author(s) 掲載誌 巻号 ページ Citation 刊行日 Issue date 資源タイプ Resource Type 版区分 Resource Version 権利 Rights DOI Kob Univrsity Rpository : Krnl タイトル Titl 著者 Author(s) 掲載誌 巻号 ページ Citation 刊行日 Issu dat 資源タイプ Rsourc Typ 版区分 Rsourc Vrsion 権利 Rights DOI JaLCDOI URL 土 / 水 / 空気連成有限要素解析による締固め特性に及ぼす土質定数の影響の検討 (Considration

More information

締固めた土の性質 の締固め 既に存在している自然状態の土の対比としての 材料としての土 = ダム 鉄道 道路盛土 宅地等の建設の為の材料としての土 : a) この場合 製造のプロセス ( 盛土材料の選択と締固め作業 ) が 製品 ( 盛土 ) の性能 ( 安定性と変形性 ) を決める b) なんやか

締固めた土の性質 の締固め 既に存在している自然状態の土の対比としての 材料としての土 = ダム 鉄道 道路盛土 宅地等の建設の為の材料としての土 : a) この場合 製造のプロセス ( 盛土材料の選択と締固め作業 ) が 製品 ( 盛土 ) の性能 ( 安定性と変形性 ) を決める b) なんやか 質 学 Ⅰ 土の基本的性質 (4) ( 締固め ) 澁 啓教授 2018 年 4 23 締固めた土の性質 の締固め 既に存在している自然状態の土の対比としての 材料としての土 = ダム 鉄道 道路盛土 宅地等の建設の為の材料としての土 : a) この場合 製造のプロセス ( 盛土材料の選択と締固め作業 ) が 製品 ( 盛土 ) の性能 ( 安定性と変形性 ) を決める b) なんやかや言うが 結局

More information

Microsoft PowerPoint - 知財報告会H20kobayakawa.ppt [互換モード]

Microsoft PowerPoint - 知財報告会H20kobayakawa.ppt [互換モード] 亀裂の変形特性を考慮した数値解析による岩盤物性評価法 地球工学研究所地圏科学領域小早川博亮 1 岩盤構造物の安定性評価 ( 斜面の例 ) 代表要素 代表要素の応力ひずみ関係 変形: 弾性体の場合 :E,ν 強度: モールクーロン破壊規準 :c,φ Rock Mech. Rock Engng. (2007) 40 (4), 363 382 原位置試験 せん断試験, 平板載荷試験 原位置三軸試験 室内試験

More information

Microsoft Word 締固め

Microsoft Word 締固め 第 3 章土の締固め 3. 締固めた土の性質 既に存在している自然状態の土の対比としての 材料としての土 ダム 鉄道 道路盛土 宅地等の建設の為の材料としての土 について考える a) この場合 製造のプロセス ( 盛土材料の選択と締固め作業 ) が 製品 ( 盛土 ) の性能 ( 安定性と変形性 ) を決める b) なんやかや言うが 結局 良く締固まりやすい材料を用いて土を良く締固め 高い相対密度

More information

6 6. 圧密理論 6. 圧密理論 6.. 圧密方程式の誘導 粘土層の圧密原因とメカニズム 地下水位の低下 盛土建設 最終圧縮量と圧縮速度 6. 圧密理論 記号の統一間隙水圧 ( 絶対圧 ): u 間隙水圧 (gauge 圧 ): u u p a ( 大気圧 ) 過剰間隙水圧 : Δu ( 教科書は これを u と記している 初期状態が u p a で u の時で uδu の状態を対象にしている ) 微小の増分

More information

untitled

untitled GeoFem 1 1.1 1 1.2 1 1.3 1 2 2.1 2 2.2 3 2.3 FEM 5 (1) 5 (2) 5 (3) 6 2.4 GeoFem 7 2.5 FEM 16 2.6 19 2.7 26 3.1 33 3.2 35 3.3 GeoFem 36 3.4 48 3.5 49 A A1 A2 A3 A4 A5 A6 A7 GeoFem GeoFem CRS GeoFem GeoFem

More information

第 Ⅰ 部 Excel VBA による一次元圧密 FE 解析 1. 軟弱地盤の長期沈下と二次圧密慣用的一次元圧密解析は, 標準圧密試験結果を利用し実際地盤の圧密沈下量とその発生時間を予測する.1 日間隔で載荷する標準圧密試験では, 二次圧密の継続中に次の載荷段階の荷重が載荷される. 圧密期間を長くす

第 Ⅰ 部 Excel VBA による一次元圧密 FE 解析 1. 軟弱地盤の長期沈下と二次圧密慣用的一次元圧密解析は, 標準圧密試験結果を利用し実際地盤の圧密沈下量とその発生時間を予測する.1 日間隔で載荷する標準圧密試験では, 二次圧密の継続中に次の載荷段階の荷重が載荷される. 圧密期間を長くす 目 次 まえがき iii 第 Ⅰ 部 Excel VBA による一次元圧密 FE 解析 1 1. 軟弱地盤の長期沈下と二次圧密 1 2. 弾塑性一次元圧密 FE 解析例 3 3. 二次圧密モデルと一次元圧密方程式 5 4. 二次圧密を考慮した一次元圧密 FE 解析 7 4.1 土質定数の決定法 7 4.2 計算例 ~ 1; 単一層, 均質地盤 : 両面排水条件 Consol A.xlsm 8 4.3

More information

H23 基礎地盤力学演習 演習問題

H23 基礎地盤力学演習 演習問題 せん断応力 τ (kn/m ) H6 応用地盤力学及び演習演習問題 4 年月日. 強度定数の算定 ある試料について一面せん断試験 ( 供試体の直径 D=6.cm, 高さ H=.cm) を行い 表に示す データを得た この土の強度定数 c, φ を求めよ 垂直応力 P (N) 4 せん断力 S (N) 5 8 < 解答 > 供試体の断面積 A=πD /4 とすると 垂直応力 σ=p/a 最大せん断応力

More information

Microsoft PowerPoint - 宅地液状化_印刷用

Microsoft PowerPoint - 宅地液状化_印刷用 戸建て住宅地の液状化被害メカニズムの解明と対策工の検討 名古屋大学大学院工学研究科社会基盤工学専攻中井健太郎 名古屋大学連携研究センター野田利弘 平成 27 年 11 月 14 日第 9 回 NIED-NU 研究交流会 1. 背景 目的 2. 建物による被害影響 材料定数, 境界条件 高さ 重量の影響 地盤層序と固有周期の影響 3. 被害に及ぼす隣接建物の影響 2 棟隣接時の隣接距離と傾斜方向の関係

More information

<4D F736F F F696E74202D AB97CD8A E631318FCD5F AB8D5C90AC8EAE816A2E B8CDD8AB B83685D>

<4D F736F F F696E74202D AB97CD8A E631318FCD5F AB8D5C90AC8EAE816A2E B8CDD8AB B83685D> 弾塑性構成式 弾塑性応力 ひずみ解析における基礎式 応力の平衡方程式 ひずみの適合条件式 構成式 (), 全ひずみ理論 () 硬化則 () 塑性ポテンシャル理論の概要 ひずみ 応力の増分, 速度 弾性丸棒の引張変形を考える ( 簡単のため 公称 で考える ). 時間増分 dt 時刻 t 0 du u 時刻 t t 時刻 t t のひずみ, 応力 u, 微小な時間増分 dt におけるひずみ増分, 応力増分

More information

土木建設技術シンポジウム2002

土木建設技術シンポジウム2002 軟弱地盤上の盛土工事における圧密後の地盤性状について 赤塚光洋 正会員戸田建設株式会社土木工事技術部 ( 4-8388 東京都中央区京橋 -7-) 軟弱地盤上の盛土工事において, 供用開始後の残留沈下を抑制する目的でバーチカルドレーンによる圧密沈下促進工法が用いられることが多い. また, 粘性土地盤は圧密によって強度が増加するので, バーチカルドレーン工法は盛土基礎地盤の強度発現を早める安定対策としても用いられている.

