静的弾性問題の有限要素法解析アルゴリズム
|
|
|
- あおい いざわ
- 6 years ago
- Views:
Transcription
1 概要 基礎理論. 応力とひずみおよび平衡方程式. 降伏条件式. 構成式 ( 応力 - ひずみ関係式 ) 有限要素法. 有限要素法の概要. 仮想仕事の原理式と変分原理. 平面ひずみ弾性有限要素法定式化
2 FEM の基礎方程式平衡方程式. G G G ひずみ - 変位関係式 w w w. kl jkl j D 構成式応力 - ひずみ関係式 ) (. 変位の境界条件力の境界条件境界条件式 t S on V S on P t 4.
3 応力とひずみおよび 平衡方程式
4 物体にはたらく力と応力
5 応力の定義 応力ベクトル : n lm A P A P A 垂直応力 : n lm A A A せん断応力 : n lm A Q A Q A
6 応力ベクトル j j j j j テンソル標記で
7 応力テンソル j j j モーメントの釣合 = 応力テンソルの対称性
8 二次元応力行列と主応力 n n n n n n ) )( ( 主応力 I I
9 三次元応力の座標変換 n m l n m l n m l n n n n m l n n n n n n n j j j j j n n n
10 三次元応力行列と主応力 今考えている面を主応力 がはたらく主応力面とすると n n ( ) n j t( j j 上式を展開すると I n j j ) j j I 上式が n j = 以外の解をもつためには I j ここで J J J を応力の不変量という. 上式の 実根を とすれば n 主応力 j
11 三次元応力の不変量 j j j jj m I I I t I I I あるいは主応力を用いて表すと
12 平均垂直応力と偏差応力 J m 平均垂直応力 = 静水応力 塑性変形に無関係偏差応力 塑性変形を引き起こす j m j j m m m m m m
13 偏差応力の不変量 6 ) 6( 6 ) ( J J J
14 二次元 方向応力の平衡方程式 (= 釣合方程式 ) F F
15 三次元応力の平衡方程式 (= 釣合方程式 ) j j F F F F
16 ひずみ ( 微少ひずみ ) の定義
17 垂直ひずみ (= 垂直微少ひずみ ) A A A A B
18 せん断ひずみ (= 微少せん断ひずみ ) A D A B tan tan 工学的せん断ひずみはここで j
19 ひずみテンソル ( ひずみ - 変位の関係式 ) j j j j j
20 体積ひずみと偏差ひずみ V 体積ひずみ偏差ひずみ V j j j V V V V V V
21 降伏条件
22 単軸応力状態の降伏条件
23 多軸応力状態の降伏条件 ()
24 多軸応力状態の降伏条件 ()
25 主せん断応力と最大せん断応力 : : 主せん断応力主応力 ma : ma ma ma 最大せん断応力
26 rsca の降伏条件 (864) ( せん断降伏応力 ) に達したとき降伏する. が材料固有の臨界値最大せん断応力 C ma せん断降伏応力ここでのときあるいは : ma ma ma ma k k C k C
27 rsca の降伏条件における臨界値の決定 Y Y Y Y k k C k k C 純粋せん断の降伏状態にあるときとすると 単軸引張試験の降伏応力を
28 Mss の降伏条件 (9) ここで : はせん断降伏応力 6 M M M j j k k C J に達したとき降伏. が材料固有の臨界値不変量材料中のせん断ひずみエネルギー = 偏差応力の次の C M J
29 Mss の降伏条件における臨界値の決定 Y M M M M M Y M Y Y k k C k k C 純粋せん断の降伏状態にあるときとすると 単軸引張試験の降伏応力を
30 降伏曲面 降伏曲線 主応力空間における降伏曲面 π 平面上の降伏曲線
31 降伏条件式の実験的検証
32 応力 - ひずみ関係式 = 構成式
33 弾性体の構成式 () ( 一般化されたフックの法則 ) j kk j j kk j j E G E E G E G E G E G E である. テンソル標記でははポアソン比は横弾性係数 はヤング率 ここで
34 弾性体の構成式 () ( 一般化されたフックの法則 ) kl jkl kl kl j jk l jl k j D G G G E G G E G G E ) ( ) )( ( ) ( ) )( ( ) ( ) )( ( テンソル標記ではあるいはその逆関係として
35 弾性体の構成式 () ( 一般化されたフックの法則 ) j m j j m m m E G G E G G E G G E G テンソル標記ではまたフックの法則を偏差応力を用いて表すと
36 Rss の構成式 p p p j p j p p p p p p j p j 上式は塑性体積一定の条件を満足している. テンソル標記するとの方向に一致する と仮定した塑性構成式の方向は偏差応力 塑性ひずみ増分
37 剛塑性体の構成式 (L-Mss の式 ) p p p p p p 上式を変形し 一般応力成分で表すと
38 弾塑性体の構成式 (Prantl-Rss の式 ) E G G E G G E G G E G j j m j p j j j m m m p j j j テンソル標記すると塑性ひずみ増分弾性ひずみ増分全ひずみ増分
39 相当応力と相当塑性ひずみ増分 6 p p p p p p p p p p j j p j j p p W W を相当塑性ひずみ増分といい 次式で定義されるに関して次式が成立するとき塑性仕事増分材では次式のようになるを相当応力と呼び ミーゼス換算して評価できる関数値多軸応力状態における降伏応力の程度を単軸降伏応力に
40 二次元平面ひずみ 弾性有限要素法
41 有限要素法とは FEM=Fnt Elmnt Mtho 解析対象物体 ( 連続体 ) を有限個の要素に分割し 各要素について剛性方程式を構成し それらを全要素について重ね合わせる
42 固体力学解析用有限要素法 弾塑性有限要素法 弾性有限要素法 ( 静的陽解法 ) 微少変形弾塑性有限要素法 ( 静的陽解法 静的陰解法 ) 大変形弾塑性有限要素法 ( 静的陽解法 静的陰解法 動的陽解法 ) 剛塑性有限要素法 ( 静的陰解法 )
43 弾性 FEM 定式化の流れ () 釣合方程式 ガウスの発散定理 () 変分原理 ポテンシャル停留の原理 () 仮想仕事の原理式 (5) 形状関数 (4) 構成方程式離散化 (6) ひずみ- 変位関係式 (7) 有限要素方程式
44 弾性 FEM の基礎方程式 = 弾性境界値問題平衡方程式. G G G ひずみー変位関係式 w w w. kl j jkl j j j kk j kl jkl j D U U E E D ) (. 構成式応力 - ひずみ関係式変位の境界条件力の境界条件境界条件式 t S on V S on P t 4.
45 弾性 FEM 定式化の流れ () 釣合方程式 ガウスの発散定理 () 変分原理 ポテンシャル停留の原理 () 仮想仕事の原理式 (5) 形状関数 (4) 構成方程式離散化 (6) ひずみ- 変位関係式 (7) 有限要素方程式
46 仮想仕事の原理式 静的可容応力 : 平衡方程式と力学的境界条件を満足する応力 動的可容変位 : ひずみ - 変位関係式と幾何学的境界条件を満足する変位 仮想変位 : 動的可容変位の変分静的可容応力と仮想変位に対して次式が成り立つ. V ( G ) S ( t P ) S j j S t 上式にガウスの発散定理を適用すると次の仮想仕事の原理式を得る j V j G V P S V V S t 可容応力と仮想変位によってなされる内部仕事が外部仕事に等しいことを表す.
