カルマンフィルターによるベータ推定( )

Similar documents
03.Œk’ì

01.Œk’ì/“²fi¡*

1 CAPM: I-,,, I- ( ) 1 I- I- I- ( CAPM) I- CAPM I- 1 I- Jensen Fama-French 3 I- Fama-French 3 I- Fama-MacBeth I- SMB-FL, HML-FL Fama-MacBeth 1 Fama-Fr

橡表紙参照.PDF

autocorrelataion cross-autocorrelataion Lo/MacKinlay [1988, 1990] (A)

I- Fama-French 3, Idiosyncratic (I- ) I- ( ) 1 I- I- I- 1 I- I- Jensen Fama-French 3 SMB-FL, HML-FL I- Fama-French 3 I- Fama-MacBeth Fama-MacBeth I- S

082_rev2_utf8.pdf

02.„o“φiflì„㙃fic†j

23_02.dvi

Vol.8 No (July 2015) 2/ [3] stratification / *1 2 J-REIT *2 *1 *2 J-REIT % J-REIT J-REIT 6 J-REIT J-REIT 10 J-REIT *3 J-

2 4 (four-dimensional variational(4dvar))(talagrand and Courtier(1987), Courtier et al.(1994)) (Ensemble Kalman Filter( EnKF))(Evensen(1994), Evensen(

2 I- I- (1) 2 I- (2) 2 I- 1 [18] I- I-. 1 I- I- Jensen [11] I- FF 3 I- FF CAPM n ( i = 1,..., n) M t R i,t, i = 1,..., n R M,t ( ) R i,t = r i

わが国企業による資金調達方法の選択問題

L Y L( ) Y0.15Y 0.03L 0.01L 6% L=(10.15)Y 108.5Y 6%1 Y y p L ( 19 ) [1990] [1988] 1

Stepwise Chow Test * Chow Test Chow Test Stepwise Chow Test Stepwise Chow Test Stepwise Chow Test Riddell Riddell first step second step sub-step Step

toukei04.dvi

fiúŁÄ”s‘ê‡ÌŁª”U…−…X…N…v…„…~…A…•‡Ì ”s‘ê™´›ß…−…^†[…fiŠ‚ª›Âfl’«

ヒストリカル法によるバリュー・アット・リスクの計測:市場価格変動の非定常性への実務的対応

Kalman ( ) 1) (Kalman filter) ( ) t y 0,, y t x ˆx 3) 10) t x Y [y 0,, y ] ) x ( > ) ˆx (prediction) ) x ( ) ˆx (filtering) )


fiš„v6.dvi

[8] Google Earth/Google Maps [7], [8] / 1 [7], [8] 2 [7], [8] [7] [8] [7] [8] [7] 2 ( ) = ( k ) ( k ) k (1) Lancaster [9] Rosen [13] hedo

, 1), 2) (Markov-Switching Vector Autoregression, MSVAR), 3) 3, ,, , TOPIX, , explosive. 2,.,,,.,, 1

本邦株式市場の流動性に関する動学的考察―東京証券取引所のティック・データ分析―

2 1,2, , 2 ( ) (1) (2) (3) (4) Cameron and Trivedi(1998) , (1987) (1982) Agresti(2003)

研究シリーズ第40号

スプレッド・オプション評価公式を用いた裁定取引の可能性―電力市場のケース― 藤原 浩一,新関 三希代

論文08.indd

<96D889BA904D2E696E6464>

みずほ情報総研レポートvol.2

Hi-Stat Discussion Paper Series No.248 東京圏における 1990 年代以降の住み替え行動 住宅需要実態調査 を用いた Mixed Logit 分析 小林庸平行武憲史 March 2008 Hitotsubashi University Research Unit

ばらつき抑制のための確率最適制御

130 Oct Radial Basis Function RBF Efficient Market Hypothesis Fama ) 4) 1 Fig. 1 Utility function. 2 Fig. 2 Value function. (1) (2)

seminar0220a.dvi

dvi

# _信金7月号.indb

M&A の経済分析:M&A はなぜ増加したのか

日経225オプションデータを使ったGARCHオプション価格付けモデルの検証

BIS CDO CDO CDO CDO Cifuentes and O Connor[1] Finger[6] Li[8] Duffie and Garleânu[4] CDO Merton[9] CDO 1 CDO CDO CDS CDO three jump model Longstaff an