More information

Microsoft PowerPoint - elast.ppt [互換モード]

Microsoft PowerPoint - elast.ppt [互換モード] 弾性力学入門 年夏学期 中島研吾 科学技術計算 Ⅰ(48-7) コンピュータ科学特別講義 Ⅰ(48-4) elast 弾性力学 弾性力学の対象 応力 弾性力学の支配方程式 elast 3 弾性力学 連続体力学 (Continuum Mechanics) 固体力学 (Solid Mechanics) の一部 弾性体 (lastic Material) を対象 弾性論 (Theor of lasticit)

More information

ため 2), 供試体の締固め度を 85% としている 表 1 土試料の物理特性 土試料の物理特性 土粒子密度 [g/cm 3 ] 最大間隙比 最小間隙比.761 平均粒径.354 [mm] 均等係数 76.7 細粒分含有率 26. 最適含水比 9.2 最大乾燥密度 1.898

ため 2), 供試体の締固め度を 85% としている 表 1 土試料の物理特性 土試料の物理特性 土粒子密度 [g/cm 3 ] 最大間隙比 最小間隙比.761 平均粒径.354 [mm] 均等係数 76.7 細粒分含有率 26. 最適含水比 9.2 最大乾燥密度 1.898 第 59 回地盤工学シンポジウム平成 26 年度論文集 19-5 不飽和砂質土の三軸圧縮および等方圧縮時の挙動と空気 - 水 - 土連成解析法によるシミュレーション Mechanical behavior of unsaturated sand under triaxial and isotropic compression, and simulation using Air-Water-Soil

More information

<4D F736F F D E682568FCD AB937982CC88EA8EB288B38F6B8E8E8CB12E646F63>

<4D F736F F D E682568FCD AB937982CC88EA8EB288B38F6B8E8E8CB12E646F63> 7.4.5 粘性土の一軸圧縮試験 利点 : 何と言っても 手軽に実施出来る ( 三軸圧縮試験と比較すると ) 従って 常に一軸圧縮強度 q u が原地盤内での非排水状態での圧縮強度 (σ 1 -σ 3 ) f と一致していれば こんなに便利なことはない しかし そうは問屋が卸さない 一軸圧縮試験に対する元々の考え方 : 次の条件が満たされていれば 一軸圧縮強度 q u = 原地盤内での非排水状態での圧縮強度

More information

Microsoft PowerPoint - シミュレーション工学-2010-第1回.ppt

Microsoft PowerPoint - シミュレーション工学-2010-第1回.ppt シミュレーション工学 ( 後半 ) 東京大学人工物工学研究センター 鈴木克幸 CA( Compter Aded geerg ) r. Jaso Lemo (SC, 98) 設計者が解析ツールを使いこなすことにより 設計の評価 設計の質の向上を図る geerg の本質の 計算機による支援 (CA CAM などより広い名前 ) 様々な汎用ソフトの登場 工業製品の設計に不可欠のツール 構造解析 流体解析

More information

パソコンシミュレータの現状

パソコンシミュレータの現状 第 2 章微分 偏微分, 写像 豊橋技術科学大学森謙一郎 2. 連続関数と微分 工学において物理現象を支配する方程式は微分方程式で表されていることが多く, 有限要素法も微分方程式を解く数値解析法であり, 定式化においては微分 積分が一般的に用いられており. 数学の基礎知識が必要になる. 図 2. に示すように, 微分は連続な関数 f() の傾きを求めることであり, 微小な に対して傾きを表し, を無限に

More information

<4D F736F F F696E74202D20906C8D488AC28BAB90DD8C7689F090CD8D488A D91E F1>

<4D F736F F F696E74202D20906C8D488AC28BAB90DD8C7689F090CD8D488A D91E F1> 人工環境設計解析工学構造力学と有限要素法 ( 第 回 ) 東京大学新領域創成科学研究科 鈴木克幸 固体力学の基礎方程式 変位 - ひずみの関係 適合条件式 ひずみ - 応力の関係 構成方程式 応力 - 外力の関係 平衡方程式 境界条件 変位規定境界 反力規定境界 境界条件 荷重応力ひずみ変形 場の方程式 Γ t Γ t 平衡方程式構成方程式適合条件式 構造力学の基礎式 ひずみ 一軸 荷重応力ひずみ変形

More information

Microsoft PowerPoint - 20_08_09_™n‚wŁÏ„`Š\‚ª_’¼flö_›¬flŠ.ppt

Microsoft PowerPoint - 20_08_09_™n‚wŁÏ„`Š\‚ª_’¼flö_›¬flŠ.ppt メタンハイドレート資源開発研究コンソーシアム平成 14 年度成果報告会 地層変形予測技術 環境影響評価 G 地層変形予測 SG 清水建設 ( 株 ) 関東天然瓦斯開発 ( 株 ) 財団法人 エンジニアリング振興協会 PhaseⅠ 全体工程 項 目 2001 年度 2002 年度 2003 年度 2004 年度 2005 年度 2006 年度 中間評価 マリック生産テスト 解析手法 解析パラメータの調査

More information

Microsoft PowerPoint - fuseitei_6

Microsoft PowerPoint - fuseitei_6 不静定力学 Ⅱ 骨組の崩壊荷重の計算 不静定力学 Ⅱ では, 最後の問題となりますが, 骨組の崩壊荷重の計算法について学びます 1 参考書 松本慎也著 よくわかる構造力学の基本, 秀和システム このスライドの説明には, 主にこの参考書の説明を引用しています 2 崩壊荷重 構造物に作用する荷重が徐々に増大すると, 構造物内に発生する応力は増加し, やがて, 構造物は荷重に耐えられなくなる そのときの荷重を崩壊荷重あるいは終局荷重という

More information

<4D F736F F D208D5C91A297CD8A7793FC96E591E6328FCD2E646F63>

<4D F736F F D208D5C91A297CD8A7793FC96E591E6328FCD2E646F63> -1 ポイント : 材料の応力とひずみの関係を知る 断面内の応力とひずみ 本章では 建築構造で多く用いられる材料の力学的特性について学ぶ 最初に 応力とひずみの関係 次に弾性と塑性 また 弾性範囲における縦弾性係数 ( ヤング係数 ) について 建築構造用材料として代表的な鋼を例にして解説する さらに 梁理論で使用される軸方向応力と軸方向ひずみ あるいは せん断応力とせん断ひずみについて さらにポアソン比についても説明する

More information

構造力学Ⅰ第12回

構造力学Ⅰ第12回 第 回材の座屈 (0 章 ) p.5~ ( 復習 ) モールの定理 ( 手順 ) 座屈とは 荷重により梁に生じた曲げモーメントをで除して仮想荷重と考える 座屈荷重 偏心荷重 ( 曲げと軸力 ) 断面の核 この仮想荷重に対するある点でのせん断力 たわみ角に相当する曲げモーメント たわみに相当する ( 例 ) 単純梁の支点のたわみ角 : は 図 を仮想荷重と考えたときの 点の支点反力 B は 図 を仮想荷重と考えたときのB

More information

Microsoft Word - SAUSE report ver02(です、ます).doc

Microsoft Word - SAUSE report ver02(です、ます).doc SAUSE レポート 1. 河川堤防点検 対策の手引き 五大開発株式会社平成 19 年 5 月 6 日 平成 16 年 7 月に新潟県 福島県 福井県などで発生した豪雨災害から明らかになった自然的 社会的状況の変化による新たな課題に的確に対応して 自然災害に対して安全で安心な社会の形成を図る必要があります このため 国土交通省では平成 16 年 11 月 11 日に社会資本整備審議会河川分科会に豪雨対策総合政策委員会を設け