47 変分原理 仮想仕事の原理式は弾性体の全ポテンシャルエネルギ Φ の第一変分が零であることを表しているポテンシャルエネルギ停留の原理に置き換えることができる. V U V S P S t V G V 今 真の変位を それからわずかに異なる任意の可容変位を + とすると V ひずみエネルギ関数 U が正値 次形式の場合 上式右辺第 項は正であるから j U となり 真の変位に対するポテンシャルエネルギは最小値をとる. kl j kl V
48 弾性 FEM 定式化の流れ () 釣合方程式 ガウスの発散定理 () 変分原理 ポテンシャル停留の原理 () 仮想仕事の原理式 (5) 形状関数 (4) 構成方程式離散化 (6) ひずみ- 変位関係式 (7) 有限要素方程式
49 次元平面ひずみ変形状態のひずみと応力 ) ( ) )( ( E
50 平面ひずみ変形状態における応力 - ひずみ関係式 D E または ) ( ) )( ( ) (
51 弾性 FEM 定式化の流れ () 釣合方程式 ガウスの発散定理 () 変分原理 ポテンシャル停留の原理 () 仮想仕事の原理式 (5) 形状関数 (4) 構成方程式離散化 (6) ひずみ- 変位関係式 (7) 有限要素方程式
52 三角形 節点要素と形状関数 形状関数 の性質 は節点 で それ以外 のつの節点で の値をとる. は線形の関数である.
53 形状関数の具体形 ) ( ) ( あるいはマトリックスの形でまたは
54 形状関数の計算 ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( t 要素の面積 の座標値であり におけるは節点ただし
55 弾性 FEM 定式化の流れ () 釣合方程式 ガウスの発散定理 () 変分原理 ポテンシャル停留の原理 () 仮想仕事の原理式 (5) 形状関数 (4) 構成方程式離散化 (6) ひずみ- 変位関係式 (7) 有限要素方程式
56 ひずみ - 変位マトリックス () (B マトリックス )
57 ひずみ - 変位マトリックス () (B マトリックス ) マトリックスの形式で書くと
58 ひずみ - 変位マトリックス () (B マトリックス ) の形になっているから その および に関する勾配はただし ) ( C b a c b c c c b b b と書けるので これをひずみ - 変位マトリックスに代入すると
59 ひずみ - 変位マトリックス (4) (B マトリックス ) したがってひずみ - 変位関係式は b c b c b c c c c b b b または B さらに B D D
60 弾性 FEM 定式化の流れ () 釣合方程式 ガウスの発散定理 () 変分原理 ポテンシャル停留の原理 () 仮想仕事の原理式 (5) 形状関数 (4) 構成方程式離散化 (6) ひずみ- 変位関係式 (7) 有限要素方程式
61 離散化 ( 要素剛性方程式 ) () 三角形 節点要素について 仮想仕事の原理式の左辺 ( 内部仕事 ) は V V V V j V j V V V
62 離散化 ( 要素剛性方程式 ) () 仮想仕事の原理式の右辺 ( 外部仕事 ) は S V V V S V S V S t V b S t t V b b S t t V b b S t V b ) ( ) (
63 離散化 ( 要素剛性方程式 ) () ここで以下の関係式がる B D D B よって三角形 節点要素に関する仮想仕事の原理式は S V V S t V b V B D B ] [
64 離散化 ( 要素剛性方程式 ) (4) ここで仮想変位は定数であり 積分の外に出してもよいので B DBV [ ] b V t S V 任意の仮想変位に対して上式が成立するためには [ ] 内は常に V V B D B V [ ] b V t これが解くべき剛性方程式である. 左辺の積分内のマトリックスを V B D B V B D B K とおくとことにする. は三角形要素の面積である. V S S S
65 離散化 ( 要素剛性方程式 ) (5) 仮想仕事の原理式の右辺第 項の物体力の項は V V b b b b b b V b b V b ただし物体力は要素内で一定と仮定
66 離散化 ( 要素剛性方程式 ) (6) 右辺第 項表面力の項は 例えば面 - に右図のように表面力が分布しているなら形状関数マトリックスを次のように書き直して L l L l L l L l
67 離散化 ( 要素剛性方程式 ) (7) これより表面力の項は次式のようになるただし表面力は面 - 上で等分布荷重とした. S S t t t t L S t t L l L l L l L l S t
68 離散化 ( 要素剛性方程式 ) (8) 最終的に要素剛性方程式は次式のように書き換えられる f K 節点変位 : 節点力 : f f f f f f f 要素剛性マトリックス : K
69 全体剛性方程式 下図に示すような複数要素からなる系の全体系に関する仮想仕事の原理のマトリックス表示は K f これより全体系に関する剛性方程式は次のように得られる K f K K f f
70 弾性有限要素法解析の流れ 領域の要素分割 境界条件の設定 Pr-Procssor 要素剛性マトリックスの計算 全体剛性マトリックスの計算 等価節点力 変位拘束の導入 FEM Analss 連立一次方程式を解き節点変位を求める 節点変位からひずみ 応力の計算 結果の出力 可視化 Pr-Procssor
<4D F736F F F696E74202D20906C8D488AC28BAB90DD8C7689F090CD8D488A D91E F1>
人工環境設計解析工学構造力学と有限要素法 ( 第 回 ) 東京大学新領域創成科学研究科 鈴木克幸 固体力学の基礎方程式 変位 - ひずみの関係 適合条件式 ひずみ - 応力の関係 構成方程式 応力 - 外力の関係 平衡方程式 境界条件 変位規定境界 反力規定境界 境界条件 荷重応力ひずみ変形 場の方程式 Γ t Γ t 平衡方程式構成方程式適合条件式 構造力学の基礎式 ひずみ 一軸 荷重応力ひずみ変形
Microsoft PowerPoint - シミュレーション工学-2010-第1回.ppt
シミュレーション工学 ( 後半 ) 東京大学人工物工学研究センター 鈴木克幸 CA( Compter Aded geerg ) r. Jaso Lemo (SC, 98) 設計者が解析ツールを使いこなすことにより 設計の評価 設計の質の向上を図る geerg の本質の 計算機による支援 (CA CAM などより広い名前 ) 様々な汎用ソフトの登場 工業製品の設計に不可欠のツール 構造解析 流体解析
FEM原理講座 (サンプルテキスト)
サンプルテキスト FEM 原理講座 サイバネットシステム株式会社 8 年 月 9 日作成 サンプルテキストについて 各講師が 講義の内容が伝わりやすいページ を選びました テキストのページは必ずしも連続していません 一部を抜粋しています 幾何光学講座については 実物のテキストではなくガイダンスを掲載いたします 対象とする構造系 物理モデル 連続体 固体 弾性体 / 弾塑性体 / 粘弾性体 / 固体
パソコンシミュレータの現状
第 2 章微分 偏微分, 写像 豊橋技術科学大学森謙一郎 2. 連続関数と微分 工学において物理現象を支配する方程式は微分方程式で表されていることが多く, 有限要素法も微分方程式を解く数値解析法であり, 定式化においては微分 積分が一般的に用いられており. 数学の基礎知識が必要になる. 図 2. に示すように, 微分は連続な関数 f() の傾きを求めることであり, 微小な に対して傾きを表し, を無限に
<4D F736F F F696E74202D AB97CD8A E631318FCD5F AB8D5C90AC8EAE816A2E B8CDD8AB B83685D>
弾塑性構成式 弾塑性応力 ひずみ解析における基礎式 応力の平衡方程式 ひずみの適合条件式 構成式 (), 全ひずみ理論 () 硬化則 () 塑性ポテンシャル理論の概要 ひずみ 応力の増分, 速度 弾性丸棒の引張変形を考える ( 簡単のため 公称 で考える ). 時間増分 dt 時刻 t 0 du u 時刻 t t 時刻 t t のひずみ, 応力 u, 微小な時間増分 dt におけるひずみ増分, 応力増分
(Microsoft PowerPoint - \221\34613\211\361)
計算力学 ~ 第 回弾性問題の有限要素解析 (Ⅱ)~ 修士 年後期 ( 選択科目 ) 担当 : 岩佐貴史 講義の概要 全 5 講義. 計算力学概論, ガイダンス. 自然現象の数理モデル化. 行列 場とその演算. 数値計算法 (Ⅰ) 5. 数値計算法 (Ⅱ) 6. 初期値 境界値問題 (Ⅰ) 7. 初期値 境界値問題 (Ⅱ) 8. マトリックス変位法による構造解析 9. トラス構造の有限要素解析. 重み付き残差法と古典的近似解法.
