untitled

Similar documents
スライド タイトルなし

A Study of Adaptive Array Implimentation for mobile comunication in cellular system GD133

P361

(n ) 1. Ungerboe TCM (trellis oded modulation) 3 [4] (i ) (ii) (iii).1 TV [,3]. MPEG PCM 1/10. 3 (B.B.) 1/ B.B. (i ) AC AMI (ii) ( ) (n ) (iii) NRZ (i

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

1 s(t) ( ) f c : A cos(2πf c t + ϕ) (AM, Amplitude Modulation) (FM, Frequency Modulation) (PM, Phase Modulation) 2

untitled

main.dvi

Microsoft PowerPoint - 山形大高野send ppt [互換モード]

V s d d 2 d n d n 2 n R 2 n V s q n 2 n Output q 2 q Decoder 2 R 2 2R 2R 2R 2R A R R R 2R A A n A n 2R R f R (a) 0 (b) 7.4 D-A (a) (b) FET n H ON p H

main.dvi

untitled

5988_4096JA.qxd

untitled

IEEE ZigBee 2.4GHz 250kbps O-QPSK DSSS Bluetooth IEEE GHz 3Mbps G-FSK FHSS PC LAN IEEE b 2.4GHz 11Mbps CCK DSSS LAN LAN IEE

000-OFDM前付き.indd

untitled

CWContinuous Wave CW XCT(Computed Tomography) MRI Magnetic Resonance Imaging)PET(Positron Emission Tomography) XCT 2

,, 2. Matlab Simulink 2018 PC Matlab Scilab 2

UWB a) Accuracy of Relative Distance Measurement with Ultra Wideband System Yuichiro SHIMIZU a) and Yukitoshi SANADA (Ultra Wideband; UWB) UWB GHz DLL

ADC121S Bit, ksps, Diff Input, Micro Pwr Sampling ADC (jp)

ADC78H90 8-Channel, 500 kSPS, 12-Bit A/D Converter (jp)

( ) ( ) ( ) ( ) ( )

Keysight MIMO MIMO Cluster n Path n σ n, AoA σ n, AoD Θ n, AoA MS/UE Array Boresight Rx0 Tx0 Θ n, AoD LOS BS Array Boresight Θ n+1, AoA Rx1 Tx1 Path n

( ) : 1997

CDMA (high-compaciton multicarrier codedivision multiple access: HC/MC-CDMA),., HC/MC-CDMA,., 32.,, 64. HC/MC-CDMA, HC-MCM, i

MainOfManuscript.dvi

GD152

433 MHz 950 MHz 2.45 GHz ISO/IEC ISO/IEC (M2) EPC C1 G2 950 MHz 2.45 GHz 950 MHz 2.45 GHz ISO/IEC (Type-A, B, C) ISO/IEC-18000

回路実習

AD

ADC082S021 2 Channel, 50 ksps to 200 ksps, 8-Bit A/D Converter (jp)

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)


デジタル無線 測定ソリューション 製品紹介

J.qxd

Mott散乱によるParity対称性の破れを検証

デジタル通信を支える無線技術

1 12 ( )150 ( ( ) ) x M x 0 1 M 2 5x 2 + 4x + 3 x 2 1 M x M 2 1 M x (x + 1) 2 (1) x 2 + x + 1 M (2) 1 3 M (3) x 4 +

高速データ変換

訂正目次.PDF


スライド 1

ohgane

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

撮 影

85 4


1 7 ω ω ω 7.1 0, ( ) Q, 7.2 ( Q ) 7.1 ω Z = R +jx Z 1/ Z 7.2 ω 7.2 Abs. admittance (x10-3 S) RLC Series Circuit Y R = 20 Ω L = 100

Keysight Technologies LTE規格に準拠したトランスミッタのACLR測定

untitled

OPA134/2134/4134('98.03)

2: 3: A, f, φ f(t = A sin(2πft + φ = A sin(ωt + φ ω 2πf 440Hz A ( ( 4 ( 5 f(t = sin(2πf 1t + sin(2πf 2 t = 2 sin(2πt(f 1 + f 2 /2 cos(2πt(f 1 f

pp d 2 * Hz Hz 3 10 db Wind-induced noise, Noise reduction, Microphone array, Beamforming 1

Microsoft Word - 信号処理3.doc

熊本県数学問題正解


スライド 1

スライド 1

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k


Operation_test_of_SOFIST

9 5 ( α+ ) = (α + ) α (log ) = α d = α C d = log + C C 5. () d = 4 d = C = C = 3 + C 3 () d = d = C = C = 3 + C 3 =