More information

PowerPoint Presentation

PowerPoint Presentation Non-linea factue mechanics き裂先端付近の塑性変形 塑性域 R 破壊進行領域応カ特異場 Ω R R Hutchinson, Rice and Rosengen 全ひずみ塑性理論に基づいた解析 現段階のひずみは 除荷がないとすると現段階の応力で一義的に決まる 単純引張り時の応カーひずみ関係 ( 構成方程式 ): ( ) ( ) n () y y y ここで α,n 定数, /

More information

本日話す内容

本日話す内容 6CAE 材料モデルの VV 山梨大学工学部土木環境工学科吉田純司 本日話す内容 1. ゴム材料の免震構造への応用 積層ゴム支承とは ゴムと鋼板を積層状に剛結 ゴム層の体積変形を制限 水平方向 鉛直方向 柔 剛 加速度の低減 構造物の支持 土木における免震 2. 高減衰積層ゴム支承の 力学特性の概要 高減衰ゴムを用いた支承の復元力特性 荷重 [kn] 15 1 5-5 -1-15 -3-2 -1 1

More information

Microsoft PowerPoint - 1.せん断(テキスト用)

Microsoft PowerPoint - 1.せん断(テキスト用) 応用地盤力学 同演習 ( 担当 : 佐藤 ) ~2 年生後期, 火曜, 木曜 1 限目 教育目標 : 1) 基礎地盤力学で修得した知識を用いて実際の問題を解く考え方と開放のテクニックを修得する. 2) 土構造物を設計 ( 土圧, 地盤内応力, 支持力, 斜面安定計算 ) できる基礎知識を習得する. 3) 地盤改良などの土の特性を用いた改良技術のメカニズムを修得する. 4) 地震による地盤災害と液状化のメカニズムを知る.

More information

<4D F736F F D208D5C91A297CD8A7793FC96E591E631318FCD2E646F63>

<4D F736F F D208D5C91A297CD8A7793FC96E591E631318FCD2E646F63> 11-1 第 11 章不静定梁のたわみ ポイント : 基本的な不静定梁のたわみ 梁部材の断面力とたわみ 本章では 不静定構造物として 最も単純でしかも最も大切な両端固定梁の応力解析を行う ここでは 梁の微分方程式を用いて解くわけであるが 前章とは異なり 不静定構造物であるため力の釣合から先に断面力を決定することができない そのため 梁のたわみ曲線と同時に断面力を求めることになる この両端固定梁のたわみ曲線や断面力分布は

More information

Q = va = kia (1.2) 1.2 ( ) 2 ( 1.2) 1.2(a) (1.2) k = Q/iA = Q L/h A (1.3) 1.2(b) t 1 t 2 h 1 h 2 a

Q = va = kia (1.2) 1.2 ( ) 2 ( 1.2) 1.2(a) (1.2) k = Q/iA = Q L/h A (1.3) 1.2(b) t 1 t 2 h 1 h 2 a 1 1 1.1 (Darcy) v(cm/s) (1.1) v = ki (1.1) v k i 1.1 h ( )L i = h/l 1.1 t 1 h(cm) (t 2 t 1 ) 1.1 A Q(cm 3 /s) 2 1 1.1 Q = va = kia (1.2) 1.2 ( ) 2 ( 1.2) 1.2(a) (1.2) k = Q/iA = Q L/h A (1.3) 1.2(b) t

More information

<4D F736F F D20926E94D58D488A C F95B BC8FE9816A2E646F63>

<4D F736F F D20926E94D58D488A C F95B BC8FE9816A2E646F63> 河川堤防現地砂質材料の三軸試験による強度評価に関する考察 名城大学大学院学生会員岸賢吾名城大学国際会員小高猛司名城大学正会員板橋一雄建設技術研究所国際会員李圭太 1. はじめに河川堤防の詳細点検における浸透時のすべり破壊に対する検討においては, 非定常飽和 - 不飽和浸透流解析によって湿潤面を設定した後に, 全応力法の円弧すべり解析が通常用いられる 1) この際の強度定数の設定には全応力解析を念頭において,

More information

土の基本的性質 粒子の組合せ 内部の粒子の幾何学的配置 粒子の性質 外部からは見えない 連続体 + としてのマスの性質 工学 技術の対象 粒子の性質 粒子の詰まり方 ( 粒度分布 ) 異なる大きさの粒子の混じり具合 ( 個々の粒子の性質 ) 粒子の大きさ 粒子の比重 粒子の形 粒子の硬さ 強度 粒子

土の基本的性質 粒子の組合せ 内部の粒子の幾何学的配置 粒子の性質 外部からは見えない 連続体 + としてのマスの性質 工学 技術の対象 粒子の性質 粒子の詰まり方 ( 粒度分布 ) 異なる大きさの粒子の混じり具合 ( 個々の粒子の性質 ) 粒子の大きさ 粒子の比重 粒子の形 粒子の硬さ 強度 粒子 質 学 Ⅰ 土の基本的性質 (1) ( 土の組成 ) 澁 啓 2018 年 4 10 1 土の基本的性質 粒子の組合せ 内部の粒子の幾何学的配置 粒子の性質 外部からは見えない 連続体 + としてのマスの性質 工学 技術の対象 粒子の性質 粒子の詰まり方 ( 粒度分布 ) 異なる大きさの粒子の混じり具合 ( 個々の粒子の性質 ) 粒子の大きさ 粒子の比重 粒子の形 粒子の硬さ 強度 粒子が占める体積

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 材料実験演習 第 6 回 2017.05.16 スケジュール 回 月 / 日 標題 内容 授業種別 時限 実験レポート評価 講義 演習 6,7 5 月 16 日 8 5 月 23 日 5 月 30 日 講義 曲げモーメントを受ける鉄筋コンクリート(RC) 梁の挙動その1 構造力学の基本事項その2 RC 梁の特徴演習 曲げを受ける梁の挙動 実験 鉄筋コンクリート梁の載荷実験レポート 鉄筋コンクリート梁実験レポート作成

More information

マンホール浮き上がり検討例

マンホール浮き上がり検討例 マンホールの地震時液状化浮き上がり解析 ( 地震時せん断応力は 略算 で算定 ) 目次 (1) 基本方針 1, 本解析の背景 2 2, 構造諸元 2 3, 本解析の内容 2 4, 本解析の目的 2 5, 設計方針及び参考文献 2 6. 使用プログラム 3 7, 変形解析のフロー 3 8, 概要図 3 (2) 地盤概要 1, 地盤の概説 5 ( 一部省略 ) 2, ボーリング調査結果 5 3, 設計外力

More information

01宅地液状化沈下(161008)

01宅地液状化沈下(161008) 造成宅地の液状化沈下量の推定 目次 (1) 基本方針 1, 本解析の説明 2 2, 構造諸元 2 3, 本解析の概要 2 4, 本解析の内容 3 5, 本解析の目的 3 6, 設計方針及び参考文献 3 7. 使用プログラム 3 8, 変形解析のフロー 3 9, 概要図 4 (2) 概要 1, 地盤の概説 5 2, 設計外力 5 3, 液状化の判定 5 (3)ALID 解析の概要 1,ALIDによる自重変形解析法の概説