PowerPoint Presentation
Non-linea factue mechanics き裂先端付近の塑性変形 塑性域 R 破壊進行領域応カ特異場 Ω R R Hutchinson, Rice and Rosengen 全ひずみ塑性理論に基づいた解析 現段階のひずみは 除荷がないとすると現段階の応力で一義的に決まる 単純引張り時の応カーひずみ関係 ( 構成方程式 ): ( ) ( ) n () y y y ここで α,n 定数, /
<4D F736F F F696E74202D E94D58B9393AE82F AC82B782E982BD82DF82CC8AEE E707074>
地盤数値解析学特論 防災環境地盤工学研究室村上哲 Mrakam, Satoh. 地盤挙動を把握するための基礎. 変位とひずみ. 力と応力. 地盤の変形と応力. 変位とひずみ 変形勾配テンソルひずみテンソル ひずみテンソル : 材料線素の長さの 乗の変化量の尺度 Green-Lagrange のひずみテンソルと Alman のひずみテンソル 微小変形状態でのひずみテンソル ひずみテンソルの物理的な意味
テンソル ( その ) テンソル ( その ) スカラー ( 階のテンソル ) スカラー ( 階のテンソル ) 階数 ベクトル ( 階のテンソル ) ベクトル ( 階のテンソル ) 行列表現 シンボリック表現 [ ]
Tsor th-ordr tsor by dcl xprsso m m Lm m k m k L mk kk quott rul by symbolc xprsso Lk X thrd-ordr tsor cotrcto j j Copyrght s rsrvd. No prt of ths documt my b rproducd for proft. テンソル ( その ) テンソル ( その
第3章 ひずみ
第 4 章 応力とひずみの関係 4. 単軸応力を受ける弾性体の応力とひずみの関係 温度一定の下で, 負荷による変形が徐荷によって完全に回復する場合を広義の弾性というが, 狭義の弾 性では, 負荷過程と徐荷過程で応力 - ひずみ関係が一致しない場合は含めず ( 図 - 参照 ), 与えられたひ ずみ状態に対して応力が一意に定まる, つまり応力がひずみの関数と して表される. このような物体を狭義の弾性体
Microsoft PowerPoint - elast.ppt [互換モード]
弾性力学入門 年夏学期 中島研吾 科学技術計算 Ⅰ(48-7) コンピュータ科学特別講義 Ⅰ(48-4) elast 弾性力学 弾性力学の対象 応力 弾性力学の支配方程式 elast 3 弾性力学 連続体力学 (Continuum Mechanics) 固体力学 (Solid Mechanics) の一部 弾性体 (lastic Material) を対象 弾性論 (Theor of lasticit)
Microsoft Word - 1B2011.doc
第 14 回モールの定理 ( 単純梁の場合 ) ( モールの定理とは何か?p.11) 例題 下記に示す単純梁の C 点のたわみ角 θ C と, たわみ δ C を求めよ ただし, 部材の曲げ 剛性は材軸に沿って一様で とする C D kn B 1.5m 0.5m 1.0m 解答 1 曲げモーメント図を描く,B 点の反力を求める kn kn 4 kn 曲げモーメント図を描く knm 先に得られた曲げモーメントの値を
...Y..FEM.pm5
. 剛塑性有限要素法 名古屋大学大学院工学研究科. はじめに. 剛塑性体の構成式.. 降伏条件.. 構成方程式 ([D] マトリックス ). 節点速度 ひずみ速度関係..[B] マトリックス.. 四角形一次要素の [B] マトリックス.4 4 仮想仕事の原理 ( 剛性マトリックス ([K] マトリックス )).5 非線形方程式の解法.5. 直接代入法.5.wto-Raphso 法.6 非圧縮性の拘束と数値積分.7
5-仮想仕事式と種々の応力.ppt
1 以上, 運動の変数についての話を終える. 次は再び力の変数に戻る. その前に, まず次の話が唐突と思われないように 以下は前置き. 先に, 力の変数と運動の変数には対応関係があって, 適当な内積演算によって仕事量を表す ことを述べた. 実は,Cauchy 応力と速度勾配テンソル ( あるいは変位勾配テンソル ) を用いると, それらの内積は内部仮想仕事を表していて, そして, それは外力がなす仮想仕事に等しいという
<4D F736F F D2097CD8A7793FC96E582BD82ED82DD8A E6318FCD2E646F63>
- 第 章たわみ角法の基本式 ポイント : たわみ角法の基本式を理解する たわみ角法の基本式を梁の微分方程式より求める 本章では たわみ角法の基本式を導くことにする 基本式の誘導法は各種あるが ここでは 梁の微分方程式を解いて基本式を求める方法を採用する この本で使用する座標系は 右手 右ネジの法則に従った座標を用いる また ひとつの部材では 図 - に示すように部材の左端の 点を原点とし 軸線を
Microsoft PowerPoint - H21生物計算化学2.ppt
演算子の行列表現 > L いま 次元ベクトル空間の基底をケットと書くことにする この基底は完全系を成すとすると 空間内の任意のケットベクトルは > > > これより 一度基底を与えてしまえば 任意のベクトルはその基底についての成分で完全に記述することができる これらの成分を列行列の形に書くと M これをベクトル の基底 { >} による行列表現という ところで 行列 A の共役 dont 行列は A
破壊の予測
本日の講義内容 前提 : 微分積分 線形代数が何をしているかはうろ覚え 材料力学は勉強したけど ちょっと 弾性および塑性学は勉強したことが無い ー > ですので 解らないときは質問してください モールの応力円を理解するとともに 応力を 3 次元的に考える FM( 有限要素法 の概略 内部では何を計算しているのか? 3 物が壊れる条件を考える 特に 変形 ( 塑性変形 が発生する条件としてのミーゼス応力とはどのような応力か?
スライド 1
CAE 演習 有限要素法のノウハウ ( 基礎編 ) 1. はじめに 有限要素法はポピュラーなツールである一方 解析で苦労している人が多い 高度な利用技術が必要 ( 解析の流れに沿って説明 ) 2. モデル化 要素の選択 3. メッシュ分割の工夫 4. 境界条件の設定 5. 材料物性の入力 6.7. 解析の結果の検証と分析 2. モデル化 要素の選択 モデルを単純化していかに解析を効率的 高精度に行うか?
