ホルモンの合成と作用(1)

Similar documents
ホルモンの合成と作用(1)

ホルモンの合成と作用(1)

Microsoft PowerPoint - lecture11.ppt

各論(3)視床下部-下垂体副腎総論、副腎糖質ステロイド

解剖・栄養生理学

問 21 細胞膜について正しい記述はどれか 問 31 発汗について誤っている記述はどれか A 糖脂質分 が規則正しく配列している A 体温の上昇を防ぐ B イオンに対して選択的な透過性をもつ B 汗腺には交感神経が分布する C タンパク質分 の 重層膜からなる C 温熱性発汗には 脳 質が関与する

05ホルモンと病気15

Microsoft PowerPoint

Microsoft PowerPoint - H23内分泌総論final、講義スライド

核内受容体遺伝子の分子生物学

スライド 1

8 内分泌系のしくみと働き

生理学 1章 生理学の基礎 1-1. 細胞の主要な構成成分はどれか 1 タンパク質 2 ビタミン 3 無機塩類 4 ATP 第5回 按マ指 (1279) 1-2. 細胞膜の構成成分はどれか 1 無機りん酸 2 リボ核酸 3 りん脂質 4 乳酸 第6回 鍼灸 (1734) E L 1-3. 細胞膜につ

4) ホルモンの化学構造からみた種類にはホルモンの種類分泌器官とホルモン名視床下部放出ホルモン 下垂体前葉ホルモン 1 ペプチドホルモン上皮小体ホルモン インスリン グルカゴンなど卵巣ホルモン 精巣ホルモン 副腎皮質コルチコイド 2 ステロイドホルモン活性型ビタミン D 1) カテコ ルアミン 3

平成14年度研究報告

ドリル No.6 Class No. Name 6.1 タンパク質と核酸を構成するおもな元素について述べ, 比較しなさい 6.2 糖質と脂質を構成するおもな元素について, 比較しなさい 6.3 リン (P) の生体内での役割について述べなさい 6.4 生物には, 表 1 に記した微量元素の他に, ど

Ⅰ. ヒトの遺伝情報に関する次の記述を読み, ~ に答えなさい 個体の形成や生命活動を営むのに必要な ( a ) は, 真核生物の細胞では主に核 の中で染色体を形成している 通常, ₁ 個の体細胞には同じ大きさと形の染色体が 一対ずつあり, この対になっている染色体を ( b ) といい, 片方の染

<4D F736F F F696E74202D2093AE95A88DD C88A77824F F B C68DD D B8CDD8AB B83685D>

PowerPoint プレゼンテーション

第6回 糖新生とグリコーゲン分解

第6回 糖新生とグリコーゲン分解

各論 心血管内分泌

第11回 肝、筋、脳、脂肪組織での代謝の統合

PowerPoint プレゼンテーション

v

スライド 1

, 2008 * Measurements of Sleep-Related Hormones * 1. * 1 2.

相模女子大学 2017( 平成 29) 年度第 3 年次編入学試験 学力試験問題 ( 食品学分野 栄養学分野 ) 栄養科学部健康栄養学科 2016 年 7 月 2 日 ( 土 )11 時 30 分 ~13 時 00 分 注意事項 1. 監督の指示があるまで 問題用紙を開いてはいけません 2. 開始の

PowerPoint プレゼンテーション

Microsoft PowerPoint - プレゼンテーション1

<4D F736F F D EA95948F4390B3817A938C91E F838A838A815B835895B68F F08BD682A082E8816A5F8C6F8CFB939C F

スライド 1

抑制することが知られている 今回はヒト子宮内膜におけるコレステロール硫酸のプロテ アーゼ活性に対する効果を検討することとした コレステロール硫酸の着床期特異的な発現の機序を解明するために 合成酵素であるコ レステロール硫酸基転移酵素 (SULT2B1b) に着目した ヒト子宮内膜は排卵後 脱落膜 化

スライド 1

2. 看護に必要な栄養と代謝について説明できる 栄養素としての糖質 脂質 蛋白質 核酸 ビタミンなどの性質と役割 およびこれらの栄養素に関連する生命活動について具体例を挙げて説明できる 生体内では常に物質が交代していることを説明できる 代謝とは エネルギーを生み出し 生体成分を作り出す反応であること

3章Check 細胞膜を介した水の移動 低濃度 高濃度 34 解答問 1 5 問 2 6, 7 第問 1 海水魚では, 体液の塩類濃度が外界の海水よりも低くなるため, 水が常に体外へと出て行く その ため, 水を体内に吸収し, 余分な塩類を排出することで, 体液の濃度を一定に保っている 一方, 淡水