More information

Microsoft Word - CPTカタログ.doc

Microsoft Word - CPTカタログ.doc 新しい地盤調査法のすすめ CPT( 電気式静的コーン貫入試験 ) による地盤調査 2002 年 5 月 ( 初編 ) 2010 年 9 月 ( 改訂 ) 株式会社タカラエンジニアリング 1. CPT(Cone Peneraion Tesing) の概要日本の地盤調査法は 地盤ボーリングと標準貫入試験 ( 写真 -1.1) をもとに土質柱状図と N 値グラフを作成する ボーリング孔内より不攪乱試料を採取して室内土質試験をおこない土の物理

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 材料実験演習 第 6 回 2015.05.17 スケジュール 回 月 / 日 標題 内容 授業種別 時限 講義 演習 6,7 5 月 17 日 8 5 月 24 日 5 月 31 日 9,10 6 月 7 日 11 6 月 14 日 講義 曲げモーメントを受ける鉄筋コンクリート(RC) 梁の挙動その1 構造力学の基本事項その2 RC 梁の特徴演習 曲げを受ける梁の挙動 実験 鉄筋コンクリート梁の載荷実験レポート

More information

粘土の圧密と砂の締固め/液状化

粘土の圧密と砂の締固め/液状化 京都大学計算科学ユニット 第 2 回研究交流会 212 年 6 月 26 日 地盤の変形 破壊に伴う 加速度発生 伝搬 シミュレーション 名古屋大学減災連携研究センター大学院工学研究科社会基盤工学専攻 野田利弘 発表の流れ 1 はじめに土質力学 / 地盤力学のこれまでと現状 2 二相系混合体理論の飽和土への適用 基礎方程式の速度型 と増分型構成式の導入 3 解析事例 1 人工島の造成と耐震性評価 4

More information

平成 31 年度 神戸大学大学院工学研究科博士課程前期課程入学試験 市民工学専攻 専門科目 ( 一 ): 数学 問題用紙の枚数 ページ番号 数学 2 枚 1, 2 数学 解答用紙の枚数 4 枚 ただし, 計算用紙を 1 枚配付 試験日時 : 平成 30 年 8 月 20 日 ( 月 ) 13:00

平成 31 年度 神戸大学大学院工学研究科博士課程前期課程入学試験 市民工学専攻 専門科目 ( 一 ): 数学 問題用紙の枚数 ページ番号 数学 2 枚 1, 2 数学 解答用紙の枚数 4 枚 ただし, 計算用紙を 1 枚配付 試験日時 : 平成 30 年 8 月 20 日 ( 月 ) 13:00 平成 31 年度 神戸大学大学院工学研究科博士課程前期課程入学試験 市民工学専攻 専門科目 ( 一 ): 数学 問題用紙の枚数 ページ番号 数学 2 枚 1, 2 数学 解答用紙の枚数 4 枚 ただし, 計算用紙を 1 枚配付 試験日時 : 平成 30 年 8 月 20 日 ( 月 ) 13:00 14:00 専門科目 ( 一 ) 数学 [ 数学 ] 1. 行列 A= -1 2 2 2 について以下の問に答えなさい.

More information

FEM原理講座 (サンプルテキスト)

FEM原理講座 (サンプルテキスト) サンプルテキスト FEM 原理講座 サイバネットシステム株式会社 8 年 月 9 日作成 サンプルテキストについて 各講師が 講義の内容が伝わりやすいページ を選びました テキストのページは必ずしも連続していません 一部を抜粋しています 幾何光学講座については 実物のテキストではなくガイダンスを掲載いたします 対象とする構造系 物理モデル 連続体 固体 弾性体 / 弾塑性体 / 粘弾性体 / 固体

More information

15_layout_07.indd

15_layout_07.indd 第8章安全管理1 1 級土木 施工管理技士 テキスト 第 1 章土工 7 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 8 11 14 18 21 23 25 27 30 32 34 37 第 2 章コンクリート工 47 1. 2. 3. 4. 5. 6. 7. 8. 48 50 53 56 58 60 63 66 9. 10. 11. 12. 13. 69 75 79

More information

<4D F736F F D CA8E A985F95B68DEC90AC977697CC81698EA DB91E8816A A2E646F63>

<4D F736F F D CA8E A985F95B68DEC90AC977697CC81698EA DB91E8816A A2E646F63> 別紙 2 高品質盛土を保証する施工管理技術に関する研究 龍岡文夫 1 1 東京理科大学理工学部土木工学科 ( 278-851 千葉県野田市山崎 2641) 盛土の施工管理の目的は所定の安定性等の実現である 通常は 締固め度 D c の全測定値が許容下限値以上であることを確認するが 上記は看過されがちである 設計の安定解析で用いる標準的設計せん断強度は 許容下限値の D c に対応していて締固めた盛土には低すぎる

More information

PowerPoint Presentation

PowerPoint Presentation H8 年度有限要素法 1 構造強度設計 1. 塑性崩壊 1.3 疲労設計 ( 一部修正版 ) H8-1/6 早川 (R : 夏学期の復習部分 ) 1. 塑性崩壊とその評価法 ( 極限解析 ) R 塑性崩壊 : 構造物として使用に耐えないほどの過度の塑性変形 全断面降伏 前提 : 弾完全塑性材モデル E ひずみ硬化ありひずみ硬化なし : 降伏強さ E : ヤング率 ε 図 1.3 弾完全塑性材モデルの応力

More information

Microsoft Word - 1B2011.doc

Microsoft Word - 1B2011.doc 第 14 回モールの定理 ( 単純梁の場合 ) ( モールの定理とは何か?p.11) 例題 下記に示す単純梁の C 点のたわみ角 θ C と, たわみ δ C を求めよ ただし, 部材の曲げ 剛性は材軸に沿って一様で とする C D kn B 1.5m 0.5m 1.0m 解答 1 曲げモーメント図を描く,B 点の反力を求める kn kn 4 kn 曲げモーメント図を描く knm 先に得られた曲げモーメントの値を

More information

<88AE3289F188CF88F589EF E786264>

<88AE3289F188CF88F589EF E786264> 液状化の検討方法について 資料 -6 1. 液状化の判定方法 液状化の判定は 建築基礎構造設計指針 ( 日本建築学会 ) に準拠して実施する (1) 液状化判定フロー 液状化判定フローを図 -6.1 に示す START 判定対象土層の設定 (2) 判定対象土層 液状化の判定を行う必要がある飽和土層は 一般に地表面から 2m 程度以浅の沖積層で 考慮すべき土の種類は 細粒分含有率が 35% 以下の土とする

More information

<4D F736F F F696E74202D AB97CD8A E630398FCD5F8AC C896E291E8816A2E B8CDD8AB B83685D>

<4D F736F F F696E74202D AB97CD8A E630398FCD5F8AC C896E291E8816A2E B8CDD8AB B83685D> 単純な ( 単純化した ) 応力状態における弾塑性問題 () 繊維強化複合材の引張り () 三本棒トラスへの負荷 () はりの曲げ (4) 円筒 丸棒のねじりとせん断変形 (5) 熱弾塑性問題 負荷 ( 弾性変形 ) 負荷 ( 弾塑性変形 ) 除荷 残留応力 第 9 章,4 ページ ~ その. 繊維強化複合材料の引張り Rs.: []htt://authrs.library.caltch.du/5456//hrst.it.du/hrs/

More information

(Microsoft PowerPoint - \221\34613\211\361)

(Microsoft PowerPoint - \221\34613\211\361) 計算力学 ~ 第 回弾性問題の有限要素解析 (Ⅱ)~ 修士 年後期 ( 選択科目 ) 担当 : 岩佐貴史 講義の概要 全 5 講義. 計算力学概論, ガイダンス. 自然現象の数理モデル化. 行列 場とその演算. 数値計算法 (Ⅰ) 5. 数値計算法 (Ⅱ) 6. 初期値 境界値問題 (Ⅰ) 7. 初期値 境界値問題 (Ⅱ) 8. マトリックス変位法による構造解析 9. トラス構造の有限要素解析. 重み付き残差法と古典的近似解法.