<4D F736F F D208D5C91A297CD8A7793FC96E591E631308FCD2E646F63>
第 1 章モールの定理による静定梁のたわみ 1-1 第 1 章モールの定理による静定梁のたわみ ポイント : モールの定理を用いて 静定梁のたわみを求める 断面力の釣合と梁の微分方程式は良く似ている 前章では 梁の微分方程式を直接積分する方法で 静定梁の断面力と変形状態を求めた 本章では 梁の微分方程式と断面力による力の釣合式が類似していることを利用して 微分方程式を直接解析的に解くのではなく 力の釣合より梁のたわみを求める方法を学ぶ
JSMECM教育認定
一般社団法人日本機械学会 018/09/6 計算力学技術者 級問題集 ( 固体力学分野 )018 年度版 ( 第 9 版 3 刷 ) P 項目誤正 175 問 -6/ 上 8 行 1 1 sin cos sin cos rs y y xy rs y x xy i 計算力学技術者 級 ( 固体力学分野の有限要素法解析技術者 ) の認定の範囲 認定技術者の技術レベル本認定を取得した技術者は, 基本的な固体力学の問題に対して,
構造力学Ⅰ第12回
第 回材の座屈 (0 章 ) p.5~ ( 復習 ) モールの定理 ( 手順 ) 座屈とは 荷重により梁に生じた曲げモーメントをで除して仮想荷重と考える 座屈荷重 偏心荷重 ( 曲げと軸力 ) 断面の核 この仮想荷重に対するある点でのせん断力 たわみ角に相当する曲げモーメント たわみに相当する ( 例 ) 単純梁の支点のたわみ角 : は 図 を仮想荷重と考えたときの 点の支点反力 B は 図 を仮想荷重と考えたときのB
線形弾性体 線形弾性体 応力テンソル とひずみテンソルソル の各成分が線形関係を有する固体. kl 応力テンソル O kl ひずみテンソル
Constitutive equation of elasti solid Hooke s law λδ μ kk Lame s onstant λ μ ( )( ) ( ) linear elasti solid kl kl Copyright is reserved. No part of this doument may be reprodued for profit. 線形弾性体 線形弾性体
<4D F736F F D208D5C91A297CD8A7793FC96E591E631318FCD2E646F63>
11-1 第 11 章不静定梁のたわみ ポイント : 基本的な不静定梁のたわみ 梁部材の断面力とたわみ 本章では 不静定構造物として 最も単純でしかも最も大切な両端固定梁の応力解析を行う ここでは 梁の微分方程式を用いて解くわけであるが 前章とは異なり 不静定構造物であるため力の釣合から先に断面力を決定することができない そのため 梁のたわみ曲線と同時に断面力を求めることになる この両端固定梁のたわみ曲線や断面力分布は
OCW-iダランベールの原理
講義名連続体力学配布資料 OCW- 第 2 回ダランベールの原理 無機材料工学科准教授安田公一 1 はじめに今回の講義では, まず, 前半でダランベールの原理について説明する これを用いると, 動力学の問題を静力学の問題として解くことができ, さらに, 前回の仮想仕事の原理を適用すると動力学問題も簡単に解くことができるようになる また, 後半では, ダランベールの原理の応用として ラグランジュ方程式の導出を示す
Microsoft PowerPoint - suta.ppt [互換モード]
弾塑性不飽和土構成モデルの一般化と土 / 水連成解析への適用 研究の背景 不飽和状態にある土構造物の弾塑性挙動 ロックフィルダム 道路盛土 長期的に正確な予測 不飽和土弾塑性構成モデル 水頭変動 雨水の浸潤 乾湿の繰り返し 土構造物の品質変化 不飽和土の特徴的な力学特性 不飽和土の特性 サクション サクション s w C 飽和度が低い状態 飽和度が高い状態 サクションの効果 空気侵入値 B. サクション増加
5. 変分法 (5. 変分法 汎関数 : 関数の関数 (, (, ( =, = では, の値は変えないで, その間の に対する の値をいろいろと変えるとき, の値が極地をとるような関数 ( はどのような関数形であるかという問題を考える. そのような関数が求められたとし, そのからのずれを変分 δ と
Arl, 6 平成 8 年度学部前期 教科書 : 力学 Ⅱ( 原島鮮著, 裳華房 金用日 :8 限,9 限, 限 (5:35~8: 丸山央峰 htt://www.orootcs.mech.ngo-u.c.j/ Ngo Unverst, Borootcs, Ar L 5. 変分法 (5. 変分法 汎関数 : 関数の関数 (, (, ( =, = では, の値は変えないで, その間の に対する の値をいろいろと変えるとき,
Microsoft PowerPoint - cm121204mat.ppt
いまさらいまさら聞けない計算力学の常識常識 講習会 構造解析に入る前に知っておきたい 常識 5 話知ってそうで知らない境界条件処理のいろいろ 7 話固体の非線形解析って何? 9 話固体の非線形解析における 2 つの論点 10 話破壊現象の数値解析の罠 東北大学斉木功 いまさらいまさら聞けない計算力学の常識常識 講習会 5 話知ってそうで知らない境界条件処理のいろいろ 5.1 等分布荷重は均等にした集中荷重と同じでいいの?
<4D F736F F D208D5C91A297CD8A7793FC96E591E6328FCD2E646F63>
-1 ポイント : 材料の応力とひずみの関係を知る 断面内の応力とひずみ 本章では 建築構造で多く用いられる材料の力学的特性について学ぶ 最初に 応力とひずみの関係 次に弾性と塑性 また 弾性範囲における縦弾性係数 ( ヤング係数 ) について 建築構造用材料として代表的な鋼を例にして解説する さらに 梁理論で使用される軸方向応力と軸方向ひずみ あるいは せん断応力とせん断ひずみについて さらにポアソン比についても説明する
Microsoft PowerPoint - 夏の学校(CFD).pptx
/9/5 FD( 計算流体力学 ) の基礎理論 性能 運動分野 夏の学校 神戸大学大学院海事科学研究科勝井辰博 流体の質量保存 流体要素内の質量の増加率 [ 単位時間当たりの増加量 ] 単位時間に流体要素に流入する質量 流体要素 Fl lm (orol olm) v ( ) ガウスの定理 v( ) /9/5 = =( ) b=b =(b b b ) b= b = b + b + b アインシュタイン表記
第1章 単 位
H. Hamano,. 長柱の座屈 - 長柱の座屈 長い柱は圧縮荷重によって折れてしまう場合がある. この現象を座屈といい, 座屈するときの荷重を座屈荷重という.. 換算長 長さ の柱に荷重が作用する場合, その支持方法によって, 柱の理論上の長さ L が異なる. 長柱の計算は, この L を用いて行うと都合がよい. この L を換算長 ( あるいは有効長さという ) という. 座屈荷重は一般に,
Microsoft PowerPoint - 10.pptx
m u. 固有値とその応用 8/7/( 水 ). 固有値とその応用 固有値と固有ベクトル 行列による写像から固有ベクトルへ m m 行列 によって線形写像 f : R R が表せることを見てきた ここでは 次元平面の行列による写像を調べる とし 写像 f : を考える R R まず 単位ベクトルの像 u y y f : R R u u, u この事から 線形写像の性質を用いると 次の格子上の点全ての写像先が求まる
応用数学Ⅱ 偏微分方程式(2) 波動方程式(12/13)
偏微分方程式. 偏微分方程式の形 偏微分 偏導関数 つの独立変数 をもつ関数 があるとき 変数 が一定値をとって だけが変化したとす ると は だけの関数となる このとき を について微分して得られる関数を 関数 の に関する 偏微分係数 略して偏微分 あるいは偏導関数 pil deiie といい 次のように表される についても同様な偏微分を定義できる あるいは あるいは - あるいは あるいは -
<4D F736F F F696E74202D AB97CD8A E630398FCD5F8AC C896E291E8816A2E B8CDD8AB B83685D>
単純な ( 単純化した ) 応力状態における弾塑性問題 () 繊維強化複合材の引張り () 三本棒トラスへの負荷 () はりの曲げ (4) 円筒 丸棒のねじりとせん断変形 (5) 熱弾塑性問題 負荷 ( 弾性変形 ) 負荷 ( 弾塑性変形 ) 除荷 残留応力 第 9 章,4 ページ ~ その. 繊維強化複合材料の引張り Rs.: []htt://authrs.library.caltch.du/5456//hrst.it.du/hrs/
