B 38 1 (x, y), (x, y, z) (x 1, x 2 ) (x 1, x 2, x 3 ) 2 : x 2 + y 2 = 1. (parameter) x = cos t, y = sin t. y = f(x) r(t) = (x(t), y(t), z(t)), a t b.

Similar documents
II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

mugensho.dvi

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

= M + M + M + M M + =.,. f = < ρ, > ρ ρ. ρ f. = ρ = = ± = log 4 = = = ± f = k k ρ. k


II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 -

notekiso1_09.dvi

Fubini


( ) ( )

2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n


II 2 II

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

i

i 18 2H 2 + O 2 2H 2 + ( ) 3K

Untitled

K E N Z OU

( : December 27, 2015) CONTENTS I. 1 II. 2 III. 2 IV. 3 V. 5 VI. 6 VII. 7 VIII. 9 I. 1 f(x) f (x) y = f(x) x ϕ(r) (gradient) ϕ(r) (gradϕ(r) ) ( ) ϕ(r)

pdf

2014 S hara/lectures/lectures-j.html r 1 S phone: ,

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

v er.1/ c /(21)

I 1


5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

. p.1/14

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0,

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =


S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

untitled

Acrobat Distiller, Job 128

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

untitled

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

2.4 ( ) ( B ) A B F (1) W = B A F dr. A F q dr f(x,y,z) A B Γ( ) Minoru TANAKA (Osaka Univ.) I(2011), Sec p. 1/30

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

DVIOUT

1 8, : 8.1 1, 2 z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = n i=1 a ii x 2 i + i<j 2a ij x i x j = ( x, A x), f =

0.6 A = ( 0 ),. () A. () x n+ = x n+ + x n (n ) {x n }, x, x., (x, x ) = (0, ) e, (x, x ) = (, 0) e, {x n }, T, e, e T A. (3) A n {x n }, (x, x ) = (,

III No (i) (ii) (iii) (iv) (v) (vi) x 2 3xy + 2 lim. (x,y) (1,0) x 2 + y 2 lim (x,y) (0,0) lim (x,y) (0,0) lim (x,y) (0,0) 5x 2 y x 2 + y 2. xy x2 + y

1 nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

i

Chap11.dvi

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

CALCULUS II (Hiroshi SUZUKI ) f(x, y) A(a, b) 1. P (x, y) A(a, b) A(a, b) f(x, y) c f(x, y) A(a, b) c f(x, y) c f(x, y) c (x a, y b)

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

6. Euler x


2011de.dvi

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

2 1 x 1.1: v mg x (t) = v(t) mv (t) = mg 0 x(0) = x 0 v(0) = v 0 x(t) = x 0 + v 0 t 1 2 gt2 v(t) = v 0 gt t x = x 0 + v2 0 2g v2 2g 1.1 (x, v) θ

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

= π2 6, ( ) = π 4, ( ). 1 ( ( 5) ) ( 9 1 ( ( ) ) (

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2.


II 2 ( )

l µ l µ l 0 (1, x r, y r, z r ) 1 r (1, x r, y r, z r ) l µ g µν η µν 2ml µ l ν 1 2m r 2mx r 2 2my r 2 2mz r 2 2mx r 2 1 2mx2 2mxy 2mxz 2my r 2mz 2 r

F S S S S S S S 32 S S S 32: S S rot F ds = F d l (63) S S S 0 F rot F ds = 0 S (63) S rot F S S S S S rot F F (63)

II 1 II 2012 II Gauss-Bonnet II

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

,.,. 2, R 2, ( )., I R. c : I R 2, : (1) c C -, (2) t I, c (t) (0, 0). c(i). c (t)., c(t) = (x(t), y(t)) c (t) = (x (t), y (t)) : (1)