More information

スライド 1

スライド 1 We Analyzed and Design the Future. Modeling, Integrated Design & Analysis Software MIDAS IT The World s Best Engineering Solution Provider & Service Partner. 有限要素法を用いた2D地盤解析ソフト 斜面安定 地盤変形 動的解析 浸透流 圧密 SoilWorksとは

More information

杭の事前打ち込み解析

杭の事前打ち込み解析 杭の事前打ち込み解析 株式会社シーズエンジニアリング はじめに杭の事前打込み解析 ( : Pile Driving Prediction) は, ハンマー打撃時の杭の挙動と地盤抵抗をシミュレートする解析方法である 打ち込み工法の妥当性を検討する方法で, 杭施工に最適なハンマー, 杭の肉厚 材質等の仕様等を決めることができる < 特徴 > 杭施工に最適なハンマーを選定することができる 杭の肉厚 材質等の仕様を選定することができる

More information

スライド タイトルなし

スライド タイトルなし 高じん性モルタルを用いた 実大橋梁耐震実験の破壊解析 ブラインド 株式会社フォーラムエイト 甲斐義隆 1 チーム構成 甲斐義隆 : 株式会社フォーラムエイト 青戸拡起 :A-Works 代表 松山洋人 : 株式会社フォーラムエイト Brent Fleming : 同上 安部慶一郎 : 同上 吉川弘道 : 東京都市大学総合研究所教授 2 解析モデル 3 解析概要 使用プログラム :Engineer s

More information

国土技術政策総合研究所 研究資料

国土技術政策総合研究所 研究資料 3. 解析モデルの作成汎用ソフトFEMAP(Ver.9.0) を用いて, ダムおよび基礎岩盤の有限要素メッシュを8 節点要素により作成した また, 貯水池の基本寸法および分割数を規定し,UNIVERSE 2) により差分メッシュを作成した 3.1 メッシュサイズと時間刻みの設定基準解析結果の精度を確保するために, 堤体 基礎岩盤 貯水池を有限要素でモデル化する際に, 要素メッシュの最大サイズならびに解析時間刻みは,

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 反応工学 Reacio Egieerig 講義時間 場所 : 火曜 限 8- 木曜 限 S- 担当 : 山村 補講 /3 木 限 S- ジメチルエーテルの気相熱分解 CH 3 O CH 4 H CO 設計仕様 処理量 v =4.8 m 3 /h 原料は DME のみ 777K 反応率 =.95 まで熱分解 管型反応器の体積 V[m 3 ] を決定せよ ただし反応速度式反応速度定数 ラボ実験は自由に行ってよい

More information

Microsoft PowerPoint - ‚æ2‘Í.ppt

Microsoft PowerPoint - ‚æ2‘Í.ppt 第 2 章力学的挙動と静的強度 目的 荷重が作用した際の金属材料の力学的挙動について理解する. 2.1 応力 - ひずみ曲線 2.1.1 公称応力 / ひずみと真応力 / ひずみ 2.1.2 応力 - ひずみ曲線 2.1.3 力学的性質 ( 機械的性質 ) 2.1.4 加工硬化 2.1.5 じん性 2.1.6 指標の意味 2.2 力学的性質を求める異なる方法 2.2.1 ヤング率の測定方法 2.2.2

More information

<4D F736F F D CC8AEE967B934990AB8EBF205F8F43959C8DCF82DD5F2E646F63>

<4D F736F F D CC8AEE967B934990AB8EBF205F8F43959C8DCF82DD5F2E646F63> 第 1 章土の基本的性質 粒子の組合せ 粒子の性質 粒子の詰まり方 土塊内部の粒子の幾何学的配置 粒子の性質 外部からは見えないが土塊の性質を決定している ( 粒度分布 ) 異なる大きさの粒子の混じり具合 ( 個々の粒子の性質 ) 粒子の大きさ 粒子の比重 粒子の形 粒子の硬さ 強度 粒子が占める体積 空隙が占める体積 v a) 水 ( 間隙水 ) が占める体積 b) 空気が占める体積 a 粒子の相互配列(

More information

Microsoft PowerPoint - ppt8.pptx

Microsoft PowerPoint - ppt8.pptx 地盤材料 学 地盤材料 6/11 1:3 12: 地盤材料 3 授業計画 ( 案 ) 曜 2 限 : 地盤材料 学 ( 藏 )W2-319 第 1 回 (4/9) 授業の概要 第 2 回 (4/16) 砂と粘 ( 圧縮特性 ) 第 3 回 (4/23) 砂と粘 ( 圧縮特性, クリープ, 応 緩和 ) 第 4 回 (5/7) 砂と粘 ( 排 条件とせん断挙動 ) 第 5 回 (5/14) 砂と粘 (

More information

Microsoft PowerPoint - 水と土の科学④

Microsoft PowerPoint - 水と土の科学④ 降雨 地下水汚染 蒸発 揚水量 河川 地盤掘削 ダム 涵養 斜面崩壊 地すべり 漏水 地下水の塩水化 シールドトンネル 浸透圧 井戸地盤沈下 浸透量 浸透破壊湧水 流動 地下水に関する問題 トンネル掘削湧水, 周辺地下水低下 吸着水 地下水面 重力水 毛管水 不飽和領域 土粒子 地下水 飽和領域 土中水の存在形態 重力水は雨水, 地表面の貯留水, 流水などが地下に浸透し, 重力の作用により, 地下水面に向かって移動する水である

More information

Super Build/FA1出力サンプル

Super Build/FA1出力サンプル *** Super Build/FA1 *** [ 計算例 7] ** UNION SYSTEM ** 3.44 2012/01/24 20:40 PAGE- 1 基本事項 計算条件 工 事 名 : 計算例 7 ( 耐震補強マニュアル設計例 2) 略 称 : 計算例 7 日 付 :2012/01/24 担 当 者 :UNION SYSTEM Inc. せん断による変形の考慮 : する 剛域の考慮 伸縮しない材(Aを1000

More information

静的弾性問題の有限要素法解析アルゴリズム

静的弾性問題の有限要素法解析アルゴリズム 概要 基礎理論. 応力とひずみおよび平衡方程式. 降伏条件式. 構成式 ( 応力 - ひずみ関係式 ) 有限要素法. 有限要素法の概要. 仮想仕事の原理式と変分原理. 平面ひずみ弾性有限要素法定式化 FEM の基礎方程式平衡方程式. G G G ひずみ - 変位関係式 w w w. kl jkl j D 構成式応力 - ひずみ関係式 ) (. 変位の境界条件力の境界条件境界条件式 t S on V

More information

破壊の予測

破壊の予測 本日の講義内容 前提 : 微分積分 線形代数が何をしているかはうろ覚え 材料力学は勉強したけど ちょっと 弾性および塑性学は勉強したことが無い ー > ですので 解らないときは質問してください モールの応力円を理解するとともに 応力を 3 次元的に考える FM( 有限要素法 の概略 内部では何を計算しているのか? 3 物が壊れる条件を考える 特に 変形 ( 塑性変形 が発生する条件としてのミーゼス応力とはどのような応力か?