<4D F736F F D208D5C91A297CD8A7793FC96E591E6388FCD2E646F63>
8-1 第 8 章梁の微分方程式 ポイント : ベルヌーイ オイラー梁による梁の微分方程式 平面保持と法線保持の仮定 本章では 梁理論の基本となるベルヌーイ オイラー梁に従い 3 次元物体である梁を 1 次元の線材に置換し その挙動を支配する梁の微分方程式を誘導する このベルヌーイ オイラー梁は 平面保持と法線保持の両仮定で成立しており この 種の仮定を用いることで 梁内の応力やひずみを容易に求めることができる
技術者のための構造力学 2014/06/11 1. はじめに 資料 2 節点座標系による傾斜支持節点節点の処理 三好崇夫加藤久人 従来, マトリックス変位法に基づく骨組解析を紹介する教科書においては, 全体座標系に対して傾斜 した斜面上の支持条件を考慮する処理方法として, 一旦, 傾斜支持を無視した
. はじめに 資料 節点座標系による傾斜支持節点節点の処理 三好崇夫加藤久人 従来, マトリックス変位法に基づく骨組解析を紹介する教科書においては, 全体座標系に対して傾斜 した斜面上の支持条件を考慮する処理方法として, 一旦, 傾斜支持を無視した全体座標系に関する構造 全体の剛性マトリックスを組み立てた後に, 傾斜支持する節点に関して対応する剛性成分を座標変換に よって傾斜方向に回転処理し, その後は通常の全体座標系に対して傾斜していない支持点に対するのと
Microsoft PowerPoint - zairiki_3
材料力学講義 (3) 応力と変形 Ⅲ ( 曲げモーメント, 垂直応力度, 曲率 ) 今回は, 曲げモーメントに関する, 断面力 - 応力度 - 変形 - 変位の関係について学びます 1 曲げモーメント 曲げモーメント M 静定力学で求めた曲げモーメントも, 仮想的に断面を切ることによって現れる内力です 軸方向力は断面に働く力 曲げモーメント M は断面力 曲げモーメントも, 一つのモーメントとして表しますが,
ニュートン重力理論.pptx
3 ニュートン重力理論 1. ニュートン重力理論の基本 : 慣性系とガリレイ変換不変性 2. ニュートン重力理論の定式化 3. 等価原理 4. 流体力学方程式とその基礎 3.1 ニュートン重力理論の基本 u ニュートンの第一法則 = 力がかからなければ 等速直線運動を続ける u 等速直線運動に見える系を 慣性系 と呼ぶ ² 直線とはどんな空間の直線か? ニュートン理論では 3 次元ユークリッド空間
< B795FB8C6094C28F6F97CD97E12E786477>
長方形板の計算システム Ver3.0 適用基準 級数解法 ( 理論解析 ) 構造力学公式集( 土木学会発行 /S61.6) 板とシェルの理論( チモシェンコ ヴォアノフスキークリ ガー共著 / 長谷川節訳 ) 有限要素法解析 参考文献 マトリックス構造解析法(J.L. ミーク著, 奥村敏恵, 西野文雄, 西岡隆訳 /S50.8) 薄板構造解析( 川井忠彦, 川島矩郎, 三本木茂夫 / 培風館 S48.6)
2011年度 筑波大・理系数学
0 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ O を原点とするy 平面において, 直線 y= の を満たす部分をC とする () C 上に点 A( t, ) をとるとき, 線分 OA の垂直二等分線の方程式を求めよ () 点 A が C 全体を動くとき, 線分 OA の垂直二等分線が通過する範囲を求め, それ を図示せよ -- 0 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ
Microsoft PowerPoint - fuseitei_6
不静定力学 Ⅱ 骨組の崩壊荷重の計算 不静定力学 Ⅱ では, 最後の問題となりますが, 骨組の崩壊荷重の計算法について学びます 1 参考書 松本慎也著 よくわかる構造力学の基本, 秀和システム このスライドの説明には, 主にこの参考書の説明を引用しています 2 崩壊荷重 構造物に作用する荷重が徐々に増大すると, 構造物内に発生する応力は増加し, やがて, 構造物は荷重に耐えられなくなる そのときの荷重を崩壊荷重あるいは終局荷重という
Microsoft Word - elastostatic_analysis_ docx
静弾性解析 1. 定式化と離散化の概要 1.1 線形弾性体の定式化 Fig.1 に示される線形弾性体の境界値問題を考える. ただし, 微小変形を仮定する.Fig.1 N において,N を次元数とすると, は有界領域であり, はその境界である. ここで, d は変位境界条件が与えられる境界, t は応力境界条件が与えられる境界である. d と t の間には, d および t d の関係が成り立つとする.
Microsoft PowerPoint - 2_FrontISTRと利用可能なソフトウェア.pptx
東京大学本郷キャンパス 工学部8号館2階222中会議室 13:30-14:00 FrontISTRと利用可能なソフトウェア 2017年4月28日 第35回FrontISTR研究会 FrontISTRの並列計算ハンズオン 精度検証から並列性能評価まで 観測された物理現象 物理モデル ( 支配方程式 ) 連続体の運動を支配する偏微分方程式 離散化手法 ( 有限要素法, 差分法など ) 代数的な数理モデル
Microsoft Word - 09弾性02基礎方程式.doc
第 章基礎方程式と弾性問題の解. フックの法則 応力に対してひずみが生じ 応力をゼロに戻すとひずみも消失する性質を 弾性 という 弾性挙動を示す棒の軸方向の応力 とひずみの間には式 の関係が成り立つ これが フックの法則 であり をヤング率または弾性率と呼ぶ 棒を軸 縦 方向に引張ると直交 横 方向に収縮し 逆に縦方向に圧縮すると横方向に膨張する 棒の縦横の長さを L,d とし 縦ひずみを L L-L
線積分.indd
線積分 線積分 ( n, n, n ) (ξ n, η n, ζ n ) ( n-, n-, n- ) (ξ k, η k, ζ k ) ( k, k, k ) ( k-, k-, k- ) 物体に力 を作用させて位置ベクトル A の点 A から位置ベクトル の点 まで曲線 に沿って物体を移動させたときの仕事 W は 次式で計算された A, A, W : d 6 d+ d+ d@,,, d+ d+
以下 変数の上のドットは時間に関する微分を表わしている (ex. 2 dx d x x, x 2 dt dt ) 付録 E 非線形微分方程式の平衡点の安定性解析 E-1) 非線形方程式の線形近似特に言及してこなかったが これまでは線形微分方程式 ( x や x, x などがすべて 1 次で なおかつ
以下 変数の上のドットは時間に関する微分を表わしている (e. d d, dt dt ) 付録 E 非線形微分方程式の平衡点の安定性解析 E-) 非線形方程式の線形近似特に言及してこなかったが これまでは線形微分方程式 ( や, などがすべて 次で なおかつそれらの係数が定数であるような微分方程式 ) に対して安定性の解析を行ってきた しかしながら 実際には非線形の微分方程式で記述される現象も多く存在する
OpenCAE勉強会 公開用_pptx
OpenCAE 勉強会岐阜 2013/06/15 ABAQUS Student Edition を用い た XFEM き裂進展解析事例報告 OpenCAE 学会員 SH 発表内容 ABAQUS Student Edition とは? ABAQUS Student Edition 入手方法など - 入手方法 / インストール - 解析 Sample ファイルの入手方法 etc. XFEM について -XFEM
0 21 カラー反射率 slope aspect 図 2.9: 復元結果例 2.4 画像生成技術としての計算フォトグラフィ 3 次元情報を復元することにより, 画像生成 ( レンダリング ) に応用することが可能である. 近年, コンピュータにより, カメラで直接得られない画像を生成する技術分野が生
0 21 カラー反射率 slope aspect 図 2.9: 復元結果例 2.4 画像生成技術としての計算フォトグラフィ 3 次元情報を復元することにより, 画像生成 ( レンダリング ) に応用することが可能である. 近年, コンピュータにより, カメラで直接得られない画像を生成する技術分野が生まれ, コンピューテーショナルフォトグラフィ ( 計算フォトグラフィ ) と呼ばれている.3 次元画像認識技術の計算フォトグラフィへの応用として,
