C 2. /
|
|
|
- きみかず みうら
- 7 years ago
- Views:
Transcription
1
2 C 2. /
3 i DYNASCAL A 3
4 ... (differential equation (solution curve dx = ax, (. dt (a solution k x = f(t =e ta k, (.2 (. k (. (an initial value problem x = ax, x( = k, (.3 (. (a unique solution. a =. (.2 k 2,,, 2 Maple 9 (uniqueness of solutions t (local existence t (existence in the large Hartman (982 Hartman [ ] y = y 2, y( =. (.4 c t c = t c =(t c 2 /4 [.] (. (.2
5 t : The simplest differential equations with initial values (.3 (.2. a> k > x k < x 2. a = x = k(constant 3. a< x Fig. a =. k =2,, 2 (. (linear homogeneous first-order differential equations dx/dt = A(t x (homogeneous equation (. x (nonhomogeneous equation (. x B(t dx/dt = A(t x + B(t (higher-order differential equations d 2 x dt 2 + a dx + b(t = dt
6 3..2 (state space (a system of linear first-order differential equations dx dt = Ax,,x( = k Rn. (.5 (.5 x = f(t =e ta k = e ta x. (.6 e ta = k= k! Ak (Hirsch & Smale, 974, p.86. dx dt = g(x, x R n g(x = x = x (an equilibrium point x = φ t (x t φ t (x =x. (.7 x (a stationary point (a fixed point (a zero point (a singular point, or singularity : The vector field and some solution curves near a saddle with λ < <λ 2 (.5 A dx/dt = Ax x = Py P (.5 dy dt = By, B = P AP, y( = P x(. (.8
7 4 P x( = k [.2] dx/dt = Ax (.8 P A A A (real canonical form : The vector field and some solution curves near a saddle with λ 2 < <λ : The vector field and some solution curves near an inward node with λ <λ 2 <
8 5 n A J O J 2... P AP = F F 2. O.., (.9 J J 2 (elementary Jordan matrices λ (elementary λ blocks λ O... J l =, l =, 2,...,p. ( O λ F F 2 D O. I.. 2 F m = O I 2 D, D, m =, 2,...,q. (. ( D = a b b a (, I 2 = (.2 D λ = a ± bi : The vector field and some solution curves near an inward node with λ 2 <λ < A A
9 6 (a ( (b ( ( λ λ 2 λ λ λ λ,,, (c ( a b b a, b > ( a b b a, b > : The vector field and some solution curves near an outward node with <λ <λ 2 (.8 =e tb k, (.3 ( λ Case (a B =, λ 2 (.8 ( λ y = λ 2 y 2 ( dy dt dy 2 dt, (.4
10 7 (.2 ( ( y (t e λt k =. (.5 y 2 (t e λ2t k 2 (.5 y 2 (t y (t = e(λ2 λ t k 2. (.6 k (.5 (.6 λ λ 2 λ λ 2 (saddle (.2.3 (inward node.4.5 (outward node.6.7 λ = λ 2 (.6 y 2 (t y (t = k 2 k, (.7 t y (t y 2 (t k k : The vector field and some solution curves near an outward node with <λ 2 <λ ( ( λ λ Case (b B =, B =, λ λ ( λ B =, =e tb k λ ( ( y (t = y 2 (t e λt k e λt tk + e λt k 2. (.8 (.8
11 : The vector field and some solution curves near an inward focus with λ = λ 2 < : The vector field and some solution curves near an outward focus with λ = λ 2 > ( tλ Case (b B tb = t tλ ( tb =(tλi + N, N =. t. e tb = e tλi e N. e X = r= X r r!,
12 9 e tλi = e tλ I N 2 = N 3 =...= O e N = I + N ( e tb = e tλ I (I + N =e tλ (I + N =e tλ. t ( e tb = e tλ te tλ e tλ : The vector field and some solution curves near an inward improper node with eqs.(.2,λ < : The vector field and some solution curves near an inward improper node with eqs.(.8,λ < (.8 y 2 (t y (t = t + k 2 k. (.9
13 ( λ B = λ ( λ λ ( e tb = e tλ te tλ e tλ. (.2 ( y (t y 2 (t ( e λt k + e λt tk 2 =. (.2 e λt k 2 y (t y 2 (t = t + k k 2. (.22 (.9 (.22 t y (t y 2 (t, y 2 (t. (.23 y (t.. λ > : The vector field and some solution curves near an outward improper node with eqs.(.2,λ > ( ( a b a b Case (c B =, B =, b > b a b a ( a b B =, b a ( ta tb tb = = tai + tbl. (.24 tb ta L = (. (.25