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

29

(1) D = [0, 1] [1, 2], (2x y)dxdy = D = = (2) D = [1, 2] [2, 3], (x 2 y + y 2 )dxdy = D = = (3) D = [0, 1] [ 1, 2], 1 {

d (K + U) = v [ma F(r)] = (2.4.4) t = t r(t ) = r t 1 r(t 1 ) = r 1 U(r 1 ) U(r ) = t1 t du t1 = t F(r(t)) dr(t) r1 = F dr (2.4.5) r F 2 F ( F) r A r

1 θ i (1) A B θ ( ) A = B = sin 3θ = sin θ (A B sin 2 θ) ( ) 1 2 π 3 < = θ < = 2 π 3 Ax Bx3 = 1 2 θ = π sin θ (2) a b c θ sin 5θ = sin θ f(sin 2 θ) 2

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

Part () () Γ Part ,

曲面のパラメタ表示と接線ベクトル

KENZOU

A

( z = x 3 y + y ( z = cos(x y ( 8 ( s8.7 y = xe x ( 8 ( s83.8 ( ( + xdx ( cos 3 xdx t = sin x ( 8 ( s84 ( 8 ( s85. C : y = x + 4, l : y = x + a,


5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

2000年度『数学展望 I』講義録

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

入試の軌跡


6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

1 2 1 No p. 111 p , 4, 2, f (x, y) = x2 y x 4 + y. 2 (1) y = mx (x, y) (0, 0) f (x, y). m. (2) y = ax 2 (x, y) (0, 0) f (x,


08-Note2-web

Transcription:

2009 7 9 1 2 2 2 3 6 4 9 5 14 6 18 7 23 8 25 9 26 10 29 11 32 12 35 A 37 1

B 38 1 (x, y), (x, y, z) (x 1, x 2 ) (x 1, x 2, x 3 ) 2 : x 2 + y 2 = 1. (parameter) x = cos t, y = sin t. y = f(x) r(t) = (x(t), y(t), z(t)), a t b. x(t), y(t), z(t) t r(t) t (path) 2

(i) (curve) r(t) (ii) (iii) (iv) (v) r r 2.1 ( ). r(t) = (x(t), y(t), z(t)) (velocity) (speed) dr dt (t) = r (t) = (x (t), y (t), z (t)) r (t) = (x (t)) 2 + (y (t)) 2 + (z (t)) 2 2.2 (Cycloid). 1 x t = 0 P 1 t (t, 1). P θ θ = t π/2. r(t) = (x(t), y(t)) = (t, 1) + (cos θ, sin θ) = (t sin t, 1 cos t). P x dr dt = (1 cos t, sin t) = (0, 0) t = 0, ±2π, ±4π,.... 0 (singular point) regular point 2.3 ( ). P 0 = (a 0, b 0, c 0 ), P 1 = (a 1, b 1, c 1 ) P 0 P 1 (line segment) P (t) = tp 1 + (1 t)p 0 = ((1 t)a 0 + ta 1, (1 t)b 0 + tb 1, (1 t)c 0 + tc 1 ) 0 t 1. P 0, P 1 3

2.4. r(t) = (x(t), y(t), z(t) r(a) r(t) t = a (x, y, z) = φ(a) + tφ (a) = (x(a) + tx (a), y(a) + ty (a), z(a) + tz (a)) 2.5. r(t) = (cos t, sin t, t) (helix) r (t) = ( sin t, cos t, 1), r (t) = 2. r(a) (x, y, z) = (cos a t sin a, sin a + t cos a, a + t) 1. x 2 + y 2 = 1 (1, 0) (distance) L = 2.6. (i) (ii) (iii) (iv) b a r (t) dt. r = r(θ) (α θ β) θ (x, y) = r(θ)(cos θ, sin θ) L = β α r(θ)2 + r (θ) 2 dθ 4

2. r = sin θ (0 θ 2π) (change of variables) t = h(s) h 0 h > 0 h < 0 r(t) h r(h(s)) 9.3) ( dr(h(s)) dx = ds dt (h(s))dh ds, dy dt (h(s))dh ds, dz ) dt (h(s))dh ds = h (s) dr dt (h(s)). 2.7 (Theorem 9B). 3. 4. 2.8. r(t) (a t b) r(t 0 ), r(t 1 ),... r(t n ) (a = t 0 < t 1 < < t n = b) n r(t j ) r(t j 1 ) j=1 C 2.9. C r(t) C = b a r (t) dt. 5