2 はじめに 自分のことをよく知ること 晩期障害のこと 成人後のこと 終わりに

1 アドレナリンってなんだ アドレナリンって何だろう 普段は温厚な人たちでも 草野球の試合になると いつになく興奮し 闘争意識をむきだしにして激しいファイトを展開することがある そんな時 人の体内では 副腎という臓器の髄質部分からアドレナリンやノルアドレナリンというホルモンが分泌されているのだ アド

細胞の構造

氏名 ( 本籍 ) 鈴木桂子 学位の種類薬 A 子 博士 学位記番号用 下 E コ王 学位授与の日付昭和 54 年 3 月 6 日 学位授与の要件学位規則第 5 条第 2 項該当 学位論文題目 ラット卵巣におけるステロイドホルモン合成に関する研究 ( 主査 ) ー論文審査委員教授近, f~i 雅日

P002~013 第1部第1章.indd

報道発表資料 2006 年 4 月 13 日 独立行政法人理化学研究所 抗ウイルス免疫発動機構の解明 - 免疫 アレルギー制御のための新たな標的分子を発見 - ポイント 異物センサー TLR のシグナル伝達機構を解析 インターフェロン産生に必須な分子 IKK アルファ を発見 免疫 アレルギーの有効

2017 年度茨城キリスト教大学入学試験問題 生物基礎 (A 日程 ) ( 解答は解答用紙に記入すること ) Ⅰ ヒトの肝臓とその働きに関する記述である 以下の設問に答えなさい 肝臓は ( ア ) という構造単位が集まってできている器官である 肝臓に入る血管には, 酸素を 運ぶ肝動脈と栄養素を運ぶ

相模女子大学 2016 年度 AO 入学試験 適性試験問題 栄養科学部 2015 年 8 月 29 日 ( 土 )10 時 00 分 ~10 時 50 分 注意事項 1. 監督の指示があるまで 問題冊子を開いてはいけません 2. これは 適性試験の問題冊子です 問題の本文は 1ページから 5 ページ

られる 糖尿病を合併した高血圧の治療の薬物治療の第一選択薬はアンジオテンシン変換酵素 (ACE) 阻害薬とアンジオテンシン II 受容体拮抗薬 (ARB) である このクラスの薬剤は単なる降圧効果のみならず 様々な臓器保護作用を有しているが ACE 阻害薬や ARB のプラセボ比較試験で糖尿病の新規

グルコースは膵 β 細胞内に糖輸送担体を介して取り込まれて代謝され A T P が産生される その結果 A T P 感受性 K チャンネルの閉鎖 細胞膜の脱分極 電位依存性 Caチャンネルの開口 細胞内 Ca 2+ 濃度の上昇が起こり インスリンが分泌される これをインスリン分泌の惹起経路と呼ぶ イ

図 B 細胞受容体を介した NF-κB 活性化モデル

左ページの語句について 神経伝達物質 細胞と細胞の間の情報伝達に必要な物 ( 細胞内は電流で情報伝達 ) 不足すると その物質を使って情報伝達しているところが働けない! 例 : パーキンソン病は ドーパミン ( という神経伝達物質 ) が不足 ( ドーパミンを伝達に使っている運動統合部分がうまく働か

Slide 1

Untitled

膵臓2.ppt

各論(1) 視床下部−下垂体−甲状腺

<4D F736F F F696E74202D2090AB A838B B6979D8A778EF68BC DC58F4994C5>

膵臓講義.ppt

細胞の構造

スライド 1

検査項目情報 トータルHCG-β ( インタクトHCG+ フリー HCG-βサブユニット ) ( 緊急検査室 ) chorionic gonadotropin 連絡先 : 基本情報 ( 標準コード (JLAC10) ) 基本情報 ( 診療報酬 ) 標準コード (JLAC10)

「代謝調節因子と生理活性分子」

Microsoft Word 動物生理Ⅱ試験.doc

1 女性内分泌 下垂体門脈 下垂体前葉 LH FSH 下垂体周期 視床下部 GnRH LH FSH 卵巣 排卵 Estradiol inhibin 卵巣周期 成熟 グラーフ卵胞 黄体 Estradiol progesterone inhibin 図1 P T A4 卵胞期 排卵 子宮内膜 頸管腺 E

細胞骨格を形成するタンパク質

の活性化が背景となるヒト悪性腫瘍の治療薬開発につながる 図4 研究である 研究内容 私たちは図3に示すようなyeast two hybrid 法を用いて AKT分子に結合する細胞内分子のスクリーニングを行った この結果 これまで機能の分からなかったプロトオンコジン TCL1がAKTと結合し多量体を形