More information

論文 河川技術論文集, 第 18 巻,2012 年 6 月 河川堤防砂の構造の程度が力学特性の評価に及ぼす影響 EFFECTS OF SOIL STRUCTURE ON MECHANICAL PROPERTIES OF SAND IN RIVER EMBANKMENT 小高猛司 1 崔瑛 2 李圭太

論文 河川技術論文集, 第 18 巻,2012 年 6 月 河川堤防砂の構造の程度が力学特性の評価に及ぼす影響 EFFECTS OF SOIL STRUCTURE ON MECHANICAL PROPERTIES OF SAND IN RIVER EMBANKMENT 小高猛司 1 崔瑛 2 李圭太 論文 河川技術論文集, 第 18 巻,12 年 6 月 河川堤防砂の構造の程度が力学特性の評価に及ぼす影響 EFFECTS OF SOIL STRUCTURE ON MECHANICAL PROPERTIES OF SAND IN RIVER EMBANKMENT 小高猛司 1 崔瑛 2 李圭太 3 森涼香 4 兼松祐志 4 Takeshi KODAKA, Ying CUI, KyuTae LEE,

More information

強化プラスチック裏込め材の 耐荷実験 実験報告書 平成 26 年 6 月 5 日 ( 株 ) アスモ建築事務所石橋一彦建築構造研究室千葉工業大学名誉教授石橋一彦

強化プラスチック裏込め材の 耐荷実験 実験報告書 平成 26 年 6 月 5 日 ( 株 ) アスモ建築事務所石橋一彦建築構造研究室千葉工業大学名誉教授石橋一彦 強化プラスチック裏込め材の 耐荷実験 実験報告書 平成 26 年 6 月 5 日 ( 株 ) アスモ建築事務所石橋一彦建築構造研究室千葉工業大学名誉教授石橋一彦 1. 実験目的 大和建工株式会社の依頼を受け 地下建設土留め工事の矢板と腹起こしの間に施工する 強 化プラスチック製の裏込め材 の耐荷試験を行って 設計荷重を保証できることを証明する 2. 試験体 試験体の実測に基づく形状を次に示す 実験に供する試験体は3

More information

Microsoft Word - 中村工大連携教材(最終 ).doc

Microsoft Word - 中村工大連携教材(最終 ).doc 音速について考えてみよう! 金沢工業大学 中村晃 ねらい 私たちの身の回りにはいろいろな種類の波が存在する. 体感できる波もあれば, できない波もある. その中で音は体感できる最も身近な波である. 遠くで雷が光ってから雷鳴が届くまで数秒間時間がかかることにより, 音の方が光より伝わるのに時間がかかることも経験していると思う. 高校の物理の授業で音の伝わる速さ ( 音速 ) は約 m/s で, 詳しく述べると

More information

位相最適化?

位相最適化? 均質化設計法 藤井大地 ( 東京大学 ) 位相最適化? 従来の考え方 境界形状を変化させて最適な形状 位相を求める Γ t Ω b Γ D 境界形状を変化させる問題点 解析が進むにつれて, 有限要素メッシュが異形になり, 再メッシュが必要になる 位相が変化する問題への適応が難しい Γ Γ t t Ω b Ω b Γ D Γ D 領域の拡張と特性関数の導入 χ Ω ( x) = f 0 f x Ω x

More information

施設・構造1-5b 京都大学原子炉実験所研究用原子炉(KUR)新耐震指針に照らした耐震安全性評価(中間報告)(原子炉建屋の耐震安全性評価) (その2)

施設・構造1-5b 京都大学原子炉実験所研究用原子炉(KUR)新耐震指針に照らした耐震安全性評価(中間報告)(原子炉建屋の耐震安全性評価) (その2) 原子炉建屋屋根版の水平地震応答解析モデル 境界条件 : 周辺固定 原子炉建屋屋根版の水平方向地震応答解析モデル 屋根版は有限要素 ( 板要素 ) を用い 建屋地震応答解析による最上階の応答波形を屋根版応答解析の入力とする 応答解析は弾性応答解析とする 原子炉建屋屋根版の上下地震応答解析モデル 7.E+7 6.E+7 実部虚部固有振動数 上下地盤ばね [kn/m] 5.E+7 4.E+7 3.E+7

More information

Taro-2012RC課題.jtd

Taro-2012RC課題.jtd 2011 RC 構造学 http://design-s.cc.it-hiroshima.ac.jp/tsato/kougi/top.htm 課題 1 力学と RC 構造 (1) 図のような鉄筋コンクリート構造物に どのように主筋を配筋すればよいか 図中に示し 最初に 生じる曲げひび割れを図示せよ なお 概略の曲げモーメント図も図示せよ w L 3 L L 2-1 - 課題 2. コンクリートの自重

More information

ρ ( ) sgv + ρwgv γ sv + γ wv γ s + γ w e e γ ρ g s s γ s ( ) + γ w( ) Vs + V Vs + V + e + e + e γ γ sa γ e e n( ) + e γ γ s ( n) + γ wn γ s, γ w γ γ +

ρ ( ) sgv + ρwgv γ sv + γ wv γ s + γ w e e γ ρ g s s γ s ( ) + γ w( ) Vs + V Vs + V + e + e + e γ γ sa γ e e n( ) + e γ γ s ( n) + γ wn γ s, γ w γ γ + σ P σ () n σ () n σ P ) σ ( σ P σ σ σ + u V e m w ρ w gv V V s m s ρ s gv s ρ ( ) sgv + ρwgv γ sv + γ wv γ s + γ w e e γ ρ g s s γ s ( ) + γ w( ) Vs + V Vs + V + e + e + e γ γ sa γ e e n( ) + e γ γ s (

More information

2019/4/3 土質力学 Ⅰ 土の基本的性質 (1) ( 土の組成 ) 澁谷啓 2019 年 4 月 9 日 1 土の基本的性質 粒子の組合せ 内部の粒子の幾何学的配置 粒子の性質 外部からは見えない 連続体 + としてのマスの性質 工学 技術の対象 粒子の性質 ( 粒度分布 ) 異なる大きさの粒

2019/4/3 土質力学 Ⅰ 土の基本的性質 (1) ( 土の組成 ) 澁谷啓 2019 年 4 月 9 日 1 土の基本的性質 粒子の組合せ 内部の粒子の幾何学的配置 粒子の性質 外部からは見えない 連続体 + としてのマスの性質 工学 技術の対象 粒子の性質 ( 粒度分布 ) 異なる大きさの粒 土質力学 Ⅰ 土の基本的性質 (1) ( 土の組成 ) 澁谷啓 2019 年 4 月 9 日 1 土の基本的性質 粒子の組合せ 内部の粒子の幾何学的配置 粒子の性質 外部からは見えない 連続体 + としてのマスの性質 工学 技術の対象 粒子の性質 ( 粒度分布 ) 異なる大きさの粒子の混じり具合 ( 個々の粒子の性質 ) 粒子の大きさ 粒子の比重 粒子の形 粒子の硬さ 強度 平均単位体積重量 * *

More information

<4D F736F F D2081A E682568FCD926E94D592B28DB E94D589FC97C78C7689E62E646F63>

<4D F736F F D2081A E682568FCD926E94D592B28DB E94D589FC97C78C7689E62E646F63> 第 7 章 地盤調査 地盤改良計画 第 1 節地盤調査 1 地盤調査擁壁の構造計算や大規模盛土造成地の斜面安定計算等に用いる土質定数を求める場合は 平成 13 年 7 月 2 日国土交通省告示第 1113 号地盤の許容応力度及び基礎ぐいの許容支持力を求めるための地盤調査の方法並びにその結果に基づき地盤の許容応力度及び基礎ぐいの許容支持力を定める方法等を定める件 ( 以下 この章において 告示 という

More information

A

A A04-164 2008 2 13 1 4 1.1.......................................... 4 1.2..................................... 4 1.3..................................... 4 1.4..................................... 5 2