2.10. r n ( 2πr 1 n π sin π ) π3 r n 3n 2. O(1/n 2 ) n 2 3 f(x, y, z) f(a, b, c) f f f (a, b, c) x + (a, b, c) y + (a, b, c) z, x y z f(a, b, c) f(a + x, b + y, c + z) f(a, b, c) df = f f f dx + dy + x y z dz (x, y, z) (x(t), y(t), z(t)) (chain rule) df dt = f dx x dt + f dy y dt + f dz z dt d f(x(t), y(t), z(t)) = dt f f f (x(t), y(t), z(t))dx(t) + (x(t), y(t), z(t))dy (t) + (x(t), y(t), z(t))dz x dt y dt z dt (t).. f(x, y, z) x = x(t), y = y(t), z = z(t) t f x ((x(t), y(t), z(t)) f x (x, y, z) ( (x, y, z) ) x = x(t), y = y(t), z = z(t) 6

3.1. 2 1 V = xyz V = yz x + xz y + xy z V V = x x + y y + z z x/x = 0.02, y/y = 0.02, z/z = 0.01 V/V = 0.03 5. 2.9996 ( ) f f f (a, b, c), (a, b, c), (a, b, c) = f f f (a, b, c)i + (a, b, c)j + (a, b, c)k x y z x y z f(a, b, c) gradf(a, b, c) f (a, b, c) (gradient) i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1). gradient grade (nabla) J.W. Gibbs (del) nabla f(x) x f f of x f(a + x, b + y, c + z) (a, b, c) + f(a, b, c) ( x, y, z) 7

( x, y, z) n f (a, b, c) h f(x, y, z) = h (a, b, c) h f(x, y, z) = h + h f(a, b, c) f = h (a, b, c) f(a, b, c) f = h + h (a, b, c) ( x, y, z) ( x, y, z) = λ f(a, b, c) h = f(a, b, c) ( x, y, z) = λ f(a, b, c) 2 f(a, b, c) = h ( x)2 + ( y) 2 + ( z) 2 f(a, b, c) 0 (a, b, c) f (regular point) f (singular point). f(x) {x; f(x) = c} level set x R (level surface) x R 2 (level curve or contour line) 8

3.2. f(x, y, z) = h (a, b, c) f x (a, b, c)(x a) + f y (a, b, c)(y b) + f z (a, b, c)(z c) = 0, x y = a + tf x(a, b, c) b + tf y (a, b, c), t R. z c + tf z (a, b, c)) (vector field) 3.3. r = x 2 + y 2 + z 2 ( x r, y r, z r ) = r r. 6. r n 3.4. x 2 + y 2 + z 2 = 1 (a, b, c) ax + by + cz = 1. 7. f(x, y, z) = x cos(xy + z) f(x, y, z) = 0 (1, π/3, π/6) 4 9

4.1. (vector field) (a + x, b + y, c + z) (a, b, c) F (a, b, c) = lim t 0 t 4.2. (i) (ii) F : R 2 R 2 F ( ) x = y ( ) F1 (x, y) F 2 (x, y) F 1, F 2 10

. F (x, y) = (F 1 (x, y), F 2 (x, y)) 4.3. F (x, y) F 2 x = F 1 y Proof. F 1 = ϕ x, F 2 = ϕ y F 2 x = ( ) ϕ = ( ) ϕ = F 1 y x x y y.. 4.4. F (x, y) = (αx + βy, γx + δy) β = γ ϕ x = αx + βy ϕ(x, y) = 1 2 αx2 + βxy + f(y). ϕ y = βx + δy f (y) = δy f(y) = δy 2 /2 + c F ϕ(x, y) = αx 2 /2 + βxy + δy 2 /2 + c ( α β F (x, y) = γ δ ) ( ) x = A y ( ) x y A 11