<4D F736F F D208D5C91A297CD8A7793FC96E591E6398FCD2E646F63>
9-1 第 9 章静定梁のたわみ ポイント : 梁の微分方程式を用いて梁のたわみを求める 静定梁のたわみを計算 前章では 梁の微分方程式を導き 等分布荷重を受ける単純梁の解析を行った 本節では 導いた梁の微分方程式を利用し さらに多くの静定構造物の解析を行い 梁の最大たわみや変形状態を求めることにする さらに を用いて課題で解析した構造を数値計算し 解析結果を比較 検討しよう 9.1 はじめに キーワード梁の微分方程式単純梁の応力解析片持ち梁の応力解析
Microsoft Word - NumericalComputation.docx
数値計算入門 武尾英哉. 離散数学と数値計算 数学的解法の中には理論計算では求められないものもある. 例えば, 定積分は, まずは積分 ( 被積分関数の原始関数をみつけること できなければ値を得ることはできない. また, ある関数の所定の値における微分値を得るには, まずその関数の微分ができなければならない. さらに代数方程式の解を得るためには, 解析的に代数方程式を解く必要がある. ところが, これらは必ずしも解析的に導けるとは限らない.
PowerPoint Presentation
応用数学 Ⅱ (7) 7 連立微分方程式の立て方と解法. 高階微分方程式による解法. ベクトル微分方程式による解法 3. 演算子による解法 連立微分方程式 未知数が複数個あり, 未知数の数だけ微分方程式が与えられている場合, これらを連立微分方程式という. d d 解法 () 高階微分方程式化による解法 つの方程式から つの未知数を消去して, 未知数が つの方程式に変換 のみの方程式にするために,
耳桁の剛性の考慮分配係数の計算条件は 主桁本数 n 格子剛度 zです 通常の並列鋼桁橋では 主桁はすべて同じ断面を使います しかし 分配の効率を上げる場合 耳桁 ( 幅員端側の桁 ) の断面を大きくすることがあります 最近の桁橋では 上下線を別橋梁とすることがあり また 防音壁などの敷設が片側に有る
格子桁の分配係数の計算 ( デモ版 ) 理論と解析の背景主桁を並列した鋼単純桁の設計では 幅員方向の横桁の剛性を考えて 複数の主桁が協力して活荷重を分担する効果を計算します これを 単純な (1,0) 分配に対して格子分配と言います レオンハルト (F.Leonhardt,1909-1999) が 1950 年初頭に発表した論文が元になっていて 理論仮定 記号などの使い方は その論文を踏襲して設計に応用しています
Microsoft Word - thesis.doc
剛体の基礎理論 -. 剛体の基礎理論初めに本論文で大域的に使用する記号を定義する. 使用する記号トルク撃力力角運動量角速度姿勢対角化された慣性テンソル慣性テンソル運動量速度位置質量時間 J W f F P p .. 質点の並進運動 質点は位置 と速度 P を用いる. ニュートンの運動方程式 という状態を持つ. 但し ここでは速度ではなく運動量 F P F.... より質点の運動は既に明らかであり 質点の状態ベクトル
材料の力学解答集
材料の力学 ( 第 章 ) 解答集 ------------------------------------------------------------------------------- 各種応力の計算問題 (No1) 1. 断面積 1mm の材料に 18N の引張荷重が働くとき, 断面に生じる応力はどれほどか ( 18(N/mm ) または 18(MP)) P 18( N) 18 N /
2 図微小要素の流体の流入出 方向の断面の流体の流入出の収支断面 Ⅰ から微小要素に流入出する流体の流量 Q 断面 Ⅰ は 以下のように定式化できる Q 断面 Ⅰ 流量 密度 流速 断面 Ⅰ の面積 微小要素の断面 Ⅰ から だけ移動した断面 Ⅱ を流入出する流体の流量 Q 断面 Ⅱ は以下のように
3 章 Web に Link 解説 連続式 微分表示 の誘導.64 *4. 連続式連続式は ある領域の内部にある流体の質量の収支が その表面からの流入出の合計と等しくなることを定式化したものであり 流体における質量保存則を示したものである 2. 連続式 微分表示 の誘導図のような微小要素 コントロールボリューム の領域内の流体の増減と外部からの流体の流入出を考えることで定式化できる 微小要素 流入
FrontISTR による熱応力解析 東京大学新領域創成科学研究科人間環境学専攻橋本学 2014 年 10 月 31 日第 15 回 FrontISTR 研究会 < 機能 例題 定式化 プログラム解説編 熱応力解析 / 弾塑性解析 >
FronISR による熱応力解析 東京大学新領域創成科学研究科人間環境学専攻橋本学 214 年 1 月 31 日第 15 回 FronISR 研究会 < 機能 例題 定式化 プログラム解説編 熱応力解析 / 弾塑性解析 > FronISR に実装されている定式化を十分に理解し, 解きたい問題に対してソースコードを自由にカスタマイズ ( 要素タイプを追加, 材料の種類を追加, ユーザサブルーチンを追加
第1章 単 位
H. Hmno 問題解答 問題解答. 力の釣合い [ 問題.] V : sin. H :.cos. 7 V : sin sin H : cos cos cos 上第 式より これと第 式より.. cos V : sin sin H : coscos cos 上第 式より これと第 式より.98. cos [ 問題.] :. V :. : 9 9. V :. : sin V : sin 8.78 H
数値計算で学ぶ物理学 4 放物運動と惑星運動 地上のように下向きに重力がはたらいているような場においては 物体を投げると放物運動をする 一方 中心星のまわりの重力場中では 惑星は 円 だ円 放物線または双曲線を描きながら運動する ここでは 放物運動と惑星運動を 運動方程式を導出したうえで 数値シミュ
数値計算で学ぶ物理学 4 放物運動と惑星運動 地上のように下向きに重力がはたらいているような場においては 物体を投げると放物運動をする 一方 中心星のまわりの重力場中では 惑星は 円 だ円 放物線または双曲線を描きながら運動する ここでは 放物運動と惑星運動を 運動方程式を導出したうえで 数値シミュレーションによって計算してみる 4.1 放物運動一様な重力場における放物運動を考える 一般に質量の物体に作用する力をとすると運動方程式は
補足 中学で学習したフレミング左手の法則 ( 電 磁 力 ) と関連付けると覚えやすい 電磁力は電流と磁界の外積で表される 力 F 磁 電磁力 F li 右ねじの回転の向き電 li ( l は導線の長さ ) 補足 有向線分とベクトル有向線分 : 矢印の位
http://totemt.sur.ne.p 外積 ( ベクトル積 ) の活用 ( 面積, 法線ベクトル, 平面の方程式 ) 3 次元空間の つのベクトルの積が つのベクトルを与えるようなベクトルの掛け算 ベクトルの積がベクトルを与えることからベクトル積とも呼ばれる これに対し内積は符号と大きさをもつ量 ( スカラー量 ) を与えるので, スカラー積とも呼ばれる 外積を使うと, 平行四辺形や三角形の面積,
数学の世界
東京女子大学文理学部数学の世界 (2002 年度 ) 永島孝 17 6 行列式の基本法則と効率的な計算法 基本法則 三次以上の行列式についても, 二次の場合と同様な法則がなりたつ ここには三次の場合を例示するが, 四次以上でも同様である 1 単位行列の行列式の値は 1 である すなわち 1 0 0 0 1 0 1 0 0 1 2 二つの列を入れ替えると行列式の値は 1 倍になる 例えば a 13 a
損傷力学による冷間鍛造における欠陥の発生 成長の予測 静岡大学工学部機械工学科助教授早川邦夫 ( 平成 16 年度研究開発助成 AF ) キーワード : 損傷力学, 鍛造, 有限要素法 1. 研究の目的と背景現在, 鍛造品は, より高強度な材料に対する加工や, より高精度な加工が求めら
損傷力学による冷間鍛造における欠陥の発生 成長の予測 静岡大学工学部機械工学科助教授早川邦夫 ( 平成 16 年度研究開発助成 AF-004014 キーワード : 損傷力学, 鍛造, 有限要素法 1. 研究の目的と背景現在, 鍛造品は, より高強度な材料に対する加工や, より高精度な加工が求められている. このような工程では, 素材や工具に作用する応力はより高くなるため, 工具破壊や素材の損傷や破壊が無視できない.