IMT-Advanced Testbed Development for IMT-Advanced Radio Experiments Toshinori SUZUKI, Noriaki MIYAZAKI, and Satoshi KONISHI IMT-Advanced 3 IMT-2000 IT

1. ( ) 1.1 t + t [m]{ü(t + t)} + [c]{ u(t + t)} + [k]{u(t + t)} = {f(t + t)} (1) m ü f c u k u 1.2 Newmark β (1) (2) ( [m] + t ) 2 [c] + β( t)2

indd


untitled

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

it-ken_open.key

Keysight 89601B/BN-AYA ベクトル変調解析 VSAソフトウェア

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

AD9833: 低消費電力 20 mW 2.3 〜 5.5 V プログラマブル波形発生器

main.dvi

untitled

橡実験IIINMR.PDF


LLG-R8.Nisus.pdf

impulse_response.dvi

untitled

AC Modeling and Control of AC Motors Seiji Kondo, Member 1. q q (1) PM (a) N d q Dept. of E&E, Nagaoka Unive

PowerPoint Presentation

5988_3484JA.ppt

AN6591FJM

時間インタリーブ方式ADCシステム向け高精度クロックの生成

DAC121S101/DAC121S101Q 12-Bit Micro Power, RRO Digital-to-Analog Converter (jp)

2005 1

AN8934FA

untitled

Keysight VXAベクトル信号解析 Xシリーズ 測定アプリケーション N9064A/W9064A

1

(interferometer) 1 N *3 2 ω λ k = ω/c = 2π/λ ( ) r E = A 1 e iφ1(r) e iωt + A 2 e iφ2(r) e iωt (1) φ 1 (r), φ 2 (r) r λ 2π 2 I = E 2 = A A 2 2 +

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x

Ê u g } }{ ~ Ê Blue Tooth Ì d LAN ÊÊÊ sèííöïõöñ~ Ê Ê y ÑÔ ÑÎ ÉÈ ÑÑÒÕ LSI Ç ÌÍÍÉÆÍ ÑÑÒÕ LSI séê ÇÍÌÉt Ê LSI Ì É ÈÍÉÆÉÌÊÎ ÈÍ séæí }ÊÑÑÒÕ LSI Ê CMOS ÒÓÏÑ

PRECISION COMPACT DISC PLAYER DP-75V

数値計算:フーリエ変換

2017 (413812)

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

Transcription:

16 2 27 0044095

1 1 1 3 FPGA 2 IF 3 IF BER BER i

1 1 2 7 2.1...................... 7 2.1.1 A/D,D/A............................ 9 2.1.2 CPU............................... 10 2.2............................ 11 2.2.1............................ 11 2.2.2 Digital Down Conversion(DDC).................... 12 2.2.3 Numerical Controlled Oscillator(NCO) Mixer............ 14 2.2.4 Low Pass Filter(LPF)......................... 14 3 16 3.1................................ 16 3.1.1.............................. 16 3.1.2............................ 17 3.1.3............................... 18 3.1.4.......................... 20 3.1.5................................. 22 3.2...................................... 26 3.2.1.................... 27 3.2.2.............................. 28 3.3 IF....................... 29 3.3.1.......................... 34 3.3.2 BER................... 34 3.3.3......................... 35 3.3.4 BER......................... 37 4 41 ii

42 43 iii

1 PHS LAN (SDR:Software Defined Radio) SDR 1 ( 1.1) 1.1: 1

SDR 1 1.2 Channel 1 Channel 2 1.2: 3 [ch/hz/m 2 ] [bit/s/hz/m 2 ] 2

10 200g 1.3 (ASK:Amplitude Shift Keying) (FSK:Frequency Shift Keying) (PSK:Phase Shift Keying) A cos(ω c t) S ASK (t) = A m (t) cos(ω c t) (1.1) S FSK (t) = A cos((ω c + ω m (t))t) (1.2) S PSK (t) = A cos(ω c t + θ m (t)) (1.3) ASK FSK ASK PSK ASK FSK (C/N) 3

PSK AWGN (BER) 1.4 BER (QAM:Quadrature Amplitude Modulation) APSK PSK QAM PSK C/N BPSK QPSK π/4shiftdqpsk 16QAM 4 3 1 0 1 1 0 Am(t)cos(ωct) Acos(ωct + θm(t) ) Acos((ωc + ωm (t)) t ) 1.3: 2 4