8. F (x 1, x 2, x 3 ) 3 L F (x 1, x 2, x 3 ) = L F L 9. F (x, y) = (x y 2, 2xy + 2y 3 ) F = f f x 1 x 2 x 3 4.5. (i) (constant vector field) F (x, y) = (u, v). (ii) F (x, y) = (x, y). (iii) F (x, y) = ( y, x). 10. (i) F (x, y) = (x, 0), (ii) F (x, y) = (x, y). (x(t), y(t)) F (x, y) (flow line, streamline) d dt ( ) x(t) = F y(t) ( ) x(t) = y(t) ( ) F1 (x(t), y(t)) F 2 (x(t), y(t)) (integral curve) 4.6. f F (a, b) 0 (a, b) F (x, y) F (a, b) 12

dx dt = F 1(a, b), dy dt = F 2(a, b) x(t) = F 1 (a, b)t + x(0), y(t) = F 2 (a, b)t + y(0) (a, b) (a, b) F 1 (x, y) F 11 (x a) + F 12 (y b), F 2 (x, y) F 21 (x a) + F 22 (y b), F 11 = F 1 x (a, b), F 12 = F 1 y (a, b), F 21 = F 2 x (a, b), F 21 = F 2 y (a, b), ( ) ( ) F11 F F (x, y) = 12 x a F 21 F 22 y b linearization, 11. F (x, y) = (x 2 + y, x + y + 2) 12. F (x, y) = (sin(x + y), sin(x y)) (π/2, π/2) 13. 4.7. A, B T B = T AT 1 13

4.8. ( ) a cos θ a sin θ A =, a > 0. a sin θ a cos θ 14. F (x, y) = (sin(x y), x + y) 15. F (x, y) = (x 1, y 1) (i) (ii) (iii). 5 line integral F C C F (r) dr = lim 0 j=1 n F (r j ) (r j r j 1 ) r 0,..., r n C = max{ r j r j 1 ; 1 j n} 5.1. C r(t) (a t b) b a F (r(t)) dr (t) dt dt 14

Proof. r j r j 1 = r(t j ) r(t j 1 ) dr dt (t j)(t j t j 1 ) lim F (φ(tj )) dr 0 dt (t j)(t j t j 1 ) = b a F (φ(t)) dr (t) dt dt. r = (x, y, z) dr = (dx, dy, dz) F 1 (x, y, z)dx + F 2 (x, y, z)dy + F 3 (x, y, z)dz C b ( F 1 (x(t), y(t), z(t)) dx dt + F 2(x(t), y(t), z(t)) dy dt + F 3(x(t), y(t), z(t)) dz ) dt dt a Leibniz 5.2. ( t, t + 1) (0 t 1) C 1 (x y)dx + xydy = ( t (t + 1))( 1)dt + C 0 15 1 0 ( t)(t + 1)dt =

(0, 0) (1, 1) 0 16. 5.3 ( ). (af (r) + bg(r)) dr = a F (r) dr + b G(r) dr C C C F (r) dr = F (r) dr + C 1 +C 2 C 1 F (r) dr, C 2 F (r) dr = F (r) dr. C F C F, C af + bg, C = a F, C + b G, C, F, C 1 + C 2 = F, C 1 + F, C 2 C (piece-wise smooth) 16

17. F (x, y, z) = (y, z, x) r C r,φ : (x, y, z) = (r sin t cos φ, r sin t sin φ, r cos t), 0 t π 5.4. C F (r) dr C F C. C C F C = max{ F (r) ; r C} 5.5. f dr = f(r f ) f(r i ) C F F (potential energy) 5.6. 1/r ( ) 1 = r r r 3 17

