,.,. 2, R 2, ( )., I R. c : I R 2, : (1) c C -, (2) t I, c (t) (0, 0). c(i). c (t)., c(t) = (x(t), y(t)) c (t) = (x (t), y (t)) : (1)

Similar documents
2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

1 1.1 [ ]., D R m, f : D R n C -. f p D (df) p : (df) p : R m R n f(p + vt) f(p) : v lim. t 0 t, (df) p., R m {x 1,..., x m }, (df) p (x i ) =

( ) ( )


II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

K E N Z OU

( ),.,,., C A (2008, ). 1,, (M, g) (Riemannian symmetric space), : p M, s p : M M :.,.,.,, (, ).,, (M, g) p M, s p : M M p, : (1) p s p, (

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA appointment Cafe D

重力方向に基づくコントローラの向き決定方法

i

n ( (

DVIOUT

mugensho.dvi

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

v er.1/ c /(21)

pdf

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

Gmech08.dvi

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

1 8, : 8.1 1, 2 z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = n i=1 a ii x 2 i + i<j 2a ij x i x j = ( x, A x), f =

= M + M + M + M M + =.,. f = < ρ, > ρ ρ. ρ f. = ρ = = ± = log 4 = = = ± f = k k ρ. k

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

日本内科学会雑誌第102巻第4号


数学Ⅱ演習(足助・09夏)

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

Part () () Γ Part ,

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

D 24 D D D



Note.tex 2008/09/19( )

D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y

II 1 II 2012 II Gauss-Bonnet II


6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

Morse ( ) 2014

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

1 nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

29

CG38.PDF

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

December 28, 2018

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

2011de.dvi

2 1 1 α = a + bi(a, b R) α (conjugate) α = a bi α (absolute value) α = a 2 + b 2 α (norm) N(α) = a 2 + b 2 = αα = α 2 α (spure) (trace) 1 1. a R aα =

untitled


M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 -

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (


曲面のパラメタ表示と接線ベクトル

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

II 2006

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

1 1 x y = y(x) y, y,..., y (n) : n y F (x, y, y,..., y (n) ) = 0 n F (x, y, y ) = 0 1 y(x) y y = G(x, y) y, y y + p(x)y = q(x) 1 p(x) q(

1 (1) ( i ) 60 (ii) 75 (iii) 315 (2) π ( i ) (ii) π (iii) 7 12 π ( (3) r, AOB = θ 0 < θ < π ) OAB A 2 OB P ( AB ) < ( AP ) (4) 0 < θ < π 2 sin θ

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)

Chap9.dvi

I y = f(x) a I a x I x = a + x 1 f(x) f(a) x a = f(a + x) f(a) x (11.1) x a x 0 f(x) f(a) f(a + x) f(a) lim = lim x a x a x 0 x (11.2) f(x) x

B 38 1 (x, y), (x, y, z) (x 1, x 2 ) (x 1, x 2, x 3 ) 2 : x 2 + y 2 = 1. (parameter) x = cos t, y = sin t. y = f(x) r(t) = (x(t), y(t), z(t)), a t b.

ohp_06nov_tohoku.dvi

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0,

2S III IV K A4 12:00-13:30 Cafe David 1 2 TA 1 appointment Cafe David K2-2S04-00 : C

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2.

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,,

sikepuri.dvi

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h


VI VI.21 W 1,..., W r V W 1,..., W r W W r = {v v r v i W i (1 i r)} V = W W r V W 1,..., W r V W 1,..., W r V = W 1 W

t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ

II 2 II

Fubini

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

untitled


f : R R f(x, y) = x + y axy f = 0, x + y axy = 0 y 直線 x+y+a=0 に漸近し 原点で交叉する美しい形をしている x +y axy=0 X+Y+a=0 o x t x = at 1 + t, y = at (a > 0) 1 + t f(x, y

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =

I 1

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

4.6: 3 sin 5 sin θ θ t θ 2t θ 4t : sin ωt ω sin θ θ ωt sin ωt 1 ω ω [rad/sec] 1 [sec] ω[rad] [rad/sec] 5.3 ω [rad/sec] 5.7: 2t 4t sin 2t sin 4t