1 Tokyo Daily Rainfall (mm) Days (mm)

4. C i k = 2 k-means C 1 i, C 2 i 5. C i x i p [ f(θ i ; x) = (2π) p 2 Vi 1 2 exp (x µ ] i) t V 1 i (x µ i ) 2 BIC BIC = 2 log L( ˆθ i ; x i C i ) + q

ブック

x T = (x 1,, x M ) x T x M K C 1,, C K 22 x w y 1: 2 2

& 3 3 ' ' (., (Pixel), (Light Intensity) (Random Variable). (Joint Probability). V., V = {,,, V }. i x i x = (x, x,, x V ) T. x i i (State Variable),

2

COE-RES Discussion Paper Series Center of Excellence Project The Normative Evaluation and Social Choice of Contemporary Economic Systems Graduate Scho

産業・企業レベルデータで見た日本の経済成長.pdf

Duality in Bayesian prediction and its implication

IMES DISCUSSION PAPER SERIES Discussion Paper No. 99-J- 9 -J-19 INSTITUTE FOR MONETARY AND ECONOMIC STUDIES BANK OF JAPAN

LA-VAR Toda- Yamamoto(1995) VAR (Lag Augmented vector autoregressive model LA-VAR ) 2 2 Nordhaus(1975) 3 1 (D2)

MPC MPC R p N p Z p p N (m, σ 2 ) m σ 2 floor( ), rem(v 1 v 2 ) v 1 v 2 r p e u[k] x[k] Σ x[k] Σ 2 L 0 Σ x[k + 1] = x[k] + u[k floor(l/h)] d[k]. Σ k x


Kobe University Repository : Kernel タイトル Title 著者 Author(s) 掲載誌 巻号 ページ Citation 刊行日 Issue date 資源タイプ Resource Type 版区分 Resource Version 権利 Rights DOI

THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE.


untitled

日本株式市場における経済レジームファクターの役割

p *2 DSGEDynamic Stochastic General Equilibrium New Keynesian *2 2

橡DP9802.PDF

Computational Semantics 1 category specificity Warrington (1975); Warrington & Shallice (1979, 1984) 2 basic level superiority 3 super-ordinate catego

Power Transformation and Its Modifications Toshimitsu HAMASAKI, Tatsuya ISOMURA, Megu OHTAKI and Masashi GOTO Key words : identity transformation, pow

X X X Y R Y R Y R MCAR MAR MNAR Figure 1: MCAR, MAR, MNAR Y R X 1.2 Missing At Random (MAR) MAR MCAR MCAR Y X X Y MCAR 2 1 R X Y Table 1 3 IQ MCAR Y I

競売不動産からみた首都圏地価の動向

bottleneckjapanese.dvi


4 ( ) NATURE SCIENCE [Battiston 16] 2008 ( ) 5 JPX [ 13] [ 15a, 15b] [ 15,Mizuta 16c] [ 15a, 15b] δt (δt =1) (δt > 1) 4 [ 09, 12] 5 [LeBaron 06,Chen 1

(a) (b) (c) Canny (d) 1 ( x α, y α ) 3 (x α, y α ) (a) A 2 + B 2 + C 2 + D 2 + E 2 + F 2 = 1 (3) u ξ α u (A, B, C, D, E, F ) (4) ξ α (x 2 α, 2x α y α,

上場変更と株価:株主分散と流動性変化のインパクト

z.prn(Gray)

24 [11] [4, 8, 10, 20, 21] CreditMetrics [8] CreditMetrics CreditMetrics CreditMetrics [13] [1, 12, 16, 17] [12] [1] Conditional Value-at-Risk C

untitled

Y-...W

IPSJ SIG Technical Report Vol.2011-MPS-85 No /9/ : Time Series Modeling of Real Estate Prices and Its Application Hiroshi Ishijima, 1 A

[2], [3] Bremer [3] Fortune % Overreaction hypothesis Benou [2] 1 20% [9] 1 [10] 1 [1], [4], [5], [6], [7], [8] [1] [8] [6] [2], [3] stylized f

untitled

「国債の金利推定モデルに関する研究会」報告書

取引銀行の破綻が企業経営に及ぼす影響について-阪和銀行破綻の事例分析-

Vol. 3 No (Mar. 2010) An Option Valuation Model Based on an Asset Pricing Model Incorporating Investors Beliefs Kentaro Tanaka, 1 Koich