14 (.24 e tb = e tai e tbl = e ta e tbl. (.26 e tbl L ( e tbl cos tb sin tb =. (.27 sin tb cos tb e tbl = I + tb! L + (tb2 L 2 +, 2! L 2 = I, L 3 = L, L 4 = I, L 5 = L, (.28 L cos(tb sin(tb : The vector field and some solution curves near an outward improper node with eqs.(.8,λ > (.26 (.27 e tb = e ta ( cos tb sin tb sin tb cos tb. (.29 ( y (t y 2 (t ( e ta (k cos tb k 2 sin tb = e ta (k sin tb + k 2 cos tb. (.3 y 2 (t y (t = k sin tb + k 2 cos tb k cos tb k 2 sin tb. (.3 (.3 cos tb sin tb a < lim t =
15 2 y ( a b = b a ( dy dt dy 2 dt ( y ( ay = by (.32 y 2 dy 2 dt = by. (.33 b > y > dy 2 /dt > y < dy 2 /dt < spiral.4 b < spiral.5 y 2 = dy 2 /dt = by a > lim t = : The vector field and some solution curves near a (counterclockwise spiral sink : The vector field and some solution curves near a (clockwise spiral sink
16 3 ( ( b b Case (c B =, B =, b > b b Case (c a = ( : The vector field and some solution curves near a (counterclockwise spiral source : The vector field and some solution curves near a (clockwise spiral source ( y (t y 2 (t ( = (k cos tb k 2 sin tb (k sin tb + k 2 cos tb. (.34 (.34 y 2(t+y2 2 (t y 2 (t+y2 2 (t =k2 + k2 2 = r2 (k,k 2. (.35 (k,k 2 Case (b.8.9
17 4 A (negative real parts sink inward node inward improper node inward focus spiral sink sink A (positive real parts source outward node outward improper node outward focus spiral source source : The vector field and some solution curves near a (counterclockwise center : The vector field and some solution curves near a (clockwise center 99, Chino, 987, saddle
18 5.4.5 spiral sink.8 focus focus focus.. improper node.2.3 improper node.4.5 spiral sinks.6.7 spiral source.8.9 centers center (.5 A (a system of nonlinear first-order differential equations (linearize Guckenheimer & Holmes, 983, pp.2-3 dx dt = f(x, x Rn, x( = k. (.36 (.36 x f(x = (.36 f(x x (the Jacobian matrix Jx dx dt = J x x, (.37 Jx { } = fi = x j x=x f f x f 2 f 2 x x 2 f x n f 2 x n x 2... f n x f n x 2 f n x n. (.38 x=x (non-zero real part
19 6 center (limit cycles spiral sink spiral source (closed orbit (α limit cycle (ω limit cycle spiral sink spiral source : An ω-limit cycle Hirsch & Smale (974, pp µ =.5 Maple ( ( µx x 3 + y =. (.39 x source µ
20 7 8 Heath, 2 (99 Chino (987, 99.2 spiral sink spiral source..5 (Hartman & Grobman s theorem (non-zero real part (structurally stable (structurally unstable.8.9 center..6 (bifurcation (bifurcation parameters c dx dt = f(x, c. (.4 (.39 c = µ (local bifurcation Guckenheimer & Holmes, 983 (saddle-node bifurcation (pitchfork bifurcation
21 : A spiral sink before an ω-limit cycle appears (transcritical bifurcation (Hopf bifurcation saddle node spiral sink spiral source center center spiral sink spiral source spiral source spiral sink.2.2 spiral sink Maple (.39 µ =.5.2 µ =.5 µ =. (saddle loop (saddle connection spiral sink saddle spiral sink center center source spiral sink saddle saddles saddle saddle saddles (99 Chino (987, 99