Microsoft PowerPoint - ACOG TB PDF17

Microsoft Word - naibunpitsu.doc

生物時計の安定性の秘密を解明

研究背景 糖尿病は 現在世界で4 億 2 千万人以上にものぼる患者がいますが その約 90% は 代表的な生活習慣病のひとつでもある 2 型糖尿病です 2 型糖尿病の治療薬の中でも 世界で最もよく処方されている経口投与薬メトホルミン ( 図 1) は 筋肉や脂肪組織への糖 ( グルコース ) の取り

次の 1~50 に対して最も適切なものを 1 つ (1)~(5) から選べ 1. 細胞内で 酸素と水素の反応によって水を生じさせる反応はどこで行われるか (1) 核 (2) 細胞質基質 (3) ミトコンドリア (4) 小胞体 (5) ゴルジ体 2. 脂溶性ビタミンはどれか (1) ビタミン B 1

今後の展開現在でも 自己免疫疾患の発症機構については不明な点が多くあります 今回の発見により 今後自己免疫疾患の発症機構の理解が大きく前進すると共に 今まで見過ごされてきたイントロン残存の重要性が 生体反応の様々な局面で明らかにされることが期待されます 図 1 Jmjd6 欠損型の胸腺をヌードマウス

「代謝調節因子と生理活性分子」

前立腺癌は男性特有の癌で 米国においては癌死亡者数の第 2 位 ( 約 20%) を占めてい ます 日本でも前立腺癌の罹患率 死亡者数は急激に上昇しており 現在は重篤な男性悪性腫瘍疾患の1つとなって図 1 います 図 1 初期段階の前立腺癌は男性ホルモン ( アンドロゲン ) に反応し増殖します そ

博第265号

PowerPoint プレゼンテーション

訂正と索引 < 訂正 > 88 ページ下から 13 行目 アセチル CoA は 4 章の糖質代謝で アセチル CoA は 4 章で 130 ページ下から 5 行目 インシュリン非依存型 インシュリン依存型 147 ページ上から 5 行目 卵胞形成ホルモン 卵胞刺激ホルモン 165 ページ上から 16

報道発表資料 2006 年 8 月 7 日 独立行政法人理化学研究所 国立大学法人大阪大学 栄養素 亜鉛 は免疫のシグナル - 免疫系の活性化に細胞内亜鉛濃度が関与 - ポイント 亜鉛が免疫応答を制御 亜鉛がシグナル伝達分子として作用する 免疫の新領域を開拓独立行政法人理化学研究所 ( 野依良治理事

Microsoft Word - 間脳下垂体機能障害Q&A

補正する必要がありますが 急速に あるいは過剰に補正を行うと橋中心髄鞘崩壊に代表される重篤な中枢神経の脱髄性病変を発生することがあり 補正速度など成書等を参照し慎重に行うことが重要です

解糖系でへ 解糖系でへ - リン酸 - リン酸 1,-2 リン酸 ジヒドロキシアセトンリン酸 - リン酸 - リン酸 1,-2 リン酸 ジヒドロキシアセトンリン酸 AT AT リン酸化で細胞外に AT 出られなくなる 異性化して炭素数 AT の分子に分解される AT 2 ホスホエノール AT 2 1

漢方薬

の感染が阻止されるという いわゆる 二度なし現象 の原理であり 予防接種 ( ワクチン ) を行う根拠でもあります 特定の抗原を認識する記憶 B 細胞は体内を循環していますがその数は非常に少なく その中で抗原に遭遇した僅かな記憶 B 細胞が著しく増殖し 効率良く形質細胞に分化することが 大量の抗体産

研究成果報告書

DiovNT

報道関係者各位 平成 26 年 1 月 20 日 国立大学法人筑波大学 動脈硬化の進行を促進するたんぱく質を発見 研究成果のポイント 1. 日本人の死因の第 2 位と第 4 位である心疾患 脳血管疾患のほとんどの原因は動脈硬化である 2. 酸化されたコレステロールを取り込んだマクロファージが大量に血

( 図 ) IP3 と IRBIT( アービット ) が IP3 受容体に競合して結合する様子

生物有機化学

Microsoft PowerPoint マクロ生物学9

Microsoft PowerPoint - 復習臨床病態学Ⅰ.pptx

タンパク質の合成と 構造 機能 7 章 +24 頁 転写と翻訳リボソーム遺伝子の調節タンパク質の構造弱い結合とタンパク質の機能


妊娠認識および胎盤形成時のウシ子宮におけるI型IFNシグナル調節機構に関する研究 [全文の要約]