CVaR

Microsoft Word - 計量研修テキスト_第5版).doc

日本の商品先物市場の効率性

商品流動性リスクの計量化に関する一考察(その2)―内生的流動性リスクを考慮したストレス・テスト―

Tomorrow Next th draft version MEW SWET

16 7 5

untitled

4.9 Hausman Test Time Fixed Effects Model vs Time Random Effects Model Two-way Fixed Effects Model

商学 66‐1☆/16.田口

1 Jensen et al.[6] GRT S&P500 GRT RT GRT Kiriu and Hibiki[8] Jensen et al.[6] GRT 3 GRT Generalized Recovery Theorem (Jensen et al.[6])

通信容量制約を考慮したフィードバック制御 - 電子情報通信学会 情報理論研究会(IT) 若手研究者のための講演会

Ishi

untitled

Microsoft Word - Šv”|.DOC

わが国企業による株主還元策の決定要因:配当・自社株消却のインセンティブを巡る実証分析

物価変動の決定要因について ― 需給ギャップと物価変動の関係の国際比較を中心に―

2 A A 3 A 2. A [2] A A A A 4 [3]

新製品開発プロジェクトの評価手法

On model selection problems in terms of prediction mean squared error and interpretaion of AIC (slides)

わが国のレポ市場について―理論的整理と実証分析―

A System of National Accounts (SNA) 2

Preliminary Version Manning et al. (1986) Rand Health Insurance Experiment Manning et al. (1986) 3 Medicare Me

Transcription:

β TOPIX 1 22 β β smoothness priors (the Capital Asset Pricing Model, CAPM) CAPM 1 β β β β smoothness priors :,,. E-mail: koiti@ism.ac.jp., 104

1 TOPIX β Z i = β i Z m + α i (1) Z i Z m α i α i β i (the Capital Asset Pricing Model CAPM) CAPM 1 β i Campbell, Lo, and MacKinlay (1996) CAPM TOPIX CAPM Roll Roll (1977) (2003) CAPM β i β i β i 1 TOPIX 1 22 β i β i CAPM CAPM Sharpe (1964) Lintner (1965) CAPM E[R i R f ]=β i (E[R m R f ]) β i = Cov[R i,r m ] Var[R m ] (2) R i i R m R f β i R m R f R i R f CAPM CAPM 1 β i β i Campbell, Lo, and MacKinlay (1996) β i CAPM Roll TOPIX CAPM β i β i Blume (1971, 1975) Clarkson and Thompson (1990) β 1 β i 1 1 1 105

β i smoothness priors Smoothness priors β i β i Kalman (1960) (2) β i β i Kalman (1960) β i β i Zalewska (2004) β Zalewska (2004) AIC (Akaike Information Criterion) 2 i Z i (t) =β i Z m (t)+α i (3) Z i (t) E[R i R f ] Z m (t) E[R m R f ] α i i CAPM β i β i β i β i (t) β i (t) ν i (t) =β i (t) β i (t 1), (4) ν i (t) N(0,τ 2 i ) τ i i smoothness priors (4) Kitagawa and Gersch (1985) smootness priors smoothness priors (3) (4) β i (t) =β i (t 1) + ν i (t) (5) Z i (t) =Z m (t)β i (t)+ɛ i (t) (6) ɛ i (t) ɛ i (t) N(0,σ 2 i ) σ i i (5) (6) β i (t) 2 Kalman (1960) β i (t) β i (t) x(t t j), [j =0, 1, ] β i (t t 1) = β i (t 1 t 1), V (t t 1) = V (t 1 t 1) + τi 2, (7) 2 (1993) Durbin and Koopman (2001) Hamilton (1994) 106