CALCULUS II (Hiroshi SUZUKI ) f(x, y) A(a, b) 1. P (x, y) A(a, b) A(a, b) f(x, y) c f(x, y) A(a, b) c f(x, y) c f(x, y) c (x a, y b)

f(x,y) (x,y) x (x,y), y (x,y) f(x,y) x y f x (x,y),f y (x,y) B p.1/14

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

I , : ~/math/functional-analysis/functional-analysis-1.tex

熊本県数学問題正解

日本内科学会雑誌第98巻第4号

Transcription:

( ) 1., : ;, ;, ; =. ( ).,.,,,., 2.,.,,.,.,,., y = f(x), f ( ).,,.,.,., U R m, F : U R n, M, f : M R p M, p,, R m,,, R m. 2009 A tamaru math.sci.hiroshima-u.ac.jp 1

,.,. 2, R 2, ( ).,. 2.1 2.1. I R. c : I R 2, : (1) c C -, (2) t I, c (t) (0, 0). c(i). c (t)., c(t) = (x(t), y(t)) c (t) = (x (t), y (t)). 2.2. : (1) c : R R 2 : t (cos(t), sin(t)), (2) c : R R 2 : t t a + b ( a 0). 2.3. : (1) c : R R 2 : x (x, x ), (2) c : R R 2 : t (t 2, t 3 ) ( t > 0, ). 2.2 2.4. I R. C f : I R, (1) {(x, f(x)) x I} y = f(x), (2) {(f(y), y) y I} x = f(y). 2.5. C f : I R,., y = f(x) ( x = f(y)). 2.5,.,,. 2.6. c : I R 2,,, : t I, I 0 (t ) : c(i 0 ). 2

, f. f,.,. 2.7. c : R R 2 : t (a 1 t + b 1, a 2 t + b 2 ) ( (a 1, a 2 ) (0, 0)), : (1) a 1 0, y = (a 2 /a 1 )x + b 1 (a 2 b 1 /a 1 ), (2) a 2 0, x = (a 1 /a 2 )y + b 2 (a 1 b 2 /a 2 ). 2.3 2.8. U R 2, F : U R., F (x, y) = 0, : (1) F C -, (2) F (x, y) = 0 (JF ) (x,y) (0, 0). (JF ) (x,y) Jacobi : 2.9. F (x, y) = x 2 + y 2 1. (JF ) (x,y) := ( F F (x, y), (x, y)). x y 2.10. a > 0, F (x, y) = y 2 x 2 (x + a).. 2.11. C - f : I R y = f(x), F : I R R : (x, y) y f(x), F (x, y) = 0.,,. 2.12. F : U R F (x, y) = 0,., : (x 0, y 0 ) (F (x 0, y 0 ) = 0), U U ((x 0, y 0 ) ) : {(x, y) U F (x, y) = 0}., f. f,., F (x, y) = 0 y = f(x) x = f(y). 2.4, c : I R 2 I,,., c. 3

2.13. M. C - γ : ( ε, ε) M t = 0 γ (0), M γ(0) M. γ : ( ε, ε) M C -, R 2 γ : ( ε, ε) R 2 C -., p. 2.14. x 2 + y 2 = 1 : a R, (0, a) p = (1, 0). 2.15. T p M := {p + u u p M }, M p M., p,.,.,, (, I,, ). 2.16. M, c : I R 2, F (x, y) = 0., p = c(t 0 ), : {p + sc (t 0 ) s R} = T p M = {p + u (JF ) p u = 0}. R 2, p R 2 T p R 2 := p + R 2 = {p + u u R 2 }, T p M T p R 2. ; T p R 2 p 2,, T p M 1 ( )., Jacobi (JF ) p, p. 2.17. y = f(x) (x 0, f(x 0 )) y = f (x 0 )(x x 0 ) + f(x 0 ). 2.5 2.18. x-,. 2.19. C - c : R R 2, c(r) x-,. 2.20. M., M θ (a, b) M,. 2.21. a > 0. y 2 x 2 (x + a) = 0. 2.22. 2.17, 2.16 Jacobi. 4