のと期待されます 本研究成果は 2011 年 4 月 5 日 ( 英国時間 ) に英国オンライン科学雑誌 Nature Communications で公開されます また 本研究成果は JST 戦略的創造研究推進事業チーム型研究 (CREST) の研究領域 アレルギー疾患 自己免疫疾患などの発症機構

検査項目情報 1174 一次サンプル採取マニュアル 4. 内分泌学的検査 >> 4F. 性腺 胎盤ホルモンおよび結合蛋白 >> 4F090.HCGβ サブユニット (β-hcg) ( 遊離 ) HCGβ サブユニット (β-hcg) ( 遊離 ) Department of Clinical Lab

犬の糖尿病は治療に一生涯のインスリン投与を必要とする ヒトでは 1 型に分類されている糖尿病である しかし ヒトでは肥満が原因となり 相対的にインスリン作用が不足する 2 型糖尿病が主体であり 犬とヒトとでは糖尿病発症メカニズムが大きく異なっていると考えられている そこで 本研究ではインスリン抵抗性

第12回 代謝統合の破綻 (糖尿病と肥満)

スライド タイトルなし

News Release 報道関係各位 2015 年 6 月 22 日 アストラゼネカ株式会社 40 代 ~70 代の経口薬のみで治療中の 2 型糖尿病患者さんと 2 型糖尿病治療に従事する医師の意識調査結果 経口薬のみで治療中の 2 型糖尿病患者さんは目標血糖値が達成できていなくても 6 割が治療

(Microsoft PowerPoint - ASC-WTQ[\223\307\202\335\216\346\202\350\220\352\227p] [\214\335\212\267\203\202\201[\203h])

本書の読み方 使い方 ~ 各項目の基本構成 ~ * 本書は主に外来の日常診療で頻用される治療薬を取り上げています ❶ 特徴 01 HMG-CoA 代表的薬剤ピタバスタチン同種同効薬アトルバスタチン, ロスバスタチン HMG-CoA 還元酵素阻害薬は主に高 LDL コレステロール血症の治療目的で使 用

生活習慣病の増加が懸念される日本において 疾病の一次予防はますます重要性を増し 生理機能調節作用を有する食品への期待や関心が高まっている 日常の食生活を通して 健康の維持および生活習慣病予防に努めることは 医療費抑制の観点からも重要である 種々の食品機能成分の効果について数多くの先行研究がおこなわれ

2019 年 3 月 28 日放送 第 67 回日本アレルギー学会 6 シンポジウム 17-3 かゆみのメカニズムと最近のかゆみ研究の進歩 九州大学大学院皮膚科 診療講師中原真希子 はじめにかゆみは かきたいとの衝動を起こす不快な感覚と定義されます 皮膚疾患の多くはかゆみを伴い アトピー性皮膚炎にお

2016入試問題 indd

Transcription:

ホルモンの合成と作用 平成 27 年 2 月 2 日病態生化学分野 ( 生化学 2) 吉澤達也

学習の目標 細胞間情報伝達物質としてのホルモンを理解する ホルモンの分類について理解する 1 ペプチドホルモン 2 ステロイドホルモン 3 アミノホルモン 1 親水性ホルモン 2 疎水性ホルモン ホルモンの合成について理解する ホルモンの作用機構について理解する ホルモンの制御機構について理解する

ヒトが生きるためには常に変化する内外の環境に対応 適応する必要がある 生体の恒常性を維持するシステム 神経系による調節 ホルモンによる調節

ホルモン 微量 ( 低濃度 ) で作用を発揮する物質である 典型的なペプチドホルモンの血液中の濃度は 10-9 mol/l(nmol/l) 程度 動物の体内において ある決まった器官で合成 分泌され 体液 ( 血液 ) を通して体内を循環し 別の決まった器官でその効果を発揮する いわゆる腺組織以外で産生されるホルモン 消化管 : セレクチン ガストリン グレリンなど 心臓 : 心房性 Na 利尿ペプチド (ANP) 脳性 Na 利尿ペプチド (BNP) 血管 :C 型 Na 利尿ペプチド (CNP) 脂肪組織 : アディポネクチン レプチンなど血中への分泌を介さない作用 傍分泌型 自己分泌型など 標的組織において機能タンパク質を新たに合成させたり あるいは活性化させることで生理作用を発揮する ひとつのホルモンが異なった細胞 組織では別の作用を示す 細胞内情報伝達の多様性