K(t) =V (t t 1)Z m (t){z m (t)v (t t 1)Z m (t)+σi 2 } 1, β i (t t) =β i (t t 1) + K(t){Z i (t) Z m (t)β i (t t 1)}, V (t t) ={1 K(t)Z m (t)}v (t t 1), (8) V (t t j) =E[{β i (t) β i (t t j)} 2 ] β(0 0) V (0 0) β i (t) Akaike (1973) AIC (Akaike Information Criterion) AIC AIC(i) = 2l( ˆθ i )+2p (9) l(θ i ) p ˆθ i AIC i {Z i (1),,Z i (T )} f(z i (1),,Z i (T ) θ i )= T f(z i (t) Z i (1),,Z i (t); θ i ), (10) t=1 θ i =(σ i,τ i ) f(z i (t) Z i (1),,Z i (t); θ i ) f(z i (t) Z i (1),,Z i (t); θ i ) 1 [ = 2πv2 (t) exp 1 2v 2 (t) (Z i(t) Z m (t)β i (t t 1)) 2] (11) l(θ i )= 1 2 { T log(2π)+ + T t=1 T log v 2 (t) t=1 1 v 2 (t) (Z i(t) Z m (t)β i (t t 1)) 2}, (12) v 2 (t) =Z m (t)v (t t 1)Z m (t)+σi 2 R optim Nelder-Mead 3 3.1 1 22 TOPIX TOPIX 1 1998 1 2003 12 6 72 71 3 1998 2003-0.8-1.6 LIBOR 3 LIBOR 3 1 1 3 5 Campbell, Lo, and MacKinlay (1996) pp. 184 107

( ) 25 1998/01-2003/12 TOPIX 1998/01-2003/12 LIBOR 3 1998/01-2003/12 1: R i = log P t P t 1, (13) P t TOPIX (12) R optim β i (t) (5) (6) τ i, σ i, AIC optim 0 4 (Bowman-Shenton (Jarque-Bera) ) Ljung-Box 3.2 6-27 β Quantile-Quantile Quantile-Quantile 2 2 code optim β V (0 0) β 1 1999 6 2000 6 2001 6 CEO β 2 3 β 1.0 1.2 β 0.2 0.4 2004 2 16 β 4 NTT 1998 2003 IT β IT IT 5 β 0.5 0.2 IT 2000 β IT σ 2 2 β TOPIX 4 nlm 1000 200 108

Code AIC σ τ NTT 0-149.3359 0.07534621 0.05882475 SONY 0-64.40624 0.1435226 0.03899718 0-170.9791 0.0643951 0.06440982 0-119.4261 0.09381163 0.004122669 0-105.2728 0.1038671 0.03153384 0-152.0062 0.0730043 0.02377539 4502 0-158.2433 0.0709385 0.02374597 6752 0-142.9274 0.07851107 0.02417267 6753 0-119.2637 0.09456484 0.02551953 6902 0-175.7362 0.06173184 0.02517676 7201 0-90.45424 0.1159477 0.03341797 7751 0-146.1517 0.07626406 0.02624219 8058 0-142.2841 0.07883462 0.02532104 9020 0-170.8066 0.06367031 0.02346094 9022 0-201.2063 0.05186767 0.02268473 KDDI 9433 0-72.4038 0.1305883 0.03283984 2914 0-140.844 0.08041787 0.02553174 4452 0-180.9324 0.05882841 0.02141521 6701 0-115.7291 0.09526309 0.02877051 6971 0-89.49805 0.1159477 0.03341797 7974 0-108.1091 0.1029107 0.03000534 3102 0-93.36037 0.1159477 0.03341797 2: 109

s 0.5 1.0 1.5 2.0 1998 1999 2000 2001 2002 2003 Time 1: s 0.8 1.0 1.2 1.4 1.6 1998 1999 2000 2001 2002 2003 Time 2: β 3.3 ν i (t) ɛ i (t) 110

s 0.2 0.4 0.6 0.8 1.0 1998 1999 2000 2001 2002 2003 Time 3: s 0.8 0.9 1.0 1.1 1.2 1.3 1998 1999 2000 2001 2002 2003 Time 4: NTT 1. Quantile-Quantile 2. Bowman-Shenton (Jarque-Bera) 3. Ljung-Box Bowman-Shenton Ljung-Box Bowman-Shenton Ljung-Box 3 p 4 3 *** 1% ** 5% Ljung-Box 12 3 111

s 0.2 0.3 0.4 0.5 1998 1999 2000 2001 2002 2003 Time 5: Bowman-Shenton β 4 1. β 2. β 3. β β β i Kitagawa (1993, 1996) Gordon (1993) 112