3, R 3, ( ).,.,. 3.1 3.1. D R 2. p : D R 3, : (1) p C -, (2) (u, v) D, rank(jp) (u,v) = 2. (Jp) (u,v), p (u, v) Jacobi. p(u, v) = (x(u, v), y(u, v), z(u, v)), p u, p v, Jacobi (Jp) (u,v) = (p u, p v ) (u,v) = x u x v., rank(jp) (u,v) = 2, {p u (u, v), p v (u, v)}. 3.2. : y u z u y v z v (u,v) (1) p : R 2 R 3 : (u, v) u a + v b + c ( a b ). (2) p : R 2 R 3 : (u, v) (cos u, sin u, v).,., xy- z-,. 3.3. c : I R 2 : t c(t) = (x(t), y(t))., p : I R R 3 : (u, v) (x(u), y(u), v).,, xz- z-,. 3.4. c : I R 2 : t c(t) = (x(t), z(t)). x(t) > 0 ( t I), p : R I R 3 : (u, v) (cos(u)x(v), sin(u)x(v), z(v)). p(u, v), xz- c, z u : cos(u) sin(u) 0 p(u, v) = sin(u) cos(u) 0 x(v) 0. 0 0 1 z(v) p(u, v). 5

3.5. : (1) ( ) p : R (0, π) R 3 : (u, v) (cos(u) cos(v), sin(u) cos(v), sin(v)), (2) p : R 2 R 3 : (u, v) (cos(u)(2 + cos(v)), sin(u)(2 + cos(v)), sin(v)). p : D R 3, p(d) (, x 2 + y 2 + z 2 = 1 )., ( ). 3.2,. 3.6. C f : D R, p : D R 3 : (u, v) (u, v, f(u, v)). 3.7. C f : D R, {(x, y, f(x, y)) R 3 (x, y) D} z = f(x, y)., x = f(y, z) y = f(x, z)., z = f(x, y). 3.6,.,,. 3.8. p : D R 3,,, : (u, v) D, D 0 ((u, v) ) : p(d 0 ).,, (2, ). 3.9. p : R 2 R 3 : (u, v) (a 1 u + b 1 v + c 1, a 2 u + b 2 v + c 2, a 3 u + b 3 v + c 3 ) ( ) a1 b rank 1 = 2 a 2 b 2, z = αx + βy + γ. 3.3,. 3.10. U R 3, F : U R., F (x, y, z) = 0, : (1) F C -, (2) F (x, y, z) = 0 (JF ) (x,y,z) (0, 0, 0). 6

3.11. F (x, y, z) = x 2 /a 2 + y 2 /b 2 + z 2 /c 2 1, F (x, y, z) = 0 ( a, b, c > 0).. 3.12. C - f : D R z = f(x, y), F : D R R : (x, y, z) z f(x, y), F (x, y, z) = 0.,,. 3.13. F (x, y, z) = 0,.,, : (x 0, y 0, z 0 ) (F (x 0, y 0, z 0 ) = 0), U ((x 0, y 0, z 0 ) ) : {(x, y, z) U F (x, y, z) = 0},.,., F (x, y, z) = 0, z = f(x, y). 3.14. F (x, y, z) = ax + by + cz + d. c 0, : z = (1/c)(ax + by + d). 3.4, M = p(d) p : D R 3 D,,., p. 3.15. M. C - γ : ( ε, ε) M t = 0 γ (0), M γ(0) M. γ : ( ε, ε) M C -, R 2 γ : ( ε, ε) R 2 C -. 3.16. x 2 + y 2 + z 2 = 1, : a, b R, (0, a, b) p = (1, 0, 0). 3.17. T p M := {p + u u p M }, M p M., p,. M ( ),,. 7

3.18. M, p : D R 3, F (x, y, z) = 0., p 0 = p(u 0, v 0 ), : {p 0 + ap u (u 0, v 0 ) + bp v (u 0, v 0 ) a, b R} = T p0 M = {p 0 + w (JF ) p0 w = 0}., T p0 M p 0 2. Jacobi (JF ) p0,, ( )., Jacobi (JF ) p0, p 0. 3.19. z = f(x, y) (x 0, y 0, f(x 0, y 0 )) : z = f u (x 0, y 0 )(x x 0 ) + f v (x 0, y 0 )(y y 0 ) + f(x 0, y 0 ). 4, ( ).,. 4.1,,. 4.1. M = (M, O), 2,, : x, y M (x y), O x, O y O : x O x, y O y, O x O y =., R n,. 4.2. M, {(U α, ϕ α )} n : (1) {U α } M, (2) α, ϕ α : U α ϕ α (U α ) R n, (3) U α U β, ϕ β ϕ 1 α : ϕ α (U α U β ) ϕ β (U α U β ) C -., U α R n ( (2)), M ( (1)). (3),. (U α, ϕ α ), (3) ϕ β ϕ 1 α. 4.3. M n, {(U α, ϕ α )}., C -. 8