10-2 10-3 BER 10 10-4 -5 10-6 10-7 4 6 8 10 12 14 16 18 SNR (db) 1.4: BER FPGA FPGA(Field Programable Gate Array) FPGA SRAM SRAM 1.5 HDL(Hardware Discription Language) VHDL 5

IOB Logic Block 1.5: FPGA FPGA ASIC(Application Specific Integrated Circuit) LSI ASIC FPGA ASIC FPGA 2 IF 3 IF BER BER 4 6

2 (Anarog to Digital Convertion;ADC) A/D (Digital to Anarog Convertion;DAC) D/A IF(Intermediate Frequency) 2.1 A/D 4 A/D 2.1 RF(Radio Frequency) DBF IF IF A/D IF FPGA (DDC) I,Q(In-phase,Quadrature-phase) CPU(Central Processing Unit) PC 7

RF DBF IF A/D FPGA CPU PC 2.1: 2.2 A/D,D/A CPU 2 2.3 2.2: 8

A/D,D/A D/A FPGA RF DBF IF A/D CPU FPGA CPU PC 2.3: 2.1.1 A/D,D/A 2.4 4 A/D 2 D/A 2 DAC 4 ADC 1 DAC IF D/A 14bit A/D IF ADC 12bit IF FPGA DDC A/D D/A 40MHz 9

FPGA DA1 DA2 AD1 AD2 AD3AD4AD4 2.4: A/D,D/A 2.1.2 CPU CPU Hitachi SH4 200MHz Transmission Control Protocol/Internet Protocol(TCP/IP) Ethernet port(100base-t) OS NetBSD PC 2.5 10

CPU FPGA 2.5: CPU 2.2 2.2.1 RF IF IF RF 0 DC IF 2.6 (a) RF A/D I,Q 11

RF A/D (b) RF IF A/D Low-IF I,Q IF A/D (c) IF I,Q A/D I,Q A/D (a) RF A/D RF I FPGA CPU Q Baseband (b) RF Down Conversion IF A/D IF I FPGA CPU Q Baseband (c) RF Down Conversion IF I A/D A/D Q Baseband FPGA CPU 2.6: 2.2.2 Digital Down Conversion(DDC) 40MHz 2.6 (b) Low-IF 10MHz IF 4 IF Numerical Controlled Oscillator(NCO) Mixer Low Pass Filter(LPF) Digital Down Conversion(DDC) I,Q DDC 12

2.7 A/D IF x IF (n) 90 x IF (n) =x I (n) cos ω c n + jx Q (n) sin ω c n (2.1) x I (n) x Q (n) x IF (n) I Q ω c IF x IF (n) [cos ω c n j sin ω c n] x IF (n) = x IF(n)[cos ω c n j sin ω c n] (2.2) = 1 2 [x I(n)+x I (n) cos 2ω c n jx I (n) sin 2ω c n jx Q (n)+x Q (n) sin 2ω c n + jx Q (n) cos 2ω c n] (2.3) x IF (n) LPF x LP F (n) = 1 2 [x I(n) jx Q (n)] (2.4) IF I,Q DDC 2.7 cos (ωc n) LPF xi (n) x(n) IF A/D NCO LPF - jsin (ωc n) xq (n) f c f c f s f c 2 f c 2.7: Digital Down Conversion 13

2.2.3 Numerical Controlled Oscillator(NCO) Mixer DDC 2.7 LO sin,cos NCO Mixer NCO 2.8 cos ωn = {1, 0, 1, 0}, sin ωn = {0, 1, 0, 1} Mixer IF I,Q CLK (4 IF) x(n) -1-1 x(n) 0 - x(n) 0 0 - x(n) 0 x(n) I Q x(n) cos( 2π n) 4 2π x(n) -sin( n) 4 x(n) x(n-3) -x(n-2) x(n-1) x(n) 2π x(n) cos( n) 4 2π x(n) -sin( n) 4 x(n-3) 0 -x(n-1) 0 0 -x(n-2) 0 x(n) 2.8: NCO Mixer 2.2.4 Low Pass Filter(LPF) 2.3 2.4 NCO Mixer I,Q 2.7 I,Q LPF LPF FIR(Finite Impulse Response) 8 8 y(n) = h(n)x(n) (2.5) n=1 14

y(n) x(n) h(n) FIR 2.9, 2.10 140 120 100 Time Step 80 60 40 20 0 1 2 3 4 5 6 7 8 Time Step 2.9: LPF 60 Time Step 40 Magnitude (db) 20 0 Time Step -20-40 0 2 4 6 8 10 12 14 16 18 20 Frequency (MHz) 2.10: LPF 15