5.7. F (x, y, z) = (f(x), g(y), h(z)) f(x) dx + g(y) dy + h(z) dz 6 C {r(t)} (a t b) r(a) = r(b) (closed curve) (circulation) F (r) dr C (contour integral) 0 6.1. f(x)dx + g(y)dy + h(z)dz = 0. C 6.2. ( ) ( ) cos θ sin θ x F (x, y) = sin θ cos θ y C : (x, y) = (cos t, sin t) (0 t 2π) 2π 0 ( cos(t + θ) sin t + sin(t + θ) cos t) dt = 2π 0 sin(t + θ t) dt = 2π sin θ. 18. 18

19. F (x, y) = r n ( y, x) C : (a cos t, a sin t) (0 t 2π) a > 0 n D D 6.3. D xdy = ydx = D. D Proof. 6.4 ( ). lim D p 1 F (r) dr = F 2 D D x (p) F 1 y (p). Proof. p = (a, b) (x, y) (a, b) F (x, y) F (a, b) + F (a, b) ( ) ( ( x a = F (a, b) F a (a, b) + F y b b) x (a, b) y) F (a, b) = ( F1 x (a, b) ) F 1 ( ) y (a, b) α β x (a, b) F 2 = + y (a, b) β α F 2 ( ) 0 ω ω 0 ( ( ( ) G(x, y) = F (a, b) F a α β x (a, b) + b) β α) y 0 F (r) dr ω ( ydx + xdy) = 2ω D D D 2ω = (β + ω) (β ω) = F 2 x (a, b) F 1 (a, b) y 20. n A 19

y+ y f y (x, y) dy = f(x, y +) f(x, y ). D = {(x, y); a x b, ϕ (x) y ϕ + (x)} ( b ) ϕ+ (x) f(x, y) dxdy = f(x, y) dy dx 6.5 (George Green, 1828). F (r) dr = D D Proof. a D ϕ (x) ( F2 x F ) 1 dxdy. y (i) (ii) D y = ϕ ± (x) (a x b) D = {(x, y); ϕ (x) y ϕ + (x)} D ϕ ± D F 1 (x, y) dx = b = a b (F 1 (x, ϕ (x)) F 1 (x, ϕ + (x))) dx a = D ϕ+ (x) dx ϕ (x) F 1 (x, y)dy y F 1 (x, y) dxdy. x 6.6. F F F 2 x = F 1 y 6.7. F (x, y) = (xy, x) D = {(x, y); 0 x, y 1} D xydx + xdy = (xydx + xdy) = 0 + C 1 +C 2 +C 3 +C 4 D 1 ( x x (xy) ) 1 1 dxdy = dx dy(1 x) = y 0 0 20 0 dy 1 0 1 0 xdx + 0 = 1 2. (1 x) dx = 1 2.

21. D = {(x, y); 0 x 1, 0 y 1, x + y 1} 6.8. F (x, y) = ( ) y x 2 + y 2, x x 2 + y 2 x x x 2 + y 2 y y x 2 + y 2 = 0 0 x 2 + y 2 1 x 2 + y 2 = 1 2π 22. 0 ( sin t(cos t) + cos t(sin t) ) dt = 2π F (x, y) (a, b) F (a, b) F (x, y) (x, y) = (a, b) II 21

f(x, y)dxdy = f(x(u, v), y(u, v)) (x, y) (u, v) dudv, (x, y) (u, v) = x u y D E 6.9. (x, y) = (r cos θ, r sin θ) (x, y) (r, θ) = r. 6.10. a 2 x 2 + y 2 b 2 (0 < a < b) (x, y) = (r cos θ, r sin θ) (a r b, 0 θ 4π) b 4π a 0 rdθdr = 2π(b 2 a 2 ) π(b 2 a 2 ) 22 u x v y v