シグナル伝達の種類 内分泌型 ホルモン パラクライン型 局所仲介物質 神経型 神経伝達物質 接触型 膜結合シグナル物質

内分泌器 : ホルモン ( ペプチドホルモン ステロイドホルモン ) 視床下部 - 脳下垂体副腎甲状腺生殖腺その他の内分泌器内分泌器でない器官誘導タンパク質 視床下部 脳下垂体後葉 脳下垂体中葉 脳下垂体前葉 GnRH - TRH - ドーパミン - CRH - GHRH - ソマトスタチン - ORX - MCH - MRH - MIH バソプレッシン - OXT インテルメジン α サブユニット糖タンパク質ホルモン (FSH - LH - TSH) - GH - PRL - POMC(ACTH - MSH - エンドルフィン - リポトロピン ) 副腎髄質副腎髄質ホルモン ( アドレナリン - ノルアドレナリン - ドーパミン ) 副腎皮質 副腎皮質ホルモン ( アルドステロン - コルチゾール - DHEA) 甲状腺 甲状腺ホルモン (T 3 - T 4 - カルシトニン ) 副甲状腺 精巣 PTH テストステロン - AMH - インヒビン 卵巣エストラジオール - プロゲステロン - インヒビン / アクチビン - リラキシン ( 妊娠時 ) 膵臓 松果体 NGF - BDNF - NT-3 グルカゴン - インスリン - ソマトスタチン メラトニン 胎盤 :hcg - HPL - エストロゲン - プロゲステロン - 腎臓 : レニン - EPO - カルシトリオール - プロスタグランジン - 心臓 :ANP - BNP - ET - 胃 : ガストリン - グレリン - 十二指腸 :CCK - GIP - セクレチン - モチリン - VIP - 回腸 : エンテログルカゴン - 脂肪組織 : レプチン - アディポネクチン - レジスチン - 胸腺 : サイモシン - サイモポイエチン - サイムリン - STF - THF - 肝臓 :IGFs(IGF-1 - IGF-2) - 耳下腺 : バロチン - 末梢神経系 :CGRP - P 物質 ホルモンとしても働く神経伝達物質の例 ペプチド類カルシトニン遺伝子関連ペプチド (CGRP) ガストリンバソプレシン オキシトシン副腎皮質刺激ホルモン (ACTH) エンドルフィン リポトロピンセレクチン モチリン 血管作動性腸管ペプチド (VIP) ソマトスタチン モノアミン類アドレナリン ノルアドレナリン ドパミンセロトニン

ホルモンの分類 -I 構造からの分類 1 ペプチドホルモン インスリン グルカゴン 成長ホルモン 抗利尿ホルモン副腎皮質刺激ホルモン (ACTH) など 2 ステロイドホルモン 副腎皮質ホルモン ( コルチゾール アルドステロン ) 性ホルモン ( アンドロゲン エストロゲンなど ) 3 アミノホルモン ( 低分子ホルモン ) アドレナリン 甲状腺ホルモンなど

1 ペプチドホルモン インスリン グルカゴン 成長ホルモン 抗利尿ホルモンなど 転写 翻訳 DNA mrna プロホルモン タンパク質の切断 ホルモン

ペプチドホルモンの合成 転写 transcription CAAT ボックス TATA ボックス cap site [ATG] TAA TAG TGA [AATAAA] 5 3 DNA イントロン NTP RNA ポリメラーゼ II mrna 前駆体 (hnrna) 核 転写後修飾 posttranscriptional modification mrna スプライシング Me7 G 付加ポリ A 付加 Me7 G ポリ A 細胞質 細胞外 粗面小胞体 ゴルジ装置 翻訳 transration 翻訳後修飾 posttransrational modification ペプチド ( プレプロホルモン ) シグナルペプチダーゼ プロホルモンプロセッシング 成熟ホルモン 分泌顆粒内 Met シグナルペプチド プロホルモン S S S S 糖鎖 < プロホルモン > POMC:ACTH 前駆体複数のホルモンを有するバゾプレッシン オキシトシン前駆体細胞内輸送に必要なニューロフィシンをもつインスリン前駆体 α 鎖と β 鎖の形態を保つのに必要な connecting peptide を有するグレリン脂肪酸付加 : 機能発現に重要 分泌