More information

東海大学紀要 工学部.indd

東海大学紀要 工学部.indd Vol.8,No1,18,pp.6-1 東海大学紀要工学部 Vol., No., 18, pp. - K 過圧密粘土の有効応力経路と塑性ひずみ *1 今井誉人 * 吉富隆弘 *3 赤石勝 *4 外崎明 * 杉山太宏 Effective Stress Path and a Plastic Strain of K Over-Consolidated Clay by Yoshito IMAI *1, Takahiro

More information

2 図微小要素の流体の流入出 方向の断面の流体の流入出の収支断面 Ⅰ から微小要素に流入出する流体の流量 Q 断面 Ⅰ は 以下のように定式化できる Q 断面 Ⅰ 流量 密度 流速 断面 Ⅰ の面積 微小要素の断面 Ⅰ から だけ移動した断面 Ⅱ を流入出する流体の流量 Q 断面 Ⅱ は以下のように

2 図微小要素の流体の流入出 方向の断面の流体の流入出の収支断面 Ⅰ から微小要素に流入出する流体の流量 Q 断面 Ⅰ は 以下のように定式化できる Q 断面 Ⅰ 流量 密度 流速 断面 Ⅰ の面積 微小要素の断面 Ⅰ から だけ移動した断面 Ⅱ を流入出する流体の流量 Q 断面 Ⅱ は以下のように 3 章 Web に Link 解説 連続式 微分表示 の誘導.64 *4. 連続式連続式は ある領域の内部にある流体の質量の収支が その表面からの流入出の合計と等しくなることを定式化したものであり 流体における質量保存則を示したものである 2. 連続式 微分表示 の誘導図のような微小要素 コントロールボリューム の領域内の流体の増減と外部からの流体の流入出を考えることで定式化できる 微小要素 流入

More information

水平打ち継ぎを行った RC 梁の実験 近畿大学建築学部建築学科鉄筋コンクリート第 2 研究室 福田幹夫 1. はじめに鉄筋コンクリート ( 以下 RC) 造建物のコンクリート打設施工においては 打ち継ぎを行うことが避けられない 特に 地下階の施工においては 山留め のために 腹起し や 切ばり があ

水平打ち継ぎを行った RC 梁の実験 近畿大学建築学部建築学科鉄筋コンクリート第 2 研究室 福田幹夫 1. はじめに鉄筋コンクリート ( 以下 RC) 造建物のコンクリート打設施工においては 打ち継ぎを行うことが避けられない 特に 地下階の施工においては 山留め のために 腹起し や 切ばり があ 水平打ち継ぎを行った RC 梁の実験 近畿大学建築学部建築学科鉄筋コンクリート第 2 研究室 福田幹夫 1. はじめに鉄筋コンクリート ( 以下 RC) 造建物のコンクリート打設施工においては 打ち継ぎを行うことが避けられない 特に 地下階の施工においては 山留め のために 腹起し や 切ばり があるために 高さ方向の型枠工事に制限が生じ コンクリートの水平打ち継ぎを余儀なくされる可能性が考えられる

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション SALOME-MECA を使用した RC 構造物の弾塑性解析 終局耐力と弾塑性有限要素法解析との比較 森村設計信高未咲 共同研究者岐阜工業高等専門学校柴田良一教授 研究背景 2011 年に起きた東北地方太平洋沖地震により多くの建築物への被害がみられた RC 構造の公共建築物で倒壊まではいかないものの大きな被害を負った報告もあるこれら公共建築物は災害時においても機能することが求められている今後発生が懸念されている大地震を控え

More information

森林水文 水資源学 2 2. 水文統計 豪雨があった時, 新聞やテレビのニュースで 50 年に一度の大雨だった などと報告されることがある. 今争点となっている川辺川ダムは,80 年に 1 回の洪水を想定して治水計画が立てられている. 畑地かんがいでは,10 年に 1 回の渇水を対象として計画が立て

森林水文 水資源学 2 2. 水文統計 豪雨があった時, 新聞やテレビのニュースで 50 年に一度の大雨だった などと報告されることがある. 今争点となっている川辺川ダムは,80 年に 1 回の洪水を想定して治水計画が立てられている. 畑地かんがいでは,10 年に 1 回の渇水を対象として計画が立て . 水文統計 豪雨があった時, 新聞やテレビのニュースで 50 年に一度の大雨だった などと報告されることがある. 今争点となっている川辺川ダムは,80 年に 回の洪水を想定して治水計画が立てられている. 畑地かんがいでは,0 年に 回の渇水を対象として計画が立てられる. このように, 水利構造物の設計や, 治水や利水の計画などでは, 年に 回起こるような降雨事象 ( 最大降雨強度, 最大連続干天日数など

More information

Microsoft Word - 第5章.doc

Microsoft Word - 第5章.doc 第 5 章表面ひび割れ幅法 5-1 解析対象 ( 表面ひび割れ幅法 ) 表面ひび割れ幅法は 図 5-1 に示すように コンクリート表面より生じるひび割れを対象とした解析方法である. すなわち コンクリートの弾性係数が断面で一様に変化し 特に方向性を持たない表面にひび割れを解析の対象とする. スラブ状構造物の場合には地盤を拘束体とみなし また壁状構造物の場合にはフーチングを拘束体として それぞれ外部拘束係数を定める.

More information

3.7.2 試験ため池の既存堤体は施工方法が不明であることが多く 締固め不足の状態も想定される 締固め不足が原因で大規模地震時にすべり破壊が発生する可能性があるため 現況を適切に把握することが重要である (1) 土質試験 (a) 土質試験項目レベル2 地震動に対する耐震性能の照査に必要な土質試験は

3.7.2 試験ため池の既存堤体は施工方法が不明であることが多く 締固め不足の状態も想定される 締固め不足が原因で大規模地震時にすべり破壊が発生する可能性があるため 現況を適切に把握することが重要である (1) 土質試験 (a) 土質試験項目レベル2 地震動に対する耐震性能の照査に必要な土質試験は 3.7 レベル 2 地震動に対する耐震性能の照査 改定現行備考 重要度区分 AA 種におけるレベル 2 地震動に対する耐震性能照査に当たっては 個々のため池の諸条 件を十分考慮した上で 適切な方法により実施しなければならない 本照査では 発生確率は低いが 断層近傍域で発生するような極めて激しい強さを持つ レベル 2 地震 動 により実施する 3.7.1 重要度区分 AA 種の耐震照査手順 重要度区分

More information

<4D F736F F D208D5C91A297CD8A7793FC96E591E631308FCD2E646F63>

<4D F736F F D208D5C91A297CD8A7793FC96E591E631308FCD2E646F63> 第 1 章モールの定理による静定梁のたわみ 1-1 第 1 章モールの定理による静定梁のたわみ ポイント : モールの定理を用いて 静定梁のたわみを求める 断面力の釣合と梁の微分方程式は良く似ている 前章では 梁の微分方程式を直接積分する方法で 静定梁の断面力と変形状態を求めた 本章では 梁の微分方程式と断面力による力の釣合式が類似していることを利用して 微分方程式を直接解析的に解くのではなく 力の釣合より梁のたわみを求める方法を学ぶ

More information

コンクリート実験演習 レポート

コンクリート実験演習 レポート . 鉄筋コンクリート (RC) 梁の耐力算定.1 断面諸元と配筋 ( 主鉄筋とスターラップ ) スターラップ :D D D 5 7 軸方向筋 ( 主筋 ) (a) 試験体 1 スターラップ :D D D 5 7 軸方向筋 ( 主筋 ) (b) 試験体 鉄筋コンクリート (RC) 梁の断面諸元と配筋 - 1 - . 載荷条件 P/ P/ L-a a = 5 = a = 5 L = V = P/ せん断力図