Bowman-Shenton Ljung-Box Bowman-Shenton Ljung-Box (p ) (p ) (p ) (p ) NTT 0.8300 0.0065 *** 0.0000 *** 0.1588 SONY 0.4734 0.0951 0.0016 ** 0.6258 0.4734 0.0951 0.0016 ** 0.6258 0.4671 0.5509 0.0000 *** 0.2269 0.0000 *** 0.4553 0.0000 *** 0.9637 0.0000 *** 0.0027 *** 0.0000 *** 0.1711 0.9370 0.1464 0.0000 *** 0.3193 0.8450 0.5210 0.0000 *** 0.6653 0.2481 0.4699 0.0000 *** 0.4783 0.7662 0.3247 0.0000 *** 0.0344 ** 0.0855 0.1385 0.0000 *** 0.3584 0.0583 0.3719 0.0000 *** 0.5045 0.0035 *** 0.3101 0.0000 *** 0.0772 0.7622 0.9843 0.0000 *** 0.5211 0.1577 0.5774 0.0000 *** 0.8257 KDDI 0.1739 0.5256 0.0000 *** 0.0071 *** 0.1515 0.6817 0.0000 *** 0.9975 0.9811 0.6888 0.0000 *** 0.0871 0.8509 0.5885 0.0000 *** 0.6851 0.0000 *** 0.6516 0.0000 *** 0.2925 0.8155 0.5098 0.0000 *** 0.2006 0.0000 *** 0.7953 0.0000 *** 0.7606 3: 113

[1] (1993) FORTRAN 77 [2] (2003) 41 6 [3] Akaike, H., (1973), Information theory and an extension of the maximum likelihood principle, Proc. 2nd International Symposium on Information Theory (B. N. Petrov and F. Csaki eds.) Akademiai Kiado, Budapest, 267-281. [4] Blume, M.E., (1971), On the Assessment of Risk, Journal of Finance, 24, 1-9. [5] Blume, M. E., (1975), s and their Regression Tendencies, Journal of Finance, 30, 785-795. [6] Campbell, Lo, and MacKinlay (1996), The Econometrics of the Financial Markets, Princeton Press. [7] Clarkson, P.M. and R. Thompson, (1990), Empirical Estimates of When Investors Face Estimation Risk, Journal of Finance, 45, 2, 431-453. [8] Durbin, J. and Koopman, S.J., (2001), Time Series Analysis by State Space Methods, Oxford University Press. [9] Gordon, NJ, Salmond, D. J., Smith. A. M., (1993), Novel approach to nonlinear/non-gaussian Bayeaian state estimation, IEEE Proceedings-F, 140 (2), 107-113. [10] Hamilton, J. D., (1994), Time Series Analysis, Princeton University Press. [11] Kalman, R. E., (1960), A New Approach to Linear Filtering and Prediction Problems, Transaction of the ASME-Journal of Basic Engineering, 35-45. [12] Kitagawa, G., (1993), A Moneta Carlo Filtering and smoothing method for non-gaussian nonlinear state space models, Proceedings of the 2nd U.S.-Japan Joint Seminar on Statistical Time Series Analysis, 110-131, Honolulu, Hawaii, January 25-29. [13] Kitagawa, G., (1996), Monte Carlo filter and smoother for non-gaussian nonlinear state space models, Journal of Computational and Graphical Statistics, Vol.5, No.1, 1-25. [14] Kitagawa, G. and Gersch, W., (1985), A Smoothness Priors Time Varying AR Coefficient Modeling of Nonstationary Covariance Time Series, IEEE Trans. Automat. Control, Vol AC-30, No.1, pp. 48-56. [15] Lintner, J., (1965), The Valuation of Risk Assets and Selection of Risky Investments in Stock Portfolios and Capital Budgets, Review of Economics and Statistics, 47, 13-37. [16] Markowitz, H. M., (1952), Portfolio Selection, Journal of Finance, 7, no. 1, 77-91. [17] Roll, R., (1977), A Critique of the Asset Pricing Theory s Tests: Part I, Journal of Financial Economics, 4, 129-176. [18] Sharpe, W. F., (1964), Capital Asset Prices: A Theory of Market Equilibrium under Condition of Risk, Journal of Finance, 19, 425-442. [19] Shiller, R., (1973), A Distributed Lag Estimator Derived from Smoothness Priors, Econometrica, vol. 41, No.4, pp. 775-788. [20] Zalewska, A., (2004), Evolving character of the CAPM beta of the case of the telecom industry, an Indepen working paper. 114