ペプチドホルモンの合成 ( インスリンの例 ) 転写 transcription DNA RNA ポリメラーゼ II インスリン遺伝子 mrna 前駆体 (hnrna) 核 細胞質 粗面小胞体 転写後修飾 posttranscriptional modification 翻訳 transration mrna スプライシング Me7 G 付加ポリ A 付加 プロプレインスリン mrna シグナルペプチダーゼ 1 プレプロインスリン インスリン 1 プレプロインスリン 翻訳後修飾 posttransrational modification プロホルモンプロセッシング 2 プロインスリン 細胞外 ゴルジ装置 成熟ホルモン 分泌顆粒内 3 インスリン 4 インスリン六量体 分泌

ペプチドホルモンの合成 (POMC の例 ) POMC( プロオピオメラノコルチン ) の組織特異的な翻訳後プロセッシングで 2 つの異なる組み合わせのポリペプチドホルモンを生じる 脳下垂体前葉でも中葉でも POMC は分解され N 末端断片 副腎皮質刺激ホルモン (ACTH) β リポトロピン (β-lph) を生じる これらのポリペプチドホルモンは中葉だけでさらに分解され γ メラニン細胞刺激ホルモン (γ-msh) α- MSH 副腎皮質刺激ホルモン様中葉ペプチド (CLIP) γ-lph β- エンドルフィンを生じる

2 ステロイドホルモン 副腎皮質ホルモン ( コルチゾール アルドステロン ) 性ホルモン ( アンドロゲン エストロゲンなど ) コレステロール C D HO CH 2 OH CO OH A B HO ステロイド核 ( 炭素原子 19 個 ) O コルチゾール

1. 副腎皮質ホルモン 2. 性ホルモン コルチゾール : 糖質代謝 抗炎症作用 アルドステロン :Na イオン再吸収促進 細胞外液量維持 アンドロゲン : 男性生殖器官発育 維持 第二次性徴 プロゲステロン : 妊娠の維持 乳腺発達 エストロゲン : 女性生殖器官発育 維持 第二次性徴 月経周期

ステロイドホルモン産生組織 [ 副腎皮質 ] コルチゾール アルドステロン性ホルモン [ 卵巣 ] プロゲステロン エストロゲン [ 精巣 ] アンドロゲン 独立行政法人情報処理推進機構教育用画像素材集より抜粋

ステロイドホルモン生合成経路 1 コレステロール ( 炭素原子 27 個 ) HO 2 3 11 19 1 9 10 4 5 6 12 18 13 14 8 7 15 17 16 21 P-450scc CH 3 20CO 17 HO プレグネノロン ( 炭素原子 21 個 ) ステロイドホルモンの重要な合成中間体

ステロイドホルモン生合成経路 2 プレグネノロン 3 HO 3 -hydroxysteroid dehydrogenase プロゲステロン CH 3 CO 17 17 -hydroxylase 21CH 3 CO 17 3 HO 17- 水酸化プレグネノロン 17 CH 3 CO CO OH 21 CH 3 17 OH 17,20-lyase アンドロゲンエストロゲン合成経路 O 21-hydroxylase O 17- 水酸化プロゲステロン アルドステロン合成経路 コルチゾール合成経路

ステロイドホルモン生合成経路 3 プロゲステロン 21CH 3 21 CH 3 CO CO 17 OH 17 O 21-hydroxylase 11- デオキシコルチコステロン 11 -hydroxylase コルチコステロン 18- 水酸化コルチコステロン 18-oxidase 18-hydroxylase CH 2 OH O 17- 水酸化プロゲステロン 21-hydroxylase 11- デオキシコルチゾール OH 11 -hydroxylase CH 2 OH CO OH O OH CHO CO 炭素原子 21 個 アルドステロン O コルチゾール 炭素原子 21 個

ステロイドホルモン生合成経路 4 17- 水酸化プレグネノロン CH 3 CO 17,20-lyase デヒドロエピアンドロステロン O 炭素原子 18 個 OH HO 3 17 OH HO HO エストラジオール ( エストロゲン ) 3 -hydroxysteroid dehydrogenase CH 3 CO OH 17 O 17 -hydroxysteroid dehydrogenase aromatase OH O 17- 水酸化プロゲステロン O アンドロステンジオン O 炭素原子 19 個 テストステロン ( アンドロゲン )

3 アミノホルモン ( 低分子ホルモン ) アドレナリン 甲状腺ホルモンなど HO CH CH 2 NH CH 3 チロシン ( アミノ酸 ) HO OH アドレナリン HO CH 2 CH COOH NH 2 I I 甲状腺ホルモン ( チロキシン ) HO O CH 2 CH COOH I I NH 2