22 9.2.2 spiral sink sink source spiral source spiral sink.2 PsycINFO dynamical system Tobler ( (the wind model (flow (curl free part (divergence free part (gradient vector field (scalar potential 8 (bifurcation theory DYNASCAL (Dynamical System Scaling Chino & Nakagawa, 983, 99 DYNASCAL Yadohisa and Niki (999 DYNASCAL.2. (997 t jk = d jk r + c jk. (.4 t jk j k d jk r c jk
23 2 (.4 c jk = c kj t kj = d kj /(r + c kj c jk = r t kj t jk t jk + t kj. (.42 t jk (j,k ( DYNASCAL DYNASCAL Guttman (968 SSA-II (nonautonomous system (autonomous system : Illustration of the estimated vector field at a time by DYNASCAL.22 spiral sinks saddles DYNASCAL DYNASCAL (.4 x t dx dt = f(x,t, (.43
24 2 dx /dt f (x,x 2,x 3 dx 2 /dt = f 2 (x,x 2,x 3, (.44 dx 3 /dt DYNASCAL (.4 c DYNASCAL DYNASCAL 3. (limit cycles DYNASCAL Newcomb (96 Chino and Nakagawa (99 DYNASCAL...3 DYNASCAL. saddle.2 saddle 4 spiral source.3
25 (difference equation x(n +=a(n x(n, x(n =x, n n, (2. (a linear homogeneous first-order difference equation ( Elaydi (999 ( n x(n = a(i x, (2.2 i=n x(n +=a(n x(n+g(n, x(n =x, n n, (2.3 (a linear nonhomogeneous first-order difference equation ( n ( n n x(n = a(i x + a(i g(r, (2.4 i=n i=r+ k- Elaydi, 999, p.54 r=n y(n + k+p (n y(n + k + + p k (n y(n =g(n. (2.3 a(n =a g(n =b x(n +=ax(n+b, x(n =x, n n, (2.5 { ( a n a x + b n a, a x(n = x + bn, a = (2.6 (2.6 n. a> = x.
26 a = = b> x, b = x = x, b< x. 3. <a< = x b a. 4. a = = x x b x 5. a< = x ± k (a system of linear first-order difference equations x(n +=Ax(n, x(n =x. (2.7 A = a a 2 a k a 2 a 22 a 2k.... (2.8 a k a k2 a kk (real nonsingular matrix (2.7 x(n, n, x =A n n x. (2.9 y(n x =x(n y(n +=Ay(n y( = x(n (2.9 y(n =A n y(, (2. (2.7 A A n (the Putzer algorithm Elaydi, 999, p.6 (2.7 x(n =(x (n,x 2 (n,...,x k (n t k (states s,s 2,...,s k x(n =p(n =(p (n,p 2 (n,...,p k (n t A = P = {p ij = p(s i s j } p ij s j s i (the Markov chain p(n +=Sp(n, (2. S = {p ij }, (2.2 (the transition matrix A = {a ij } A a ij k k A j =, 2,...,k k i= a ij = (Markov (stochastic λ λ Elaydi, 999, p.42 λ = λ ρ(a ρ(a k k (the spectral radius ρ(a =max i k λ i (the Perron s theorem (Elaydi, 999, p.42
27 x(n +=f(x(n, x( = x, (2.3 x f (the fixed point f(x =x, (2.4 (2.3 (the equilibrium point (2.4 (.7 x(n x(n + x(n (2.4 x(n + x(n = (a x ɛ > x x <δ(δ > n> f n (x x <ɛ δ (stable (b x x x <η(η > lim n x n = x η (attracting x η = (a global attractor (globally attracting (c x (asymptotically stable equilibrium η = (globally asymptotically stable x x x δ> n> x n x ɛ> x n x x x x η> x n n x x x x n n x x x x η> n> x n x ɛ> n x Elaydi, 999 x x(n +=f(x(n, (2.5 f x (i f (x < x
28 2 25 (ii f (x > x x f (x (hyperbolic (2.5 x f (x = (i f (x x (ii f (x = f (x > x (iii f (x = f (x < x (2.5 x f (x = (i Sf(x < x (ii Sf(x > x Sf(x (the Schwarzian derivative of a function f Sf(x = f (x f (x 3 ( f 2 (x 2 f. (2.6 (x k k (a periodic point Elaydi, 999 b f (i b k f k (b =b f (2.5 x(n +=g(x(n, g = f k, (2.7 f k k- (k-periodic b O(b = { b, f(b,...,f k (b } k- (k-cycle (ii b m f m (b k- k- (eventually k-periodic (995 k- b (988, p.54 k- b f k- b (i f k (ii f k (iii f k
29 2 26 b k- { x( = b, x( = f(b,...,x(k = f k (b } k- O(b ={b = x(,x(,...,x(k } f k- k- (i f (x(f (x( f (x(k < (ii f (x(f (x( f (x(k > 2..4 dx/dt = f(x,t,b dx/dt = f(x, b b x(n +=f(x(n,n,b b Peitgen and Richter (986 (Verhulst dynamics x( n x(n R R = r( x(n x(n + = ( + Rx(n x(n + = ( + rx(n rx 2 (n. r r r r n r (chaos 2..5 x(n +=f(n, x(n, x(n =x, (2.8 x(n R k f : z + R k R k f(n, x(n x (2.8 n (nonaoutonomous (2.8 n x(n +=f(x(n (autonomous (2.8 n Z N f(n + N,x =f(n, x, (2.9