行列、ベクトル
行列 (Mtri) と行列式 (Determinnt). 行列 (Mtri) の演算. 和 差 積.. 行列とは.. 行列の和差 ( 加減算 ).. 行列の積 ( 乗算 ). 転置行列 対称行列 正方行列. 単位行列. 行列式 (Determinnt) と逆行列. 行列式. 逆行列. 多元一次連立方程式のコンピュータによる解法. コンピュータによる逆行列の計算.. 定数項の異なる複数の方程式.. 逆行列の計算
スライド 1
H25 創造設計演習 ~ 振動設計演習 1~ 1 ゆれない片持ち梁の設計 振動設計演習全体 HP(2011 年度まで使用 今は閲覧のみ ): http://hockey.t.u-tokyo.ac.jp/shindousekkei/index.html M4 取付ネジ 2 Xin 加振器 50mm 幅 30mm 材料 :A2017または ABS 樹脂 計測点 :Xout 2mm? Hz CAD 所望の特性になるまで繰り返す?
材料強度試験 ( 曲げ試験 ) [1] 概要 実験 実習 Ⅰ の引張り試験に引続き, 曲げ試験による機械特性評価法を実施する. 材料力学で学ぶ梁 の曲げおよびたわみの基礎式の理解, 材料への理解を深めることが目的である. [2] 材料の変形抵抗変形抵抗は, 外力が付与された時の変形に対する各材料固有
材料強度試験 ( 曲げ試験 [] 概要 実験 実習 Ⅰ の引張り試験に引続き, 曲げ試験による機械特性評価法を実施する. 材料力学で学ぶ梁 の曲げおよびたわみの基礎式の理解, 材料への理解を深めることが目的である. [] 材料の変形抵抗変形抵抗は, 外力が付与された時の変形に対する各材料固有の抵抗値のことであり, 一般に素材の真応力 - 真塑性ひずみ曲線で表される. 多くの金属材料は加工硬化するため,
有限要素法法による弾弾性変形解析 (Gmsh+Calculix)) 海洋エネルギギー研究センター今井 問題断面が1mmx1mm 長さ 20mmm の鋼の一端端を固定 他他端に点荷重重をかけた場場合の先端変変位および最大応力を求求める P Equation Chapter 1 Section 1 l
有限要素法法による弾弾性変形解析 (Gmsh+Calculix)) 海洋エネルギギー研究センター今井 問題断面が1mmx1mm 長さ 20mmm の鋼の一端端を固定 他他端に点荷重重をかけた場場合の先端変変位および最大応力を求求める P Equation Chapter 1 Section 1 l δ 1 形状の作作成 (Gmsh) c: gmsh test1 フォルダを作る http://geuz.org/gmsh/#
本日話す内容
6CAE 材料モデルの VV 山梨大学工学部土木環境工学科吉田純司 本日話す内容 1. ゴム材料の免震構造への応用 積層ゴム支承とは ゴムと鋼板を積層状に剛結 ゴム層の体積変形を制限 水平方向 鉛直方向 柔 剛 加速度の低減 構造物の支持 土木における免震 2. 高減衰積層ゴム支承の 力学特性の概要 高減衰ゴムを用いた支承の復元力特性 荷重 [kn] 15 1 5-5 -1-15 -3-2 -1 1
Microsoft PowerPoint - 第5回電磁気学I
1 年 11 月 8 日 ( 月 ) 1:-1: Y 平成 年度工 系 ( 社会環境工学科 ) 第 5 回電磁気学 Ⅰ 天野浩 項目 電界と電束密度 ガウスの発散定理とガウスの法則の積分形と微分形 * ファラデーの電気力線の使い方をマスターします * 電界と電束密度を定義します * ガウスの発散定理を用いて ガウスの法則の積分形から微分形をガウスの法則の積分形から微分形を導出します * ガウスの法則を用いて
<4D F736F F D EBF97CD8A B7982D189898F4B A95748E9197BF4E6F31312E646F63>
土質力学 Ⅰ 及び演習 (B 班 : 小高担当 ) 配付資料 N.11 (6.1.1) モールの応力円 (1) モールの応力円を使う上での3つの約束 1 垂直応力は圧縮を正とし, 軸の右側を正の方向とする 反時計まわりのモーメントを起こさせるせん断応力 の組を正とする 3 物体内で着目する面が,θ だけ回転すると, モールの応力円上では θ 回転する 1とは物理的な実際の作用面とモールの応力円上との回転の方向を一致させるために都合の良い約束である
第6章 実験モード解析
第 6 章実験モード解析 6. 実験モード解析とは 6. 有限自由度系の実験モード解析 6.3 連続体の実験モード解析 6. 実験モード解析とは 実験モード解析とは加振実験によって測定された外力と応答を用いてモードパラメータ ( 固有振動数, モード減衰比, 正規固有モードなど ) を求める ( 同定する ) 方法である. 力計 試験体 変位計 / 加速度計 実験モード解析の概念 時間領域データを利用する方法
Microsoft PowerPoint - ‚æ2‘Í.ppt
第 2 章力学的挙動と静的強度 目的 荷重が作用した際の金属材料の力学的挙動について理解する. 2.1 応力 - ひずみ曲線 2.1.1 公称応力 / ひずみと真応力 / ひずみ 2.1.2 応力 - ひずみ曲線 2.1.3 力学的性質 ( 機械的性質 ) 2.1.4 加工硬化 2.1.5 じん性 2.1.6 指標の意味 2.2 力学的性質を求める異なる方法 2.2.1 ヤング率の測定方法 2.2.2
Microsoft Word - 201hyouka-tangen-1.doc
数学 Ⅰ 評価規準の作成 ( 単元ごと ) 数学 Ⅰ の目標及び図形と計量について理解させ 基礎的な知識の習得と技能の習熟を図り それらを的確に活用する機能を伸ばすとともに 数学的な見方や考え方のよさを認識できるようにする 評価の観点の趣旨 式と不等式 二次関数及び図形と計量における考え方に関 心をもつとともに 数学的な見方や考え方のよさを認識し それらを事象の考察に活用しようとする 式と不等式 二次関数及び図形と計量における数学的な見
PowerPoint プレゼンテーション
不飽和土の力学を用いた 締固めメカニズムの解明 締固めとは 土に力を加え 間隙中の空気を追い出すことで土の密度を高めること 不飽和土 圧縮性の減少透水性の減少せん断 変形抵抗の増大 などに効果あり 締固め土は土構造物の材料として用いられている 研究背景 現場締固め管理 締固め必須基準 D 値 施工含水比 施工層厚 水平まきだし ( ρdf ) 盛土の乾燥密度 D値 = 室内締固め試験による最大乾燥密度
PowerPoint Presentation