urns and Returns s 0.2 0.0 0.1 0.8 1.0 1.2 Measurement Equation System Equation 0.15 0.00 0.10 0.4 0.2 0.0 0.2 6: NTT urns and Returns s 0.8 0.4 0.0 0.4 1.0 1.2 1.4 1.6 1.8 Measurement Equation System Equation 0.8 0.4 0.0 0.4 0.1 0.0 0.1 0.2 7: SONY 115

urns and Returns s 0.2 0.0 0.2 0.85 0.95 1.05 Measurement Equation System Equation 0.2 0.0 0.2 0.10 0.00 0.10 8: urns and Returns s 0.15 0.00 0.10 0.20 0.2 0.3 0.4 0.5 Measurement Equation System Equation 0.15 0.00 0.10 0.10 0.00 9: 116

urns and Returns s 0.4 0.2 0.0 0.2 0.4 0.6 0.8 Measurement Equation System Equation 0.4 0.2 0.0 0.2 0.1 0.1 0.3 10: urns and Returns s 0.2 0.0 0.1 0.3 0.5 0.7 0.9 Measurement Equation System Equation 0.2 0.0 0.1 0.2 0.2 0.6 11: 117

urns and Returns s 0.20 0.05 0.10 0.4 0.8 1.2 0.2 0.0 0.1 0.6 0.2 0.2 12: urns and Returns s 0.2 0.0 0.1 0.0 0.4 0.8 0.2 0.0 0.1 0.2 0.1 0.1 0.3 13: 118

urns and Returns s 0.3 0.1 0.1 0.6 1.0 1.4 0.3 0.1 0.1 1.0 0.5 0.0 0.5 14: urns and Returns s 0.2 0.0 0.1 0.8 1.0 1.2 1.4 0.15 0.00 0.10 0.2 0.0 0.2 15: 119

urns and Returns s 0.3 0.1 0.1 0.5 1.0 1.5 2.0 0.3 0.1 0.1 0.2 0.0 0.2 0.4 16: urns and Returns s 0.2 0.0 0.2 0.6 0.8 1.0 1.2 0.2 0.0 0.2 0.2 0.0 0.2 17: 120

urns and Returns s 0.2 0.0 0.1 0.2 0.8 1.2 1.6 0.2 0.0 0.2 0.1 0.1 0.3 18: urns and Returns s 0.15 0.00 0.10 0.2 0.3 0.4 0.5 0.6 0.15 0.00 0.10 0.20 0.2 0.0 0.1 19: 121

urns and Returns s 0.15 0.05 0.05 0.15 0.00 0.10 0.20 0.30 0.15 0.05 0.05 0.15 0.2 0.0 0.1 0.2 20: urns and Returns s 0.4 0.0 0.2 0.4 1.0 1.5 2.0 0.2 0.0 0.2 0.4 0.6 0.2 0.2 21: KDDI 122

urns and Returns s 0.2 0.0 0.1 0.0 0.2 0.4 0.6 0.2 0.0 0.2 0.2 0.0 0.2 0.4 22: urns and Returns s 0.15 0.00 0.10 0.2 0.4 0.6 0.8 1.0 0.15 0.00 0.10 0.6 0.2 0.2 23: 123

urns and Returns s 0.4 0.2 0.0 0.2 0.8 1.2 1.6 0.3 0.1 0.1 0.8 0.4 0.0 24: urns and Returns s 0.4 0.0 0.4 0.8 1.0 1.2 1.4 0.4 0.0 0.4 0.05 0.05 0.15 25: 124

urns and Returns s 0.3 0.1 0.1 0.6 1.0 1.4 0.3 0.1 0.1 0.5 0.3 0.1 0.1 26: urns and Returns s 0.2 0.2 0.4 0.8 1.2 1.6 0.2 0.0 0.2 0.4 0.2 0.2 0.6 27: 125