30 2 27 (periodic R k x f(n, x =x n n (2.8 (an equilibrium point x y(n =x(n x (2.8 y(n +=f(n, y(n+x x = g(n, y(n, y = x = x (2.8 Elaydi (999, p.57 (2.8 x (i ɛ > n n n x x < δ x(n, n, x x <ɛ δ = δ(ɛ, n (stable δ n (uniformly stable (unstable (ii x x <µ lim n x(n, n, x =x µ = µ(n (attractive µ n (uniformly attractive ɛ n x x <µ n n + N x(n, n, x x <ɛ n N = N(ɛ µ> (iii x (asymptotically stable ( (uniformly asymptotically stable (iv x x <δ x(n, n, x x M x x η n n δ> M> η (, (exponentially stable (v M n n x(n, n, x M x(n, n, x (bounded (ii (iii µ = (iv δ = (global k- 2 x x(n +=Ax(n, x(n =x. (2.2 A
31 2 28 Ax = x (A Ix = (2.2 A I x = A I = c x = c y = x(n x (2.2 y(n +=Ay(n x x = (2.2 A x(n =Py(n P (2.2 y(n +=By(n, B = P AP, y( = P x(. (2.2 y( = k =(k,k 2 t (..2 A B (..2 (a (b (c ( λ Case (a B =, λ 2 (2.2 ( ( y (n + λ y (n =, (2.22 y 2 (n + λ 2 y 2 (n (2.6 b = ( ( y (n λ n = k y 2 (n λ n 2 k. ( (2.23 ( n y 2 (n y (n = λ2 k 2. (2.24 λ k (2.23 (2.24 λ λ 2 λ λ 2 (saddle (asymptotically stable node (unstable node
32 (the Julia set (the filled Julia set (the Fatou set 2.2. f(z p 2 f(z =a n z p + a p z p + + a z + a, a n, (2.25. K f z z C 2. J K (the boundary K 3. F f n : S S n f n (the domain of normality Maple (2.25 p =2 z(n +=z 2 (n+c, (2.26 c (the Mandelbrot set Chino (22, 23 MDS HFM
33 2 3 References Chino, N. (987. A bifurcation model of changes in interdependence structure among objects. Bulletin of The Faculty of Humanities of Aichigakuin University, 7, (99. II (pp Chino, N. (22. Complex space models for the analysis of asymmetry. In S. Nishisato, Y. Baba, H. Bozdogan, & K. Kanefuji (Eds. Measurement and Multivariate Analysis, Tokyo: Springer. pp.7-4. Chino, N. (23. Complex difference system models for the analysis of asymetry. In H. Yanai, A. Okada, K. Shigemasu, Y. Kano, & J. J. Meulman (Eds. New Developments in Psychometrics, Tokyo: Springer. pp (23. Chino, N., & Nakagawa, M. (983. A vector field model for sociometric data. Proceedings of the th annual meeting of the Behaviormetric Society of Japan (pp.9-, Kyoto, September. Chino, N., & Nakagawa, M. (99. A bifurcation model of change in group structure. The Japanese Journal of Experimental Social Psychology, 29, No.3, Chino, N., & Shiraiwa, K. (993. Geometrical structures of some non-distance models for asymmetric MDS. Behaviormetrika, 2, Elaydi, S. N. (999. An introduction to differential equations. 2nd Ed., New York: Springer-Verlag. Guckenheimer, J. & Holmes, P. (983. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Berlin: Springer-Verlag. Guttman, L. (968. A general nonmetric technique for finding the smallest coordinate space for a configuration of points. Psychometrika, 33, Hartman, P. (982. Ordinary Differential Equations, Second Edition, Boston: Birkhäuser. Hirsch, M. W., & Smale, S. (974. Differential equations, dynamical systems, and linear algebra. New York: Academic Press. Milnor, J. (2. Dynamics in One Complex Variable. 2nd edition. Wiesbaden:Vieweg & Sohn. Newcomb, T. M. (96. The acquaintance process. New York: Holt. Rinehart and Winston. Peitgen, H.-O., & Richter, P. H. (986. The Beauty of Fractals. New York: Springer-Verlag. Tobler, W. ( Spatial interaction patterns. Journal of Environmental Systems, 6, (995. Yadohisa, H., & Niki, N. (999. Vector field representation of asymmetric proximity data. Communications in Statistics, 28,