H8 年度有限要素法 1 構造強度設計 1. 塑性崩壊 1.3 疲労設計 ( 一部修正版 ) H8-1/6 早川 (R : 夏学期の復習部分 ) 1. 塑性崩壊とその評価法 ( 極限解析 ) R 塑性崩壊 : 構造物として使用に耐えないほどの過度の塑性変形 全断面降伏 前提 : 弾完全塑性材モデル E ひずみ硬化ありひずみ硬化なし : 降伏強さ E : ヤング率 ε 図 1.3 弾完全塑性材モデルの応力
2016年度 筑波大・理系数学
06 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ k を実数とする y 平面の曲線 C : y とC : y- + k+ -k が異なる共 有点 P, Q をもつとする ただし点 P, Q の 座標は正であるとする また, 原点を O とする () k のとりうる値の範囲を求めよ () k が () の範囲を動くとき, OPQ の重心 G の軌跡を求めよ () OPQ の面積を S とするとき,
Microsoft Word - 補論3.2
補論 3. 多変量 GARC モデル 07//6 新谷元嗣 藪友良 対数尤度関数 3 章 7 節では 変量の対数尤度を求めた ここでは多変量の場合 とくに 変量について対数尤度を求める 誤差項 は平均 0 で 次元の正規分布に従うとする 単純化のため 分散と共分散は時間を通じて一定としよう ( この仮定は後で変更される ) したがって ij から添え字 を除くことができる このとき と の尤度関数は
スライド 1
暫定版修正 加筆の可能性あり ( 付録 球面波 回折 (. グリーンの定理. キルヒホッフの積分定理 3. ホイヘンスの原理 4. キルヒホッフの回折公式 5. ゾンマーフェルトの放射条件 6. 補足 付録 (90~904 のアプローチ : 回折 (diffaction までの道標. 球面波 (pheical wave のみ対象 : スカラー表示. 虚数単位 i を使用する 3. お詫び : 自己流かつ説明が飛躍する場面があります
航空機の運動方程式
可制御性 可観測性. 可制御性システムの状態を, 適切な操作によって, 有限時間内に, 任意の状態から別の任意の状態に移動させることができるか否かという特性を可制御性という. 可制御性を有するシステムに対し, システムは可制御である, 可制御なシステム という言い方をする. 状態方程式, 出力方程式が以下で表されるn 次元 m 入力 r 出力線形時不変システム x Ax u y x Du () に対し,
SPACEstJ User's Manual
6-1 第 6 章部材の断面力計算 ポイント : 部材断面力の計算 両端の変位より両端外力を計算する 本章では 両端の変位を用いて部材両端の材端力を求め 断面内の応力との釣合より 断面力を求める方法を学ぶ ここでは 部材荷重は等分布荷重を考慮しているため 基本応力と節点荷重による断面力を重ね合わせて 実際の部材断面力を求める 6.1 はじめに キーワード 部材断面力の計算部材座標系の変位等分布荷重による基本応力
1
半剛節が部材上の任意点にある部材剛性方程式 米子高専 川端康洋 稲田祐二. ピン半剛節を有する部材の解析の歴史 ()940 二見秀雄材の途中にピン接合点を有するラーメン材の算式とその応用建築学会論文集 つのピン節を含む部材の撓角法基本式と荷重項ピン節を含む部材の撓角法基本式と荷重項が求められている 以降 固定モーメント法や異形ラーメンの解法への応用が研究された 戦後には 関連する論文は見当たらない
PowerPoint Presentation
付録 2 2 次元アフィン変換 直交変換 たたみ込み 1.2 次元のアフィン変換 座標 (x,y ) を (x,y) に移すことを 2 次元での変換. 特に, 変換が と書けるとき, アフィン変換, アフィン変換は, その 1 次の項による変換 と 0 次の項による変換 アフィン変換 0 次の項は平行移動 1 次の項は座標 (x, y ) をベクトルと考えて とすれば このようなもの 2 次元ベクトルの線形写像
PowerPoint Presentation
CAE 演習 :Eas-σ lite に よる応力解析 目標 : 機械工学実験 はりの曲げと応力集中 の有限要素法による応力解析を行う 用語 CAD: Computer Aided Design CAE: Computer Aided Engineering コンピュータシミュレーション CAM: Computer Aided Manufacturing スケジュール. 有限要素法の基礎と応用例 2.
Microsoft Word - スーパーナビ 第6回 数学.docx
1 ⑴ 与式 =- 5 35 +14 35 =9 35 1 ⑵ 与式 =9-(-5)=9+5=14 1 ⑶ 与式 = 4(a-b)-3(5a-3b) = 8a-4b-15a+9b = -7a+5b 1 1 1 1 ⑷ 与式 =(²+ 1+1²)-{²+(-3+)+(-3) } 1 ⑷ 与式 =(²++1)-(²--6)=²++1-²++6=3+7 1 ⑸ 与式 = - ² + 16 = - +16
Microsoft PowerPoint - 9.pptx
9/7/8( 水 9. 線形写像 ここでは 行列の積によって 写像を定義できることをみていく また 行列の積によって定義される写像の性質を調べていく 拡大とスカラー倍 行列演算と写像 ( 次変換 拡大後 k 倍 k 倍 k 倍拡大の関係は スカラー倍を用いて次のように表現できる p = (, ' = k ' 拡大前 p ' = ( ', ' = ( k, k 拡大 4 拡大と行列の積 拡大後 k 倍
Microsoft Word - 町田・全 H30学力スタ 別紙1 1年 数学Ⅰ.doc
(1) 数と式 学習指導要領 都立町田高校 学力スタンダード ア 数と集合 ( ア ) 実数 根号を含む式の計算 数を実数まで拡張する意義を理解し 簡単な 循環小数を表す記号を用いて, 分数を循環小数で表 無理数の四則計算をすること すことができる 今まで学習してきた数の体系について整理し, 考察 しようとする 絶対値の意味と記号表示を理解している 根号を含む式の加法, 減法, 乗法の計算ができる
Microsoft PowerPoint - 講義PPT2019.ppt [互換モード]
. CA 演習 :as σ lite による応力解析 目標 : 機械工学実験 はりの曲げと応力集中 の有限要素法による応力解析を行う CAD: Computer Aided Design CA: Computer Aided ngineering コンピュータシミュレーション CAM: Computer Aided Manufacturing スケジュール. 有限要素法の基礎と応用例. as σの使い方の説明.