3 I,Q CPU IF IF 3.1 D/A IF D/A IF IF MATLAB 3.1.1 3.1 bit 2bit S/P(Serial to Parallel) BPSK QPSK π/4dqpsk 16QAM LO IF DAC IF A/D ADC IF IF NCO LO I,Q LPF I,Q 16

CPU P/S(Parallel to Serial) BPSK S/P,P/S I,Q Binary Data Serial/Parallel (2bit) BPSK : Serial Maping QPSK π/4shiftdqpsk BPSK 16QAM Filtering (Up Sampling) NCO D/A Binary Data Parallel/Serial (2bit) BPSK : Serial Demaping Filtering A/D NCO 3.1: 3.1.2 D/A IF 1 A/D D/A D/A A/D BPSK QPSK π/4dqpsk 16QAM 3.2 BPSK Sync (32 bit) Data (104 bit) QPSK π/4dqpsk Sync (32 bit) Sync (32 bit) Data (240 bit) Data (240 bit) 136 symbol 16 QAM Sync (32 bit) Data (512 bit) 3.2: 17

32bit 1 bit 136 ( 3.1) 3.1: bit, symbol, frame [bit/symbol] [bit/frame] [symbol/frame] BPSK 1 136 136 QPSK 2 272 136 π/4dqpsk 2 272 136 16QAM 4 544 136 3.1.3 3.1 1 bit bit BPSK 3.3 1bit (0,1) (0,π) 2 QPSK 2bit (00,01,11,10) (π/4, 3π/4, 3π/4, π/4) 4 3.4 π/4dqpsk 2bit (00,01,11,10) (π/4, 3π/4, 3π/4, π/4) 3.5 16QAM 1 4bit QPSK (00,01,11,10) 2bit I Q I,Q (-3,-1,1,3) 4 3.6 18

Q Q 01 1 00 1-1 0 1 I -1 1 I 11-1 10 3.3: BPSK 3.4: QPSK -1 1 01 Q 11 00 10 1 I Q 3 1-3 -1 1 3-1 10 11 01 I -1 3.5: π/4dqpsk -3 00 01 11 10 3.6: 16QAM 00 19

3.1.4 2 (ISI:Inter Symbol Interference) ISI T ( 0) 2MHz 40MHz D/A 20 MATLAB α=0.5 2 81 20 20 20 3.7 I,Q 1 19 0 3.8 3.9 Amplitude 1 0-1 [2MHz] t (Sample) [40MHz] 3.7: 20

1 0.8 Amplitude 0.6 0.4 Magnitude (db) 0.2 0-0.2 0 10 20 30 40 50 60 70 80 40 20 0-20 -40-60 -80 Time (sample) 3.8: -100 0 2 4 6 8 10 12 14 16 18 20 Freqency [MHz] 3.9: 21

3.1.5 BPSK BPSK 1bit (1,0) NRZ(NonReturn to Zero) (-1,1) Q 3.3 3.1.4 136bit 2720 3.10 BPSK I(n) IF x IF,BP SK (n) x IF,BP SK (n) = exp (jω c n) I(n) (3.1) = I(n) cos ω c n + ji(n) sin ω c n (3.2) IF 3.2 Re[x IF,BP SK (n)] = I(n) cos ω c n (3.3) (1, 0) NRZ (-1, 1) LPF I (n) cos (ωc n) xif (n) NRZ : NonReturn to Zero NCO 3.10: BPSK QPSK QPSK 3.11 QPSK S/P 2bit 2bit 1 3.2 Gray 3.4 BPSK 20 272bit 2720 22

3.2: QPSK 2bit Gray Gray 00 00 π/4 01 01 3π/4 10 11-3π/4 11 10 -π/4 QPSK I,Q I(n)+jQ(n) IF x IF,QP SK (n) x IF,QP SK (n) = exp (jω c n) (I(n)+jQ(n)) (3.4) = I(n) cos ω c n Q(n) sin ω c n + j(i(n) sin ω c n + Q(n) cos ω c n) (3.5) IF 3.5 Re[x IF,QP SK (n)] = I(n) cos ω c n Q(n) sin ω c n (3.6) Gray (-1, 1) LPF I (n) cos (ωc n) (1, 0) S / P (-1, 1) LPF Q (n) NCO -sin (ωc n) xif (n) 3.11: QPSK π/4dqpsk π/4dqpsk 3.12 QPSK S/P 2bit 10 π/4 23