34 3 A. g(t d dt (g(t e at =g (t e at + g(t( ae at =ag(t e at ag(t e at =. (A. g(t e at k g(t =e at k.2 dx/dt = Ax x = Py P dx/dt = d(py/dt = P dy/dt dx/dt = P dy/dt = A(Py dy/dt = P AP y
I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%
1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: [email protected], http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n
sakigake1.dvi
(Zin ARAI) [email protected] http://www.cris.hokudai.ac.jp/arai/ 1 dynamical systems ( mechanics ) dynamical systems 3 G X Ψ:G X X, (g, x) Ψ(g, x) =:Ψ g (x) Ψ id (x) =x, Ψ gh (x) =Ψ h (Ψ g (x)) (
ẋ = ax + y ẏ = x x by 2 Griffith a b Saddle Node Saddle-Node (phase plane) Griffith mrna(y) Protein(x) (nullcline) 0 (nullcline) (
2 (bifurcation) Saddle-Node Hopf Pitchfork 2.1 Saddle-Node( ) 2.1.1 Griffith : (bistability) ON/OFF 2 (bistability) (Stable node Stable spiral) 2 Griffith X mrna mrna X Griffith ( x y mrna ) 2.1: Griffith
211 [email protected] 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,
Part () () Γ Part ,
Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35
phs.dvi
483F 3 6.........3... 6.4... 7 7.... 7.... 9.5 N (... 3.6 N (... 5.7... 5 3 6 3.... 6 3.... 7 3.3... 9 3.4... 3 4 7 4.... 7 4.... 9 4.3... 3 4.4... 34 4.4.... 34 4.4.... 35 4.5... 38 4.6... 39 5 4 5....
IA [email protected] Last updated: January,......................................................................................................................................................................................
Shunsuke Kobayashi 1 [6] [11] [7] u t = D 2 u 1 x 2 + f(u, v) + s L u(t, x)dx, L x (0.L), t > 0, Neumann 0 v t = D 2 v 2 + g(u, v), x (0, L), t > 0. x
Shunsuke Kobayashi [6] [] [7] u t = D 2 u x 2 + fu, v + s L ut, xdx, L x 0.L, t > 0, Neumann 0 v t = D 2 v 2 + gu, v, x 0, L, t > 0. x2 u u v t, 0 = t, L = 0, x x. v t, 0 = t, L = 0.2 x x ut, x R vt, x
r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B
1 1.1 1 r 1 m A r/m i) t ii) m i) t Bt; m) Bt; m) = A 1 + r ) mt m ii) Bt; m) Bt; m) = A 1 + r ) mt m { = A 1 + r ) m } rt r m n = m r m n Bt; m) Aert e lim 1 + 1 n 1.1) n!1 n) e a 1, a 2, a 3,... {a n
微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.
微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)
1 a b = max{a, b}, a b = mi{a, b} a 1 a 2 a a 1 a = max{a 1,... a }, a 1 a = mi{a 1,... a }. A sup A, if A A A A A sup A sup A = + A if A = ± y = arct
27 6 2 1 2 2 5 3 8 4 13 5 16 6 19 7 23 8 27 N Z = {, ±1, ±2,... }, R =, R + = [, + ), R = [, ], C =. a b = max{a, b}, a b = mi{a, b}, a a, a a. f : X R [a < f < b] = {x X; a < f(x) < b}. X [f] = [f ],
(Basic of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Weak Law
I (Radom Walks ad Percolatios) 3 4 7 ( -2 ) (Preface),.,,,...,,.,,,,.,.,,.,,. (,.) (Basic of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios, Meas).............................