アミノ酸誘導体ホルモン アドレナリン ( エピネフリン ) ノルアドレナリン ( ノルエピネフリン ) トリヨードチロニン (T3) チロキシン (T4) インドール, セロトニン, メラトニン 副腎髄質副腎髄質甲状腺松果腺 血圧上昇, 平滑筋収縮 / 弛緩, 肝 筋での解糖促進脂肪組織での脂肪分解促進 小動脈の収縮促進, 抹消循環抑制, 脂肪分解促進 代謝促進 神経伝達

アミノホルモン ( 低分子ホルモン ) の合成 ( カテコールアミンの例 ) ドーパミン ノルアドレナリン カテコールアミン - カテコールを共通の構造として持つアドレナリン ( エピネフリン ) ノルアドレナリンドーパミン 組織によって合成の段階が異なる脳細胞 ( 一部 ): ドーパミンが最終カテコラミン交感神経末端 : ノルアドレナリンが最終カテコラミン副腎髄質 中脳 心臓 : アドレナリンまで合成 アドレナリン

アミノホルモン ( 低分子ホルモン ) の合成 ( 甲状腺ホルモンの例 ) 飲食物からヨウ化物として摂取されるヨードは甲状腺で濃縮されて, 濾胞細胞内で有機ヨードに変換される 濾胞細胞はコロイドで満たされた空間を取り巻いており, このコロイドは, 基質内にチロシンを含む糖蛋白サイログロブリンからなる チロシン ヨード化 モノヨードチロシン (MIT) ジヨードチロシン (DIT) 結合 T3 T4 チロシンは,1 カ所 ( モノヨードチロシン ) または 2 カ所 ( ジヨードチロシン ) でヨード化されて, 互いに結合して 2 種の甲状腺ホルモンを形成する ( ジヨードチロシン + ジヨードチロシン T 4 ; ジヨードチロシン + モノヨードチロシン T 3 ) 濾胞細胞がサイログロブリンを取り込むまでは, T 3 および T 4 は濾胞内のサイログロブリンに組み込まれたままである サイログロブリン 甲状腺濾胞細胞内に入ると,T 3 および T 4 はサイログロブリンから切断され 分泌される

ホルモンの分類 -II 作用機構 ( 受容体 ) からの分類 1 細胞膜受容体に作用するホルモン 親水性分子 : ペプチドホルモン類アミノホルモン類 ( カテコラミン ) 2 細胞内受容体に作用するホルモン 疎水性分子 : ステロイドホルモン類アミノホルモン類 ( チロキシン )

1 細胞膜受容体に作用するホルモン

A. 二次メッセンジャーが camp

C. 二次メッセンジャーが Ca 2+ とフォスファチジルイノシチド

D. 細胞内メッセンジャーがキナーゼ

ペプチドホルモンの作用 ( インスリンの例 ) ホルモン 細胞膜受容体 タンパク質機能変化 細胞内情報伝達系活性化 標的遺伝子発現調節 www.cellsignal.com/.../ Insulin_Receptor.jpg より抜粋

2 細胞内受容体に作用するホルモン 核内受容体を介した作用機構 ( 参考 ) ホルモン 細胞内受容体 ( 核内受容体 ) 標的遺伝子発現調節

ステロイドホルモン受容体 = 転写因子 ホルモン

ステロイドホルモン受容体 Nuclear Receptor Signaling (2007) 5, e003. より抜粋

Nature Reviews Drug Discovery 3, 950-964 (November 2004)

アミノホルモン ( 低分子ホルモン ) の作用 ( 甲状腺ホルモンの例 ) 甲状腺ホルモン (T3, T4) は脂溶性ホルモン 甲状腺ホルモン T4 T3 は細胞膜に局在する分子を介して細胞質内に取り込まれる 細胞質内で T4 は T3 に変換され 核内に局在する甲状腺ホルモン受容体 (TR) に結合する TR は転写因子のひとつであり 標的遺伝子のプロモーター上に存在する甲状腺ホルモン応答領域に結合して遺伝子の転写活性を調節する 甲状腺ホルモンの作用 1 熱産生作用 : 酸素消費増大による基礎代謝率 2 脳機能の成熟 : 障害でクレチン病 うつ 記憶力 3 骨成長 : 低下で低身長 増加で骨粗鬆症 4 心収縮力増強 : 心 β アドレナリン受容体 5 ミオシン重鎖 α Serca2 6 脂質代謝促進 :HMG-CoA R 肝リパーゼ活性 7 血糖調節 : 低下でインスリン分泌 受容体 増加で消化管からの糖吸収 ( 食後過血糖 ) 8 皮膚グルコサミノグリカン産生 : 低下で粘液水腫 9 肝臓タンパク質代謝 : りんご酸酵素活性 10 水 電解質代謝 :ANP 合成 Na 水の排泄