More information

三軸試験による礫混じり堤体材料の力学特性の評価 名城大学大学院 学生会員牧田祐輝 中島康介 名城大学 国際会員小高猛司板橋一雄 建設技術研究所 国際会員李圭太 中部土質試験協同組合正会員 坪田邦治 加藤雅也 1. はじめに河川堤防の浸透時のすべり破壊に対する安定性評価には, 室内三軸試験で得られる強

三軸試験による礫混じり堤体材料の力学特性の評価 名城大学大学院 学生会員牧田祐輝 中島康介 名城大学 国際会員小高猛司板橋一雄 建設技術研究所 国際会員李圭太 中部土質試験協同組合正会員 坪田邦治 加藤雅也 1. はじめに河川堤防の浸透時のすべり破壊に対する安定性評価には, 室内三軸試験で得られる強 三軸試験による礫混じり堤体材料の力学特性の評価 名城大学大学院 学生会員牧田祐輝 中島康介 名城大学 国際会員小高猛司板橋一雄 建設技術研究所 国際会員李圭太 中部土質試験協同組合正会員 坪田邦治 加藤雅也 1. はじめに河川堤防の浸透時のすべり破壊に対する安定性評価には, 室内三軸試験で得られる強度定数が用いられる その際, 粘性土以外の堤体材料に対しては 試験で強度定数を求めて, 全応力解析により安全率を算定することとされている

More information

<4D F736F F D208D5C91A297CD8A7793FC96E591E6398FCD2E646F63>

<4D F736F F D208D5C91A297CD8A7793FC96E591E6398FCD2E646F63> 9-1 第 9 章静定梁のたわみ ポイント : 梁の微分方程式を用いて梁のたわみを求める 静定梁のたわみを計算 前章では 梁の微分方程式を導き 等分布荷重を受ける単純梁の解析を行った 本節では 導いた梁の微分方程式を利用し さらに多くの静定構造物の解析を行い 梁の最大たわみや変形状態を求めることにする さらに を用いて課題で解析した構造を数値計算し 解析結果を比較 検討しよう 9.1 はじめに キーワード梁の微分方程式単純梁の応力解析片持ち梁の応力解析

More information

<4D F736F F D E682568FCD CC82B982F192668BAD9378>

<4D F736F F D E682568FCD CC82B982F192668BAD9378> 7. 組み合わせ応力 7.7. 応力の座標変換載荷 ( 要素 の上方右側にずれている位置での載荷を想定 図 ( この場合正 ( この場合負 応力の座標変換の知識は なぜ必要か? 例 土の二つの基本的せん断変形モード : - 三軸圧縮変形 - 単純せん断変形 一面せん断変形両者でのせん断強度の関連を理解するためには 応力の座標変換を理解する必要がある 例 粘着力のない土 ( 代表例 乾燥した砂 のせん断破壊は

More information

Microsoft Word - 特集準備資料1

Microsoft Word - 特集準備資料1 圧密 WG 珠玖 西村 柴田 圧密問題の逆解析 -- はじめに 地盤工学における逆解析の研究は 主として圧密沈下の問題を対象に進められてきた. この理由は定かではないが 日本の都市 人口が軟弱な粘性土地盤で構成される沖積平野に集中しており 建設工事にともなう地盤の 圧密 沈下量を精度よく予測したいというニーズがあったことと 地盤の沈下量が比較的計測しやすく 逆解析の研究に必要な観測データが容易に得られたということが理由として考えられる.

More information

アンデン株式会社第 1 技術部 DE 開発藤井成樹 < 業務内容 > アンデンとして CAE 解析を強化するために 10/1 月に DE(Degital Engineering) 開発が 5 名で発足 CAE 開発 活用が目的 解析内容は 構造解析 ( 動解析 非線形含む ) 電場 磁場 音場 熱流

アンデン株式会社第 1 技術部 DE 開発藤井成樹 < 業務内容 > アンデンとして CAE 解析を強化するために 10/1 月に DE(Degital Engineering) 開発が 5 名で発足 CAE 開発 活用が目的 解析内容は 構造解析 ( 動解析 非線形含む ) 電場 磁場 音場 熱流 アンデン株式会社第 1 技術部 DE 開発藤井成樹 < 業務内容 > アンデンとして CAE 解析を強化するために 10/1 月に DE(Degital Engineering) 開発が 5 名で発足 CAE 開発 活用が目的 解析内容は 構造解析 ( 動解析 非線形含む ) 電場 磁場 音場 熱流 流体解析など様々 項目 04 05 06 07 08 09 10 11

More information

<4D F736F F F696E74202D C CC89C88A B8CDD8AB B83685D>

<4D F736F F F696E74202D C CC89C88A B8CDD8AB B83685D> 断面積 (A) を使わずに, 間隙率を使う透水係数の算定 図に示したような 本の孔を掘って, 上流側から食塩を投入した 食塩を投入してから,7 時間後に下流側に食塩が到達したことが分かった この地盤の透水係数を求めよ 地盤の間隙比は e=0.77, 水位差は 0 cmであった なお, この方法はトレーサ法の中の食塩法と呼ばれている Nacl 計測器 0 cm 0.0 m 断面積 (A) を使わずに,

More information

1

1 鉄筋コンクリート柱のせん断破壊実験 1 2 2-1 4 CS- 36N 2% CS-36A2 4% CS-36A4 2 CS-36HF -1 F C28 =36N/mm 2-1 CS-36N 普通コンクリート 36NC 2-3 CS-36A2 石炭灰 2% コンクリート 36CA2 2-4 2% CS-36A4 石炭灰 4% コンクリート 36CA4 2-5 4% CS-36HF 高流動コンクリート

More information

目的 2 汚染水処理対策委員会のサブグループ 1 地下水 雨水等の挙動等の把握 可視化 が実施している地下水流動解析モデルの妥当性を確認すること ( 汚染水処理対策委員会事務局からの依頼事項 )

目的 2 汚染水処理対策委員会のサブグループ 1 地下水 雨水等の挙動等の把握 可視化 が実施している地下水流動解析モデルの妥当性を確認すること ( 汚染水処理対策委員会事務局からの依頼事項 ) 資料 1-3 1 福島第 1 原子力発電所を対象とした地下水流動解析 平成 25 年 12 月 10 日 日本原子力研究開発機構 目的 2 汚染水処理対策委員会のサブグループ 1 地下水 雨水等の挙動等の把握 可視化 が実施している地下水流動解析モデルの妥当性を確認すること ( 汚染水処理対策委員会事務局からの依頼事項 ) 実施内容 3 解析領域設定 地質構造モデルの構築 水理地質構造モデル ( 解析メッシュに水理特性を設定したモデル

More information

国土技術政策総合研究所資料

国土技術政策総合研究所資料 5. 鉄筋コンクリート橋脚の耐震補強設計における考え方 5.1 平成 24 年の道路橋示方書における鉄筋コンクリート橋脚に関する規定の改定のねらい H24 道示 Ⅴの改定においては, 橋の耐震性能と部材に求められる限界状態の関係をより明確にすることによる耐震設計の説明性の向上を図るとともに, 次の2 点に対応するために, 耐震性能に応じた限界状態に相当する変位を直接的に算出する方法に見直した 1)

More information

Microsoft PowerPoint - cm121204mat.ppt

Microsoft PowerPoint - cm121204mat.ppt いまさらいまさら聞けない計算力学の常識常識 講習会 構造解析に入る前に知っておきたい 常識 5 話知ってそうで知らない境界条件処理のいろいろ 7 話固体の非線形解析って何? 9 話固体の非線形解析における 2 つの論点 10 話破壊現象の数値解析の罠 東北大学斉木功 いまさらいまさら聞けない計算力学の常識常識 講習会 5 話知ってそうで知らない境界条件処理のいろいろ 5.1 等分布荷重は均等にした集中荷重と同じでいいの?

More information