6.11. (x, y) = (x(u, v), y(u, v)) (u, v) = (u(s, t), v(s, t)) (s, t) (x, y) (x, y) (s, t) (x, y) (u, v) = (u, v) (s, t) (u, v) u(s, t), v(s, t) s t 7 e v e v e v v e = (e v)e, v = v (e v)e. 23. ( 1, 1, 1) C: (t, t 2, t) t = 1 1 D (area vector) D = D n D D n a, b n 23

a b a b a b (outer product) a b = 0 a b b a = a b 24. 25. a, b θ (0 θ π) a b = a b sin θ. 7.1. a, b, c (a 1, a 2, a 3 ), (b 1, b 2, b 3 ), (c 1, c 2, c 3 ) a 1 a 2 a 3 (a b) c = b 1 b 2 b 3 c 1 c 2 c 3. Proof. [a, b, c] [a, b, c] 1 7.2. a b a, b (a 2 b 3 a 3 b 2, a 3 b 1 a 1 b 3, a 1 b 2 a 2 b 1 ).. 26. 27. (a b) c = (b c) a = (c a) b. a (b c) = (a c)b (a b)c. a (b c) + b (c a) + c (a b) = 0. 7.3. O, A, B, C 1 [ OA, OB, OC] 6 24

28. O A(1, 1, 1), B( 1, 1, 2), C(3, 1, 1) 7.4 ( ). Proof. O, A, B, C a = OA, b = OB, c = OC OAB = a b, OBC = b c, OCA = c a, ABC = (b a) (c a) 7.5. D D e e D D D 29. A(a, 0, 0), B(0, b, 0), C(0, 0, c) ABC 30. O(0, 0, 0), A(1, 1, 1), B(1, 2, 1) H a b C(2, 1, 1) H 8 x, y, z f(x, y, z) = 0 8.1. (i) x 2 + y 2 + z 2 a 2 = 0 a > 0 (ii) x 2 + y 2 z 2 a 2 = 0 (hyperboloid of one sheet). (iii) x 2 y 2 + z 2 a 2 = 0 (hyperboloid of two sheets). (iv) x 2 + y 2 z = 0 (paraboloid). f(x, y, z) = h. 3 f(x, y, z) (a, b, c) 25

f(x, y, z) f(a, b, c) + f f f (a, b, c)(x a) + (a, b, c)(y b) + (a, b, c)(z c) x y z f(a, b, c) (0, 0, 0) f z 0 f(x, y, z) = f(a, b, c) z z = h(x, y) f(x, y, z) = C z = g(x, y) g g 9 (surface) (u, v) r(u, v) = (x(u, v), y(u, v), z(u, v)), (u, v) D D uv- 9.1. a = (a 1, a 2, a 3 ), b = (b 1, b 2, b 3 ) r = ua + vb, 0 u, v 1 31. OAB A(a 1, a 2, a 3 ), B(b 1, b 2, b 3 ) 32. u, v 26

9.2. r > 0 x = r sin θ cos φ, y = r sin θ cos φ, z = r cos θ, 0 θ π, 0 φ 2π r = r(u, v) r u (u, v) = (x u (u, v), y u (u, v), z u (u, v)), r v (u, v) = (x v (u, v), y v (u, v), z v (u, v)) r u r v r(u, v), r(u + u, v), r(u, v + v), r(u + u,, v + v) S = r u r v u v S = r u r v u v (surface area) 9.3. r D r u r v dudv r = (x, y, z) = (r sin θ cos φ, r sin θ sin φ, r cos θ), 0 θ π, 0 φ 2π. r θ = (r cos θ cos φ, r cos θ sin φ, r sin θ), r φ = ( r sin θ sin φ, r sin θ cos φ, 0) r θ r φ = r 2 sin θ(sin θ cos φ, sin θ sin φ, cos θ) r 2 π 0 2π dθ dφ sin θ = 4πr 2. 0 33. r = (1 s)(0, 0, t) + s(cos t, sin t, t) (0 s 1, 0 t π) 34. r = (u, v, u 2 + v 2 ) (u 2 + v 2 1) 35. x 2 + y 2 + (z/c) 2 = r 2 5.0995 10 8 km 2 27

