sim0004.dvi

Similar documents
untitled

di-problem.dvi

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

C 2 2.1? 3x 2 + 2x + 5 = 0 (1) 1


(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

DVIOUT


°ÌÁê¿ô³ØII

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x


c-all.dvi

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f

i

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

x h = (b a)/n [x i, x i+1 ] = [a+i h, a+ (i + 1) h] A(x i ) A(x i ) = h 2 {f(x i) + f(x i+1 ) = h {f(a + i h) + f(a + (i + 1) h), (2) 2 a b n A(x i )

all.dvi

(1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9

C による数値計算法入門 ( 第 2 版 ) 新装版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 新装版 1 刷発行時のものです.

di-problem.dvi

joho09.ppt

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

1. 1 BASIC PC BASIC BASIC BASIC Fortran WS PC (1.3) 1 + x 1 x = x = (1.1) 1 + x = (1.2) 1 + x 1 = (1.

. sinh x sinh x) = e x e x = ex e x = sinh x 3) y = cosh x, y = sinh x y = e x, y = e x 6 sinhx) coshx) 4 y-axis x-axis : y = cosh x, y = s

main.dvi


1.1 ft t 2 ft = t 2 ft+ t = t+ t d t 2 t + t 2 t 2 = lim t 0 t = lim t 0 = lim t 0 t 2 + 2t t + t 2 t 2 t + t 2 t 2t t + t 2 t 2t + t = lim t 0

di-problem.dvi

1 yousuke.itoh/lecture-notes.html [0, π) f(x) = x π 2. [0, π) f(x) = x 2π 3. [0, π) f(x) = x 2π 1.2. Euler α

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p

1 8, : 8.1 1, 2 z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = n i=1 a ii x 2 i + i<j 2a ij x i x j = ( x, A x), f =

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

08 p Boltzmann I P ( ) principle of equal probability P ( ) g ( )g ( 0 ) (4 89) (4 88) eq II 0 g ( 0 ) 0 eq Taylor eq (4 90) g P ( ) g ( ) g ( 0

( ) a, b c a 2 + b 2 = c : 2 2 = p q, p, q 2q 2 = p 2. p 2 p q 2 p, q (QED)

- II

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction 1 (1) (2) {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a

1/68 A. 電気所 ( 発電所, 変電所, 配電塔 ) における変圧器の空き容量一覧 平成 31 年 3 月 6 日現在 < 留意事項 > (1) 空容量は目安であり 系統接続の前には 接続検討のお申込みによる詳細検討が必要となります その結果 空容量が変更となる場合があります (2) 特に記載

C 2 / 21 1 y = x 1.1 lagrange.c 1 / Laglange / 2 #include <stdio.h> 3 #include <math.h> 4 int main() 5 { 6 float x[10], y[10]; 7 float xx, pn, p; 8 in

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

θ (t) ω cos θ(t) = ( : θ, θ. ( ) ( ) ( 5) l () θ (t) = ω sin θ(t). ω := g l.. () θ (t) θ (t)θ (t) + ω θ (t) sin θ(t) =. [ ] d dt θ (t) ω cos θ(t

lim lim lim lim 0 0 d lim 5. d 0 d d d d d d 0 0 lim lim 0 d

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

4.6 (E i = ε, ε + ) T Z F Z = e βε + e β(ε+ ) = e βε (1 + e β ) F = kt log Z = kt log[e βε (1 + e β )] = ε kt ln(1 + e β ) (4.18) F (T ) S = T = k = k

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

I y = f(x) a I a x I x = a + x 1 f(x) f(a) x a = f(a + x) f(a) x (11.1) x a x 0 f(x) f(a) f(a + x) f(a) lim = lim x a x a x 0 x (11.2) f(x) x


1 1 [1] ( 2,625 [2] ( 2, ( ) /

(1) (2) (3) (4) 1

1 4 2 EP) (EP) (EP)