20 2720 I,Q n θ n θ n = ± π 4, ±3 4 π (3.7) n θ n φ 0 10 m n =(0, 1, 2, 3) θ n θ n = θ n 1 + m n 2 π + φ 0 (3.8) = θ 0 + π n m i + n 2 i=1 4 π (3.9) = θ n + n 4 π (3.10) n 1 θ n = θ 0 + π m i + m n 2 i=1 2 π (3.11) = θ n 1 + π 2 m n (3.12) x(n) x(n) = exp (jθ n ) exp (j k π)=i(n)+jq(n) (3.13) 4 (3.14) I(n)+jQ(n) IF x IF,π/4 (n) 3.4 x IF,π/4 (n) = I(n) cos ω c n Q(n) sin ω c n + j(i(n) sin ω c n + Q(n) cos ω c n) (3.15) IF 3.6 Re[x IF,π/4 (n)] = I(n) cos ω c n Q(n) sin ω c n (3.16) 24

LPF I (n) cos (ωc n) (1, 0) S / P LPF NCO xif (n) Q (n) -sin (ωc n) 3.12: π/4dqpsk 16QAM 16QAM 3.13 3.11 QPSK 2bit S/P QPSK I Q 1bit 2bit 1 16QAM I Q 2bit 4bit 1 I,Q 4 16 I,Q 3.3 Gray 3.6 544bit 2720 I,Q 3.3: 16QAM 2bit Gray 2bit 2bit 00-3 00-3 01-1 01-1 11 1 11 1 10 3 10 3 16QAM I,Q QPSK IF IF IF 3.4, 3.6 x IF,QAM (n) = I(n) cos ω c n Q(n) sin ω c n + j(i(n) sin ω c n + Q(n) cos ω c n) (3.17) 25

Re[x IF,QAM (n)] = I(n) cos ω c n Q(n) sin ω c n (3.18) Gray LPF I (n) cos (ωc n) (1, 0) S / P -3, -1, 1, 3) LPF Q (n) NCO -sin (ωc n) xif (n) 3.13: 16QAM FPGA FPGA 3.1.5 IF Re[x IF (n)] MATLAB D/A 14bit Re[x IF (n)] Re[x IF (n)] = floor( Re[x IF(n)] (2 13 1) + 2 13 ) (3.19) M floor 0 MATLAB M Re[x IF (n)] Re[x IF (n)] M (2 13-1) +2 13 0 1 2 14 1 3.2 A/D FPGA ADC IF 2.7 DDC I,Q 26

FPGA CPU 3.2.1 D/A 16 3.14 x Ref 1 Sync cor i r x i x i x i r cor i = (3.20) (x i x i ) (r r ) 3.20 cor i 3.15 20 Ref x r x1 x2 Sync Data xi 27

3.14: Correlation Coefficient 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 10 20 30 40 50 60 70 80 90 100 Sample Index 3.15: 3.2.2 2720 136 I,Q 3.16 3.1.3 π/4dqpsk 1 16QAM I,Q 2bit 4bit 28

Q Q 01 00 1 0 I I 11 10 BPSK QPSK Q Q 01 00 11 10 I 10 11 I 01 π/4dqpsk 3.16: 00 01 11 10 16QAM 00 3.3 IF 3.17 D/A A/D IF 29

ADC:40MHz IF 10MHz A/D FPGA CPU BPSK DDC FIFO Frame QPSK Sync π/4dqpsk 16QAM 2720 samples 136 symbols Decoding Decoding Decoding Decoding D/A DAC:40MHz Modulation Data PC 3.17: IF Demodulation Data 1 BPSK QPSK π/4dqpsk 16QAM IF D/A A/D IF DDC D/A 14bit MATLAB 3.18 D/A D/A IF A/D IF ADC DDC I,Q 3.18 I,Q 30

I,Q I,Q A/D,D/A 3.18: A/D,D/A 14bit IF A/D 12bit ADC 10MHz (NCO) QPSK 3.19 3.20 LPF I,Q 3.21 3.22 3.4 3.22 3.16 2bit 31