A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18
2013 8 29y, 2016 10 29 1 2 2 Jordan 3 21 3 3 Jordan (1) 3 31 Jordan 4 32 Jordan 4 33 Jordan 6 34 Jordan 8 35 9 4 Jordan (2) 10 41 x 11 42 x 12 43 16 44 19 441 19 442 20 443 25 45 25 5 Jordan 26 A 26 A1
1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0
1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx
2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =
x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s
... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z
2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =
1 1 1.1 I R 1.1.1 c : I R 2 (i) c C (ii) t I c (t) (0, 0) c (t) c(i) c c(t) 1.1.2 (1) (2) (3) (1) r > 0 c : R R 2 : t (r cos t, r sin t) (2) C f : I R c : I R 2 : t (t, f(t)) (3) y = x c : R R 2 : t (t,
I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )
I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17
20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33
DVIOUT
A. A. A-- [ ] f(x) x = f 00 (x) f 0 () =0 f 00 () > 0= f(x) x = f 00 () < 0= f(x) x = A--2 [ ] f(x) D f 00 (x) > 0= y = f(x) f 00 (x) < 0= y = f(x) P (, f()) f 00 () =0 A--3 [ ] y = f(x) [, b] x = f (y)
,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.
9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,
Trapezoidal Rule θ = 1/ x n x n 1 t = 1 [f(t n 1, x n 1 ) + f(t n, x n )] (6) 1. dx dt = f(t, x), x(t 0) = x 0 (7) t [t 0, t 1 ] f t [t 0, t 1 ], x x
University of Hyogo 8 8 1 d x(t) =f(t, x(t)), dt (1) x(t 0 ) =x 0 () t n = t 0 + n t x x n n x n x 0 x i i = 0,..., n 1 x n x(t) 1 1.1 1 1 1 0 θ 1 θ x n x n 1 t = θf(t n 1, x n 1 ) + (1 θ)f(t n, x n )
i 18 2H 2 + O 2 2H 2 + ( ) 3K
i 18 2H 2 + O 2 2H 2 + ( ) 3K ii 1 1 1.1.................................. 1 1.2........................................ 3 1.3......................................... 3 1.4....................................
86 6 r (6) y y d y = y 3 (64) y r y r y r ϕ(x, y, y,, y r ) n dy = f(x, y) (6) 6 Lipschitz 6 dy = y x c R y(x) y(x) = c exp(x) x x = x y(x ) = y (init
8 6 ( ) ( ) 6 ( ϕ x, y, dy ), d y,, dr y r = (x R, y R n ) (6) n r y(x) (explicit) d r ( y r = ϕ x, y, dy ), d y,, dr y r y y y r (6) dy = f (x, y) (63) = y dy/ d r y/ r 86 6 r (6) y y d y = y 3 (64) y
() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (
3 n nc k+ k + 3 () n C r n C n r nc r C r + C r ( r n ) () n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (4) n C n n C + n C + n C + + n C n (5) k k n C k n C k (6) n C + nc
n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................
1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2
1 Abstract n 1 1.1 a ax + bx + c = 0 (a 0) (1) ( x + b ) = b 4ac a 4a D = b 4ac > 0 (1) D = 0 D < 0 x + b a = ± b 4ac a b ± b 4ac a b a b ± 4ac b i a D (1) ax + bx + c D 0 () () (015 8 1 ) 1. D = b 4ac
D v D F v/d F v D F η v D (3.2) (a) F=0 (b) v=const. D F v Newtonian fluid σ ė σ = ηė (2.2) ė kl σ ij = D ijkl ė kl D ijkl (2.14) ė ij (3.3) µ η visco
post glacial rebound 3.1 Viscosity and Newtonian fluid f i = kx i σ ij e kl ideal fluid (1.9) irreversible process e ij u k strain rate tensor (3.1) v i u i / t e ij v F 23 D v D F v/d F v D F η v D (3.2)
tokei01.dvi
2. :,,,. :.... Apr. - Jul., 26FY Dept. of Mechanical Engineering, Saga Univ., JAPAN 4 3. (probability),, 1. : : n, α A, A a/n. :, p, p Apr. - Jul., 26FY Dept. of Mechanical Engineering, Saga Univ., JAPAN
x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x
[ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),
(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t
6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]
S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt
S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............
1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1
sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω ω α 3 3 2 2V 3 33+.6T m T 5 34m Hz. 34 3.4m 2 36km 5Hz. 36km m 34 m 5 34 + m 5 33 5 =.66m 34m 34 x =.66 55Hz, 35 5 =.7 485.7Hz 2 V 5Hz.5V.5V V
S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d
S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....
6. Euler x
...............................................................................3......................................... 4.4................................... 5.5......................................