[] x < T f(x), x < T f(x), < x < f(x) f(x) f(x) f(x + nt ) = f(x) x < T, n =, 1,, 1, (1.3) f(x) T x 2 f(x) T 2T x 3 f(x), f() = f(t ), f(x), f() f(t )


r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

USB ID TA DUET 24:00 DUET XXX -YY.c ( ) XXX -YY.txt() XXX ID 3 YY ID 5 () #define StudentID 231

1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)? (2) () f(x)? b lim a f n (x)dx = b

y = f(x) y = f( + h) f(), x = h dy dx f () f (derivtive) (differentition) (velocity) p(t) =(x(t),y(t),z(t)) ( dp dx dt = dt, dy dt, dz ) dt f () > f x

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

Chap9.dvi

master.dvi

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

1

I No. sin cos sine, cosine : trigonometric function π : π =.4 : n =, ±, ±, sin + nπ = sin cos + nπ = cos sin = sin : cos = cos :. sin. sin. sin + π si

さくらの個別指導 ( さくら教育研究所 ) A a 1 a 2 a 3 a n {a n } a 1 a n n n 1 n n 0 a n = 1 n 1 n n O n {a n } n a n α {a n } α {a

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

2011de.dvi

< 1 > (1) f 0 (a) =6a ; g 0 (a) =6a 2 (2) y = f(x) x = 1 f( 1) = 3 ( 1) 2 =3 ; f 0 ( 1) = 6 ( 1) = 6 ; ( 1; 3) 6 x =1 f(1) = 3 ; f 0 (1) = 6 ; (1; 3)

meiji_resume_1.PDF

I No. sin cos sine, cosine : trigonometric function π : π =.4 : n = 0, ±, ±, sin + nπ = sin cos + nπ = cos : parity sin = sin : odd cos = cos : even.

body.dvi

main.dvi

lecture

[1] #include<stdio.h> main() { printf("hello, world."); return 0; } (G1) int long int float ± ±

Fubini

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( )

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

Quiz x y i, j, k 3 A A i A j A k x y z A x A y A z x y z A A A A A A x y z P (x, y,z) r x i y j zk P r r r r r r x y z P ( x 1, y 1, z 1 )

欧州特許庁米国特許商標庁との共通特許分類 CPC (Cooperative Patent Classification) 日本パテントデータサービス ( 株 ) 国際部 2019 年 7 月 31 日 CPC 版が発効します 原文及び詳細はCPCホームページのCPC Revision

mugensho.dvi

£Ã¥×¥í¥°¥é¥ß¥ó¥°ÆþÌç (2018) - Â裱£²²ó ¡Ý½ÉÂꣲ¤Î²òÀ⡤±é½¬£²¡Ý

II K116 : January 14, ,. A = (a ij ) ij m n. ( ). B m n, C n l. A = max{ a ij }. ij A + B A + B, AC n A C (1) 1. m n (A k ) k=1,... m n A, A k k

( z = x 3 y + y ( z = cos(x y ( 8 ( s8.7 y = xe x ( 8 ( s83.8 ( ( + xdx ( cos 3 xdx t = sin x ( 8 ( s84 ( 8 ( s85. C : y = x + 4, l : y = x + a,

2009 IA I 22, 23, 24, 25, 26, a h f(x) x x a h

sin cos No. sine, cosine : trigonometric function π : π = 3.4 : n = 0, ±, ±, sin + nπ = sin cos + nπ = cos : parity sin = sin : odd cos = cos : even.

no35.dvi

IS-LM (interest) 100 (net rate of interest) (rate of interest) ( ) = 100 (2.1) (gross rate of interest) ( ) = 100 (2.2)

x ( ) x dx = ax

Fourier (a) C, (b) C, (c) f 2 (a), (b) (c) (L 2 ) (a) C x : f(x) = a (a n cos nx + b n sin nx). ( N ) a 0 f(x) = lim N 2 + (a n cos nx + b n sin

2014 S hara/lectures/lectures-j.html r 1 S phone: ,

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + (

untitled

chap03.dvi

.1 1,... ( )

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

difgeo1.dvi

数学の基礎訓練I

Transcription:

4 : 1 f(x) Z b a dxf(x) (1) ( Double Exponential method=de ) 1 DE N = n T n h h =(b a)=n T n = b a f(a) +f(b) n f + f(a + j b a n )g n j=1 = b a f(a) +f(b) n f + f(a +j b a )g; n n+1 j=1 T n+1 = b a f(a) +f(b) n+1 f + f(a + j b a )g () n+1 n+1 j=1 1 1998 39

T n+1 = T n + b a n f(a +(j 1) b a ) (3) n+1 n+1 j=1 T 0 =(b a)(f(a) +f(b))= 1. f(x) ffl n = 1 h = b a, T = h(f(a) +f(b))=.. n=n h=h/ s=0 i =1; 3; ;n 1 s = s + f(a + ih) newt = T=+hs if jnewt T j <ffljnewt j goto (3) T = newt 3. newt f(x) =e x [0; 1] ffl =10 6 Fortran external f eps=1.0e-6 b=1.0 a=0.0 n=1 h=b-a t=h*(f(a)+f(b))/.0 do k=1,15 n=*n h=h/.0 40

s=0.0 do i=1,n-1, s=s+f(a+real(i)*h) enddo tn=t/.0+h*s if (abs(tn-t).lt.eps*abs(t)) goto 1 t=tn enddo 1 write(*,*) tn,k end real function f(x) f=exp(x) end 10 1:7188 e 1=1:718818 C #include <stdio.h> #include <math.h> float f(float); main() int i, k, n; float a, b, h, s, t, x, tn, eps; eps = 1.0e-6; b = 1.0; a = 0.0; n = 1; 41

h = b - a; t = h * (f(a) + f(b)) /.0; for(k = 1; k <= 15; k++) n = * n; h = h /.0; s = 0.0; for(i = 1; i <= n - 1; i += ) s = s + f(a + (float)i * h); } tn = t /.0 + h * s; if(fabs(tn - t) < eps * fabs(t)) break; } t = tn; } printf("%1.8f %d n", tn, k); float f(float x) return exp(x); } Fortran90 real(8),external::f real(8)::eps,a,b,h,s,tn,t eps=1.0d-10 b=1.0_8 a=0.0_8 n=1 h=b-a t=h*(f(a)+f(b))/.0_8 do k=1,30 n=*n h=h/.0_8 s=0.0_8 4

do i=1,n-1, s=s+f(a+i*h) enddo tn=t/.0_8+h*s if (abs(tn-t) < eps*abs(t)) exit t=tn enddo print*,tn,k end real(8) function real(8)::x f=exp(x) end f(x) R dx cos(x) ( sin() ' 0:90997407) 0 3 x 1 ;x ;x 3 f 1 ;f ;f 3 f(x) = a(x x ) + b(x x )+c h = x 3 x f 1 = ah bh + c f = c y = x x, g(y) =f(x) f 3 = ah + bh + c (4) a = f 1 + f 3 f h ; b = f 3 f 1 h ; c = f (5) Z h h g(y)dy = h 3 [f 1 +4f + f 3 ] (6) 43

S N S N = h 3 N j=0 [f(x j )+f(x j+ )+4f(x j+1 )] = h N N 3 [f(a)+f(b)+4 f(x j )+ f(x j )] (7) j=1 N 4 N = n (n =1; ; ) n p N = n T n ;S n S n+1 = 4 3 T n+1 1 3 T n (8) h =(b a)= n+1 4 3 T n+1 1 3 T n = 4h 3 [f(a)+f(b) h 3 + [f(a) +f(b) N j=1 N + j=1 f(a + jh)] j=1 f(a +jh)] = h N N 3 [f(a) +f(b)+4 f(x j )+ f(x j )] (9) j=1 S n 1. ffl =10 p, N := ; h := (b a)=; T := hff(a) +f(b) +f((a + b)=)g=; S := hff(a) +f(b)+4f((a + b)=)g=3. Loop N := N;h = h= s =0 j=1 ffl Loop(i =1; 3; 5; ;N 1) s=s+f(a+ih) ffl 44

newt=t/+h s news=(4newt-t)/3 If jnews Sj=jnewSj <fflgoto 3 T = newt; S = news 3. news Fortran external f eps=1.0e-6 n= b=1.0 a=0.0 h=(b-a)/.0 xi=(a+b)/.0 t=h*(f(a)+f(b)+.0*f(xi))/.0 ss=h*(f(a)+f(b)+4.0*f(xi))/3.0 do k=1,0 n=*n h=h/.0 s=0.0 do i=1,n-1, s=s+f(a+real(i)*h) enddo tn=t/.0+h*s sn=(4.0*tn-t)/3.0 if (abs(sn-ss).lt.eps*abs(sn)) goto 3 write(*,*) sn-ss,sn,k t=tn ss=sn enddo 45