ホルモンの調節機構 (1) ネガティブフィードバック (Negative-feedback) 生体の内部環境の恒常性を維持するためのコントロール機序ホルモンの標的細胞への効果が一定に達すると その作用を抑制する方向に作用する機序 - 過度の反応の抑制 1) 単一の内分泌腺による調節血漿浸透圧上昇 ADH( 抗利尿ホルモン ) 分泌増加 血漿浸透圧低下 2) 複数の内分泌腺による直列的な調節視床下部ー下垂体ー標的内分泌腺 ( 甲状腺 副腎 性腺 ) 3) 複数の内分泌腺による並列的な調節血糖低下 インスリン分泌低下 血糖上昇グルカゴン分泌増加アドレナリン分泌増加コルチゾール分泌増加成長ホルモン分泌増加

ホルモンの調節機構 (2) 1) 単一の内分泌腺による調節 内分泌腺下垂体後葉 内分泌腺 視床下部 レプチン欠損マウス (ob/ob) 血漿浸透圧 標的臓器 腎集合尿細管 ADH バソプレッシン = 抗利尿ホルモン (antidiuretic hormon) レプチン 標的臓器 脂肪細胞 食物摂取 エネルギー消費 2) 複数の内分泌腺による直列的な調節 Hypothalamopituitaryadrenal axis Hypothalamopituitarygonadal axis Hypothalamopituitarythyroid axis CRH: corticotropin releasing hormone ACTH: adrenocorticotrophic hormone GRH: growth hormone releasing hormone SRIF: somatotropin release-inhibiting factor (=somatostatin, SRIH, GIF GH: growth hormone GnRH: gonadotropin-releasing hormone LH: luteinizing hormone FSH: follicle stimulating hormone E2: Estradiol T: testosterone TRH: thyrotrophin releasing hormone TSH: thyroid stimulating hormone T3: triiodothyronine T4: thyroxine

視床下部は間脳に位置する [ 視床下部 ] 副腎皮質刺激ホルモン放出ホルモン ( ペプチドホルモン ) 分泌促進 [ 下垂体 ] 副腎皮質刺激ホルモン (ACTH ペプチドホルモン ) 合成促進 [ 副腎皮質 ] コルチゾール 抑制 [ 標的組織 ] 独立行政法人情報処理推進機構教育用画像素材集より抜粋生理作用

参考 :21 水酸化酵素欠損症 コレステロール プレグネノロン プロゲステロン 17- 水酸化プレグネノロン 17- 水酸化プロゲステロン 男性化 アンドロゲン エストロゲン アルドステロン 21-hydroxylase (21 水酸化酵素 ) 欠損 コルチゾール 副腎過形成 副腎皮質刺激ホルモン (ACTH)

糖の吸収 グルコース グリコーゲン グルコース グリコーゲン グルコース グリコーゲン 糖の吸収 ホルモンの調節機構 (3) 3) 複数の内分泌腺による並列的な調節 ( 血糖調節の例 ) 140 120 血糖値 (mg/dl) 100 80 60 40 食事 インスリングルカゴンインスリングルカゴンインスリン 食事 20 0 0 1 2 3 時間 4 5 6 7 血糖 インスリングルカゴン 膵 β 細胞膵 α 細胞グリコーゲン分解糖新生ケトン体産生脂肪酸分解組織での糖取り込み糖利用 血糖

ホルモンの調節機構 (4) 血中濃度の変動ー分泌のリズムーホルモンは非常に低い (10-12 ~10-7 mol/l) 濃度で作用し その濃度は変動する < 概日周期 (Circadian rhythm)> 副腎皮質の糖質ホルモン ( ヒトでは早朝にピーク 夜間は低値 ) 下垂体前葉の成長ホルモン ( 深夜睡眠時に高値 ) < 長周期の変動 > 性ホルモンの分泌で ヒトの女性ホルモンの場合は視床下部 下垂体前葉 卵巣の順に階層的に約 28 日周期で分泌調節される < 間欠的 パルス様 > 多くのホルモンは断続的に 不規則に放出される このため血中濃度は間欠的ないしパルス様に変動する 黄体形成ホルモン (LH) など インスリン分泌のパターン < 基礎分泌 > 24 時間ほぼ一定量に保たれている分泌 < 追加分泌 > 食後の血糖値の上昇に対しタイミングよく大量に分泌される分泌 ( イベント応答 )