(U α, ϕ α ),.,,., S 1 := {(x, y) R 2 x 2 + y 2 = 1},,. 4.4. S 1 1., c : R R 2 : t (cos(t), sin(t)) {(U 1, c 1 1 ), (U 2, c 1 2 )} : c 1 := c (0,2π), c 2 := c (π,3π), U 1 := Im (c 1 ), U 2 := Im (c 2 ). 4.2,. 4.5. D R m, f : D R n C -. f : graph(f) := {x = (x i ) D R n f(x 1,..., x m ) = (x m+1,..., x m+n )}. m = n = 1, graph(f) y = f(x). 4.6. C - f : D R m+n, ϕ : graph(f) D : ϕ(x 1,..., x m+n ) := (x 1,..., x m ). ϕ f,., ϕ ϕ 1,. 4.7. D R m, f : D R m+n C -, graph(f) m. 4.6 ϕ, (graph(f), ϕ).,.,,. 4.8. {(U x>0, ϕ x>0 ), (U x<0, ϕ x<0 ), (U y>0, ϕ y>0 ), (U y<0, ϕ y<0 )}, S 1 : U x>0 := {(x, y) S 1 x > 0}, ϕ x>0 : U x>0 ( 1, 1) : (x, y) y, U x<0 := {(x, y) S 1 x < 0}, ϕ x<0 : U x<0 ( 1, 1) : (x, y) y, U y>0 := {(x, y) S 1 y > 0}, ϕ y>0 : U y>0 ( 1, 1) : (x, y) x, U y<0 := {(x, y) S 1 y < 0}, ϕ y<0 : U y<0 ( 1, 1) : (x, y) x. (, U x>0 x = 1 y 2 ), 4.6,. C -,. 4.9. S 2 := {(x, y, z) R 2 x 2 + y 2 + z 2 = 1} 2., S 2 6. 9

4.3,,., n,. 4.10. U R 2, F : U R, F (x, y) = 0., M := {(x, y) U F (x, y) = 0} 1. ; 2.12,., p M, p U p. U p, ϕ p : U p I p (I p R ). {(U p, ϕ p ) p M}, M. 4.11. U R 3, F : U R, F (x, y, z) = 0., M := {(x, y, z) U F (x, y, z) = 0} 2.,. 3.13,,.,,. 4.12. U R m, F : U R n C -, M := {p U F (p) = 0}. rank(jf ) p = k ( p M), M (m k). 4.10 (m, n, k) = (2, 1, 1), 4.11 (m, n, k) = (3, 1, 1),.,. 4.13. S n := {(x 1,..., x n+1 ) R n+1 x 2 1 + + x 2 n+1 = 1} n. S n n., F (x 1,..., x n+1 ) = x 2 1 + + x 2 n+1 1 F : R n+1 R. 4.14. SL 2 (R) := {X M 2 (R) det(x) = 1} 3. M n (R) n n., M 2 (R) R 4, 4.12.,. 4.15. : (1) SL n (R) := {X M n (R) det(x) = 1} n 2 1. (2) O(n) := {X M n (R) t XX = I n } n(n 1)/2. SL n (R) n, O(n) n., ( ). 10

4.4 R n,, R n.,.,. 4.16. RP n := {l R n+1 l 1 } n. RP n,. 4.17. RP n X/., X := R n+1 \ {0}, : x y λ R \ {0} s.t. x = λy.,. RP n, X = R n+1 \ {0} R n+1, X/ π : X X/. 4.18. RP n., x = (x 0, x 1,..., x n ) X π π(x) = [x 0 : x 1 : : x n ].. 4.19. RP n n. {(U i, ϕ i ) i = 0,..., n} : U i := {[x 0 : : x n ] RP n x i 0}, ϕ i : U i R n : [x 0 : : x n ] (1/x i )(x 0,..., x i,..., x n )., x i x i. 4.5, (, ).,.,,. 4.20. M, N, f : M N. (1) f p M C -, : (U, ϕ) : p M, (V, ψ) : f(p) N s.t. ψ f ϕ 1 ϕ(p) C -. (2) f C -, : p M, f p C -. ψ f ϕ 1 ϕ(p) (ϕ(u) ). 11