3 write(*,*) sn,k end real function f(x) f=exp(x) end C #include <stdio.h> #include <math.h> float f(float); main() int i, k, n; float a, b, h, s, t; float xi, ss, sn, tt, tn, eps; eps = 1.0e-6; n = ; b = 1.0; a = 0.0; h = (b - a) /.0; xi = (a + b) /.0; t = h * (f(a) + f(b) +.0 * f(xi)) /.0; ss = h * (f(a) + f(b) + 4.0 * f(xi)) / 3.0; for(k = 1; k <= 0; k++) n = * n; h = h /.0; s = 0.0; for(i = 1; i <= n - 1; i += ) s = s + f(a + (float)i * h); } tn = t /.0 + h * s; sn = (4.0 * tn - t) / 3.0; 46

if(fabs(sn - ss) < eps * fabs(sn)) break; t = tn; ss = sn; } printf("%1.8f %d n", sn, k); } float f(float x) return exp(x); } Fortran 90 real(8),external::f real(8)::eps,a,b,h,xi,t,ss,tn,sn,s eps=1.0d-10 n= b=1.0_8 a=0.0_8 h=(b-a)/.0_8 xi=(a+b)/.0_8 t=h*(f(a)+f(b)+.0_8*f(xi))/.0_8 ss=h*(f(a)+f(b)+4.0_8*f(xi))/3.0_8 do k=1,0 n=*n h=h/.0_8 s=0.0_8 do i=1,n-1, s=s+f(a+i*h) enddo 47

tn=t/.0_8+h*s sn=(4.0_8*tn-t)/3.0_8 if(abs(sn-ss) < eps*abs(sn)) exit print*,sn-ss,sn,k t=tn ss=sn enddo print*,sn,k end real(8)function f(x) real(8)::x f=exp(x) end s S notation R 0 dx cos(x) =4 0 dx p (1 + 4x )(1 + 3x ) ( 0.3385954 ) ( ) 4 DE Mathematica 3 R 1 dx= p 1 x x = sin ß DE (Double Exponential Formula) 48

4 I n = 0 dxx n e x (n =1; ; ) (1) I n () (1) I 1 ; ;I 15 (3) lim n!1 I n (4) I 1 ; ;I 15 4.1 DE f(x) I = dtg(t) (10) h 1 I h = h g(ih) (11) i= 5 I = R 1 dte t = p ß (11) (h =0:5) (1) x = '(t) (1) (; 1) I = f('(t))' 0 (t) (13) (13) 1 I h = h f('(ih))' 0 (ih) (14) i= I (N ) h N + = h f('(ih))' 0 (ih) : N = N + + N +1 (15) i= N '(t) I = dοf(ο) (16) 49

3 (15) I (N ) h N + ο = '(t) =tanh( ß sinh t) (17) = h f(tanh( ß ß sinh(ih))) cosh(ih) cosh i= N ( ß sinh(ih)) (18) (17) (13) jtj f('(t))' 0 (t) ο A exp[ c exp jtj] (19) 4 (19) DE (Double Exponential Formula) 4. DE h h= 1 I h= = 1 fi h + h f('((j +1)h=))' 0 ((j +1)h=)g (0) j= I h = I I h I h ο exp( C=h) I h= ο exp( C=h) ο ( I h ) DE I h= I h I h ο I h= I h q j Ih= jοji h= I h j ffl p ji h= I h j <c 1 ffl (1) c 1 c 1 =0: DE (13) t = fi (19) Z dtf('(t))' 0 (t) ο A dt exp[ e t ]» A 1 e s ds ο e fi f('(fi))' 0 (fi) () fi fi e fi e fi jf('(fi))' 0 (fi)j <ffl (3) 3 x =(b a)ο= +(b + a)= (1) (16) 4 50