36. (x/a) 2 + (y/b) 2 + (z/c) 2 = 1 (a, b, c) = (r, r, r) 37. r = (u + v, u 2 v, u v 2 ) r(1, 2) 38. 39. y = f(x) (a x b) x R 2 D, D D D φ (i) φ(u, v) = (φ 1 (u, v), φ 2 (u, v)) φ 1, φ 2 (ii) φ (φ 1, φ 2 ) 0 (u, v) φ 1 : D D (φ 1, φ 2 ) > 0 (u, v) 9.4. 9.5. a 4πa 2 (x, y, z) = (r cos θ, r sin θ, a 2 r 2 ), 0 r a, 0 θ 2π z = r 2 x 2 y 2 (x 2 + y 2 r 2 ) (Schwarz lantern) 28

10 r u r v ds ds = r u r v dudv 10.1. F (x, y, z) S:(x(u, v), y(u, v), z(u, v)) (surface integral) F (r) ds = S D F (r(u, v)) (r u r v ) dudv F (flux) 10.2. F (r) = v D v D v D D 40. F (r) = c r = ua + vb (0 u, v 1) det(a, b, c) 10.3. D f(x, y) z = f(x, y) S f S f z F S f ( F 3 (u, v, f(u, v)) F 1 (u, v, f(u, v)) f u (u, v) F 2(u, v, f(u, v)) f ) (u, v) dudv v D 29

S f r(u, v) = (u, v, f(u, v)) ((u, v) D) r u = (1, 0, f u ), r v = (0, 1, f v ), r u r v = ( f u, f v, 1). 41. f(x, y) = c(1 x/a y/b) (x 0, y 0, x/a + y/b 1) a > 0, b > 0, c > 0 F (x, y, z) = (x, y, z) S f 10.4. Proof. 10.5. F S F, S af + bg, S = a F, S + b G, S, F, S 1 + S 2 = F, S 1 + F, S 2, F, S = F, S. 10.6. (a, 0, 0), (0, b, 0), (0, 0, c) F (x, y, z) = (yz, zx, xy) 10.7. S 1 r 3 r ds S (solid angle) S 1 r(u, v) ρ(u, v) = r(u, v)/r(u, v) ρ u = 1 r r u r r u r 3 r, ρ v = 1 r r v r r v r 3 r ρ u ρ v = 1 r 2 r u r v r u r r 3 30 r r v + r v r r 3 r r u

ρ u ρ v = ρ (ρ u ρ v ) = 1 r 3 r (r u r v ) 42. ABC (A = (1, 0, 0), B = (0, 1, 0), C = (0, 0, 1)) dudv (u 2 + v 2 + (1 u v) 2 ) = π 3/2 2 D D = {(u, v); u 0, v 0, u + v 1} 43. F (x, y, z) = r n (x, y, z) a > 0 a n dx dy = (x, y) (u, v) du dv r u r v dudv (dydz, dzdx, dxdy) dxdy = dydx dudv = dvdu dx dy = dy dx dx dy = (x, y) du dv (u, v) r u r v du dv = (dy dz, dz dx, dx dy) (F 1 (x, y, z)dy dz + F 2 (x, y, z)dz dx + F 3 (x, y, z)dx dy) S dx = x x du + u v dv, y y dy = du + u v dv 31

dx dy du du = dv dv = 0 ( ) x x dx dy = du + u v dv ( ) ( y y x du + u v dv y = u v y u ) x du dv v (differential form) (F 1 (x, y)dx + F 2 (x, y)dy) = D D (df 1 dx + df 2 dy) = D ( F2 x F ) 1 dx dy y r = (x, y, z) x = (x 1, x 2, x 3 ) dx = (dx 1, dx 2, dx 3 ), d 2 x = (dx 2 dx 3, dx 3 dx 1, dx 1 dx 2 ), d 3 x = dx 1 dx 2 dx 3 F (x) d 2 x = F 1 (x)dx 2 dx 3 + F 2 (x)dx 3 dx 1 + F 3 (x)dx 3 dx 1 S S 1 x y F (y) d 2y S 11 (closed surface) V 32