4.21. C - : (1) f : R S 1 : t (cos(t), sin(t)), (2) f : S n RP n : x Rx. C -, C, C. 4.22. M, N, f : M N. f p M C -, : (U, ϕ) : p M, (V, ψ) : f(p) N, ψ f ϕ 1 ϕ(p) C -. 4.23. M N, f : M N., f : M N, : f, f f 1 C -. ( ),. 4.24. r > 0. 4.6.,. 4.25. M m, U M, U m.,. 4.26. M m, N n, M N m + n. M N. 4.27. : (1) R 2, R R, (2) {(x, y, z) R 3 x 2 + y 2 = 1}, S 1 R., (covering map). 4.28. E, X. π : E X, : x X, U (x ) s.t. U λ (π 1 (U) ), π Uλ : U λ U., E X. 12

4.29. R x y x y Z, R/Z := R/., π : R R/Z. 4.30. E m, X, π : E X. U π 1 (U), X m., π : E X. X. π : E X, : p E, V (p ), U (π(p) ) s.t. π : V U. 4.31., : (1) R/Z S 1, (2) R 2 /Z {0} S 1 R, (3) R 2 /Z 2 S 1 S 1. 4.7.,,.,,. M C - C (M). 4.32. C - c : ( ε, ε) M t = 0 ċ(0) : ċ(0) : C (M) R : f d (f c)(0). dt ċ(0) d c(0). dt 4.33. p M, T p M,, T p M := {ċ(0) c : ( ε, ε) M : C, c(0) = p}. M n, T p M n., : 4.34. M n, (U, ϕ) p M, ϕ = (x 1,..., x n )., : ( ) ( ) span{,..., } = T p M = {v : C (M) R : }. x 1 p x n p,, C (M) (, )., v(fg) = v(f)g(p) + f(p)v(g) ( f, g C (M))., (av 1 + bv 2 )(f) = av 1 (f) + bv 2 (f),. 13

4.35. M n, T p M n., 4.34. n, : ( ) ( ) {,..., }. x 1 p x n p, M = R m, T p R m R m : T p R m ( ) a i (a 1,..., a m ) R m. x 1 p 4.8 F : M N C -.,. 4.36. C - F : M N p M : (df ) p : T p M T F (p) N : ċ(0) d (F c)(0). dt.,. 4.37. C - c : ( ε, ε) M, (U, ϕ) p = c(0), ϕ = (x 1,..., x n ). Jacobi, : ċ(0) = ( ) a i ( ) a 1,..., a n = t J(ϕ c) 0. x i., f C (M), : ċ(0)f = ( ( ) a i )f. x i p, : ( ( ) a i )f = a i (f ϕ 1 )(ϕ(p)). x i p x i,,, p ċ(0)f = d dt (f c)(0) = J(f ϕ 1 ϕ c) 0 = J(f ϕ 1 ) ϕ(p) J(ϕ c) 0. J(f ϕ 1 ) =,. ( ) (f ϕ 1 )(ϕ(p)),..., (f ϕ 1 )(ϕ(p)) x 1 x n 14

, c., (df ) p.,. 4.38. F : M N C -, p M, (U, ϕ) p, (V, ψ) F (p). ϕ = (x 1,..., x m ), ψ = (y 1,..., y n ), : (df ) p ( ( ) a i ) = ( ) b j x i p y j F (p). M c, : ċ(0) = a i ( x i,, ( ) bj = (df ) p ( ( a i y j x i F (p) ) 1 b. = J(ψ F ϕ 1 ) ϕ(p) b n ). p ) = (df ) p (ċ(0)) = d (F c)(0). p dt a 1. a m. c F c 4.37, ( a1,..., a m ) = t J(ϕ c) 0, ( b1,..., b n ) = t J(ψ F c) 0.,, J(ψ F c) 0 = J(ψ F ϕ 1 ϕ c) 0 = J(ψ F ϕ 1 ) ϕ(p) J(ϕ c) 0.,. M = R m, N = R n, F : R m R n ( ). 15