t = fi DE (18) cosh ((ß=) sinh(ih)) ο (1=4) exp[ ß exp jihj] 3 7: 10 7 jihj ο4:73 I = dxf(x); f(x) =(1 x ) ff ;ff > (4) ff -1 ff <0 (13) f('(t)) (19) ' 0 (t) ff -1 f DE 5 DE 1998 5 DE f(x) I = dtg(t) (5) h 1 I h = h g(ih) (6) i= 6 E D = I h I (7) 1=h D(d) =fx CjjImzj <dg d D(d) f(z) (1) c (0 <c<d) Λ(f;c) = dxfjf(x + ic)j + jf(x ic)jg lim Λ(f;c) < 1 c!d 0 5 FORTRAN77 1987) 6 51

() c (0 <c<d) Z c lim x!±1 c dyjf(x + iy)j =0 h>0 je D j» exp( ßd=h) Λ(f:d 0) (8) 1 exp( ßd=h) ( (N +1=)h ± ic; (N +1=)h; ±ci) (±(N +1=)h ci; ±(N +1=)h + ci) R f(z) cot(ßz=h) cot(ßz=h) z = kh (k h=ß z 0 = kh cot(ßz=h) ' h cos (ßz 0 =h)=(ß(z z 0 )) Res[cot(ßz=h)] = h=ß Z 1 N dzf(z) cot( piz i h )=h f(kh) R k= N N!1 I h () Z I h = 1 1 ß(x + ic) ß(x ic) dx[ f(x + ic) cot + f(x ic)cot ] i h h () Z I = 1 1 dxff(x + ic) +f(x ic)g I h I = dx[f(x + ic)g(x + ic) f(x ic)g(x ic)] 1 g(x) =i(1 cot ßz h )= ßx exp h 1 exp ßx h I h I» g(ic) dxfjf(x + ic)j + jf(x ic)jg = g(ic) (f; c) c! d 0 (6) I Λ h = h N k= N f(kh) (9) 5

I Λ h E D je I j=je D jο1 N E I = h f(kh) E I = I Λ h I h (30) jkj>n f(x) x!±1 w(z) D(d) 0 w(z) H(w; d) H(w; d) =ff(z)jf(z) : regular D(d); H sup jf(z)=w(z)j < 1g zd(d) f(z) H(w; d) je I j»hh jkj>n w(kh) Λ(f;c) jfj»hjwj Λ(f; c)» HΛ(w; c) 1.. f(z) H(w; d) ji Λ h Ij»jE Dj + je I j»h[g(d)λ(w; d 0) + h Λ(w; d 0) < 1 jkj>n w(kh)] (31) d<ß= w(z) =w DE (z) = d ß dz tanh(ß sinh z) = cosh(z) cosh ( ß sinh(z)) (3) x!±1 cosh x ' sinh x ' exp[jxj]= w DE (x) ' ß exp[ ß exp[jxj] +jxj] (33) je D j'je I j (8) ßd=h =(ß=) exp(nh) ji Λ h Ij»C0 H exp[ CN= ln N] (34) (; 1) I = f('(t))' 0 (t) (35) 53

(13) 1 I h = h f('(ih))' 0 (ih) (36) i= I (N ) h N + = h f('(ih))' 0 (ih) : N = N + + N +1 (37) i= N '(t) 7 I = dοf(ο) (38) ο = '(t) = tanh( ß ß sinh t) = cosh(ih) cosh ( ß sinh(ih)) (39) (37) I (N ) h N + = h f(tanh( ß ß sinh(ih))) cosh(ih) cosh i= N ( ß sinh(ih)) (40) (39) (35) jtj f('(t))' 0 (t) ο A exp[ c exp jtj] (41) (41) DE (Double Exponential Formula) 7 x =(b a)ο= +(b + a)= R b a f (x)dx (16) 54