V V V = {(x, y, z); x 2 + y 2 + z 2 1} V = {(x, y, z); x 2 + y 2 + z 2 = 1} 44. {(x, y, z); x a, y b, z c} 11.1. V F (x) d 2 x = V ( F1 + F 2 + F ) 3 dx 1 dx 2 dx 3. x 1 x 2 x 3 11.2. F (divergence) F div F Proof. V f(x, y) z g(x, y) ((x, y) D) S g S f F 3 e 3 ds = V = D D = (F 3 (x, y, g(x, y)) F 3 (x, y, f(x, y))) dxdy g(x,y) dxdy f(x,y) V F 3 (x, y, z) dz z F 3 (x, y, z) dxdydz. z x y. divergence F convergence 11.3. 1 F (p) = lim F (r) ds V p V V 33

45. S S ds = 0 ρ ( ρgz + p 0 a (ρgz + p 0 )ds = (ρgz + p 0 )a ds = ρga 3 dxdydz = a 3 ρg V V ρg V V V ρ(t, r) F (t, r) V ρ(t, r)f (t, r) ds. V d dt V V ρ(t, r) dxdydz = V (ρf ) dxdydz = V V ρ t dxdydz ρ t dxdydz V (ρf ) + ρ t = 0. ρ ρf (density function) ρ (current density) J J + ρ t = 0 (continuity equation) (conservation law) 34

46. V 1 r 3 r ds V x x 3 = 4πδ(x). 47. f(x, y) G f dxdy = f(0, 0) 2 R G(x, y) r = x 2 + y 2 12 0 A = 0 γ β γ 0 α β α 0 ABC (A(a, 0, 0), B(0, b, 0), C(0, 0, c)) ( ABC) ( ABC) ABC F (r) dr = αbc + βca + γab ABC = 1 (bc, ca, ab) 2 2α = F 3 y F 2 z, 2β = F 1 z F 3 x, 2γ = F 2 x F 1 y ( ABC) F (r) dr = ( F ) ABC 35

F = ( F3 y F 2 z, F 1 z F 3 x, F 2 x F ) 1 y F (rotation, curl) S (boundary) S S 12.1 (Stokes). F (r) dr = S S ( F ) ds. Proof. S F 3 (x, y, z)dz = D ( F3 y (y, z) (u, v) F 3 x ) (z, x) dudv (u, v) f(u, v) = F 3 (x(u, v), y(u, v), z(u, v)) u-v C: (u(t), v(t)) S : (x(u(t), v(t)), y(u(t), v(t)), z(u(t), v(t))) S b F 3 (x, y, z)dz = a = f(u, v) C = ( z f(u(t), v(t)) u D ( z u ( f z u v f v du dt + z v ) z du + v dv ) z dudv. u ) dv dt dt f u = F 3 x x u + F 3 y y u + F 3 z z u, f v = F 3 x x v + F 3 y y v + F 3 z z v 36

48. ( F1 F 1 (x, y, z)dx = S D z ( F2 F 2 (x, y, z)dy = x S D (z, x) (u, v) F 1 y (x, y) (u, v) F 2 z ) (x, y) dudv, (u, v) ) (y, z) dudv (u, v) 12.2. F (x, y, z) D F (r) dr = ( F ) D. D. F rotf, curlf rot curl rot rot rot Gibbs curl Maxwell Gibbs 12.3. F (i) F = G G (ii) F S (i) (ii) Stokes (ii) (i) A F (x, y) ( ) ( ) ( ) x u x + L y v y d dt ( ) x = y ( ) u + L v ( ) x y 37

L T t (x, y) = L 1 (e tl I) ( ) ( ) u + e tl x v y L L = S + A, t S = S, t A = A L 1 (e tl I) = ti + O(t 2 ), e tl = e ta e ts + O(t 2 ) T t (x, y) = t ( ) ( ) u + e ta e ts x + O(t 2 ) v y e ts S ( ) e ts x = y ( ( ) e λt 0 x 0 e µt) y x e λt y e µt e ta ( e ta cos(ωt) sin(ωt) = sin(ωt) cos(ωt) ), A = ω ( ) 0 ω ω 0 38