II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3
II (Percolation) 12 9 27 ( 3-4 ) 1 [ ] 2 [ ] 3 [ ] 4 [ ] 1992 5 [ ] G Grimmett Percolation Springer-Verlag New-York 1989 6 [ ] 3 1 3 p H 2 3 2 FKG BK Russo 2 p H = p T (=: p c ) 3 2 Kesten p c =1/2 ( )
(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi
I (Basics of Probability Theory ad Radom Walks) 25 4 5 ( 4 ) (Preface),.,,,.,,,...,,.,.,,.,,. (,.) (Basics of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios,
II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K
II. () 7 F 7 = { 0,, 2, 3, 4, 5, 6 }., F 7 a, b F 7, a b, F 7,. (a) a, b,,. (b) 7., 4 5 = 20 = 2 7 + 6, 4 5 = 6 F 7., F 7,., 0 a F 7, ab = F 7 b F 7. (2) 7, 6 F 6 = { 0,, 2, 3, 4, 5 },,., F 6., 0 0 a F
1 n A a 11 a 1n A =.. a m1 a mn Ax = λx (1) x n λ (eigenvalue problem) x = 0 ( x 0 ) λ A ( ) λ Ax = λx x Ax = λx y T A = λy T x Ax = λx cx ( 1) 1.1 Th
1 n A a 11 a 1n A = a m1 a mn Ax = λx (1) x n λ (eigenvalue problem) x = ( x ) λ A ( ) λ Ax = λx x Ax = λx y T A = λy T x Ax = λx cx ( 1) 11 Th9-1 Ax = λx λe n A = λ a 11 a 12 a 1n a 21 λ a 22 a n1 a n2
TOP URL 1
TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7
.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(
06 5.. ( y = x x y 5 y 5 = (x y = x + ( y = x + y = x y.. ( Y = C + I = 50 + 0.5Y + 50 r r = 00 0.5Y ( L = M Y r = 00 r = 0.5Y 50 (3 00 0.5Y = 0.5Y 50 Y = 50, r = 5 .3. (x, x = (, u = = 4 (, x x = 4 x,
B [ 0.1 ] x > 0 x 6= 1 f(x) µ 1 1 xn 1 + sin sin x 1 x 1 f(x) := lim. n x n (1) lim inf f(x) (2) lim sup f(x) x 1 0 x 1 0 (
. 28 4 14 [.1 ] x > x 6= 1 f(x) µ 1 1 xn 1 + sin + 2 + sin x 1 x 1 f(x) := lim. 1 + x n (1) lim inf f(x) (2) lim sup f(x) x 1 x 1 (3) lim inf x 1+ f(x) (4) lim sup f(x) x 1+ [.2 ] [, 1] Ω æ x (1) (2) nx(1
2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a
i
009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3
Gmech08.dvi
145 13 13.1 13.1.1 0 m mg S 13.1 F 13.1 F /m S F F 13.1 F mg S F F mg 13.1: m d2 r 2 = F + F = 0 (13.1) 146 13 F = F (13.2) S S S S S P r S P r r = r 0 + r (13.3) r 0 S S m d2 r 2 = F (13.4) (13.3) d 2
1
1 1 7 1.1.................................. 11 2 13 2.1............................ 13 2.2............................ 17 2.3.................................. 19 3 21 3.1.............................
I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google
I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59
4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx
4 4 5 4 I II III A B C, 5 7 I II A B,, 8, 9 I II A B O A,, Bb, b, Cc, c, c b c b b c c c OA BC P BC OP BC P AP BC n f n x xn e x! e n! n f n x f n x f n x f k x k 4 e > f n x dx k k! fx sin x cos x tan
() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)
0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()
20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................
第5章 偏微分方程式の境界値問題
October 5, 2018 1 / 113 4 ( ) 2 / 113 Poisson 5.1 Poisson ( A.7.1) Poisson Poisson 1 (A.6 ) Γ p p N u D Γ D b 5.1.1: = Γ D Γ N 3 / 113 Poisson 5.1.1 d {2, 3} Lipschitz (A.5 ) Γ D Γ N = \ Γ D Γ p Γ N Γ
1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)? (2) () f(x)? b lim a f n (x)dx = b
1 Introduction 2 2.1 2.2 2.3 3 3.1 3.2 σ- 4 4.1 4.2 5 5.1 5.2 5.3 6 7 8. Fubini,,. 1 1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)?
IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + (
IA 2013 : :10722 : 2 : :2 :761 :1 23-27) : : 1 1.1 / ) 1 /, ) / e.g. Taylar ) e x = 1 + x + x2 2 +... + xn n! +... sin x = x x3 6 + x5 x2n+1 + 1)n 5! 2n + 1)! 2 2.1 = 1 e.g. 0 = 0.00..., π = 3.14..., 1
数学Ⅱ演習(足助・09夏)
II I 9/4/4 9/4/2 z C z z z z, z 2 z, w C zw z w 3 z, w C z + w z + w 4 t R t C t t t t t z z z 2 z C re z z + z z z, im z 2 2 3 z C e z + z + 2 z2 + 3! z3 + z!, I 4 x R e x cos x + sin x 2 z, w C e z+w
1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2
1 1.1 R(x) = 0 y + P (x)y + Q(x)y = R(x)...(1) y + P (x)y + Q(x)y = 0...(2) 1 2 u(x) v(x) c 1 u(x)+ c 2 v(x) = 0 c 1 = c 2 = 0 c 1 = c 2 = 0 2 0 2 u(x) v(x) u(x) u (x) W (u, v)(x) = v(x) v (x) 0 1 1.2
数学の基礎訓練I
I 9 6 13 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 3 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............
B 38 1 (x, y), (x, y, z) (x 1, x 2 ) (x 1, x 2, x 3 ) 2 : x 2 + y 2 = 1. (parameter) x = cos t, y = sin t. y = f(x) r(t) = (x(t), y(t), z(t)), a t b.
2009 7 9 1 2 2 2 3 6 4 9 5 14 6 18 7 23 8 25 9 26 10 29 11 32 12 35 A 37 1 B 38 1 (x, y), (x, y, z) (x 1, x 2 ) (x 1, x 2, x 3 ) 2 : x 2 + y 2 = 1. (parameter) x = cos t, y = sin t. y = f(x) r(t) = (x(t),
CALCULUS II (Hiroshi SUZUKI ) f(x, y) A(a, b) 1. P (x, y) A(a, b) A(a, b) f(x, y) c f(x, y) A(a, b) c f(x, y) c f(x, y) c (x a, y b)
CALCULUS II (Hiroshi SUZUKI ) 16 1 1 1.1 1.1 f(x, y) A(a, b) 1. P (x, y) A(a, b) A(a, b) f(x, y) c f(x, y) A(a, b) c f(x, y) c f(x, y) c (x a, y b) lim f(x, y) = lim f(x, y) = lim f(x, y) = c. x a, y b
入試の軌跡
4 y O x 4 Typed by L A TEX ε ) ) ) 6 4 ) 4 75 ) http://kumamoto.s.xrea.com/plan/.. PDF) Ctrl +L) Ctrl +) Ctrl + Ctrl + ) ) Alt + ) Alt + ) ESC. http://kumamoto.s.xrea.com/nyusi/kumadai kiseki ri i.pdf
n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x
n= n 2 = π2 6 3 2 28 + 4 + 9 + = π2 6 2 f(z) f(z) 2 f(z) = u(z) + iv(z) * f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x f x = i f y * u, v 3 3. 3 f(t) = u(t) + v(t) [, b] f(t)dt = u(t)dt
LINEAR ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University
LINEAR ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University 2002 2 2 2 2 22 2 3 3 3 3 3 4 4 5 5 6 6 7 7 8 8 9 Cramer 9 0 0 E-mail:hsuzuki@icuacjp 0 3x + y + 2z 4 x + y
1 1 n 0, 1, 2,, n n 2 a, b a n b n a, b n a b (mod n) 1 1. n = (mod 10) 2. n = (mod 9) n II Z n := {0, 1, 2,, n 1} 1.
1 1 n 0, 1, 2,, n 1 1.1 n 2 a, b a n b n a, b n a b (mod n) 1 1. n = 10 1567 237 (mod 10) 2. n = 9 1567 1826578 (mod 9) n II Z n := {0, 1, 2,, n 1} 1.2 a b a = bq + r (0 r < b) q, r q a b r 2 1. a = 456,
1 8, : 8.1 1, 2 z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = n i=1 a ii x 2 i + i<j 2a ij x i x j = ( x, A x), f =
1 8, : 8.1 1, z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = a ii x i + i
III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). T
III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). Theorem 1.3 (Lebesgue ) lim n f n = f µ-a.e. g L 1 (µ)
03.Œk’ì
HRS KG NG-HRS NG-KG AIC Fama 1965 Mandelbrot Blattberg Gonedes t t Kariya, et. al. Nagahara ARCH EngleGARCH Bollerslev EGARCH Nelson GARCH Heynen, et. al. r n r n =σ n w n logσ n =α +βlogσ n 1 + v n w