Amplitude 2500 2000 1500 1000 500 0-500 -1000-1500 -2000-2500 0 50 100 150 200 250 300 Time [sample] 3.19: NCO I,Q In-phase Quadrature Amplitude 2500 2000 1500 1000 500 0-500 -1000-1500 -2000-2500 0 50 100 150 200 250 300 Time [sample] 3.20: LPF I,Q In-phase Quadrature 32

2000 1500 Amplitude (Quadrature) 1000 500 0-500 -1000-1500 -2000-2000 -1500-1000 -500 0 500 1000 1500 2000 Amplitude (In-phase) 3.21: I,Q Amplitude (Quadrature) 2000 1500 1000 500 0-500 -1000-1500 -2000-2000 -1500-1000 -500 0 500 1000 1500 2000 Amplitude (In-phase) 3.22: I,Q 33

3.3.1 D/A A/D 3.1.2 D/A 20 BPSK QPSK π/4dqpsk 16QAM 2720 3.3.2 BER IF 3.23 3.24 0 1 (AWGN:Additive White Gaussian Noise) DDC IF SNR per bit(e b /N 0 ) BER(Bit Error Rate) E b bit N 0 AWGN S T, bb IF D/A A/D DDC S R, bb 3.23: 34

12000 10000 8000 6000 4000 2000 0-5 -4-3 -2-1 0 1 2 3 4 5 Histogram 3.24: AWGN 3.3.3 3.3 3.6 2 BER 3.25 16QAM A A D/A A/D 3.19 M M M max A/D I,Q 3.26 3.25 35

Q Q A I A I BPSK QPSK Q Q A I A I π/4dqpsk 16QAM 3.25: 36

BPSK QPSK π/4dqpsk 16QAM 3.26: A/D I,Q 3.3.4 BER A E b /N 0 BER BPSK A/D BPSK I,Q x i,x q x i = u i + n i0, x q = 0 (3.21) 37

u i n i0 n i AWGN AD AWGN P s P N0 P N P s = E[u i 2 ]+E[n i0 2 ] (3.22) P N0 = E[n i0 2 ]=σ 0 2 P N = E[n i 2 ]=σ N 2 (3.23) (3.24) σ 0 σ N AWGN σ 2 = σ 2 0 + σ 2 N BPSK SNR SNR BPSK = P s P N0 P N0 + P N = A 2 σ 02 + σ N 2 = A2 σ 2 = 2E s N 0 (3.25) E s 1 E s = E b = A 2 (E b /N 0 ) BPSK (E b /N 0 ) BPSK = 1 2 SNR BPSK = 1 P s P N0 (3.26) 2 P N0 + P N 3.26 P s,p N 0 A/D I,Q E b /N 0 [db] P N 3.24 AWGN σ N A/D E b /N 0 [db] BER QPSK,π/4DQPSK BPSK x i = u i + n i0, x q = u q + n q0 (3.27) P s = E[u i 2 + u q 2 ]+E[n i0 2 + n q0 2 ] (3.28) P N0 = E[n i0 2 + n q0 2 ]=2σ 0 2 (3.29) P N = E[n i 2 + n 2 q ]=2σ N 2 (3.30) SNR QP SK = P s P N0 P N0 + P N = A 2 2σ 02 +2σ N 2 = A2 2σ 2 = E s N 0 (3.31) QPSK E s =2E b = A 2 (E b /N 0 ) QP SK (E b /N 0 ) QP SK = 1 2 SNR QP SK = 1 P s P N0 (3.32) 2 P N0 + P N 38

QPSK 3.32 BPSK P N 3.30 σ N E b /N 0 [db] BER π/4dqpsk QPSK 3.32 BER 16QAM 16QAM QPSK SNR SNR 16QAM = P s P N0 P N0 + P N = A 2 2σ 02 +2σ N 2 = A2 2σ 2 = E s N 0 (3.33) E s =4E b = A 2 3.32 16QAM SNR(E b /N 0 ) (E b /N 0 ) 16QAM = 1 4 SNR 16QAM = 1 P s P N0 (3.34) 4 P N0 + P N 16QAM 3.34 BPSK,QPSK P N P N = E[n 2 i ]=σ 2 N σ N E b /N 0 [db] BER BER 3.27 AWGN 3.27 BER P N,BPSK (γ) = 1 2 erfc( γ) (3.35) P N,QP SK (γ) = 1 2 erfc( γ) (3.36) P N,π/4DQP SK (γ) = erfc( γ) (3.37) P N,16QAM (γ) = 3 2 8 erfc( 5 γ) 9 2 64 erfc2 ( γ) (3.38) 5 γ = A 2 /2σ 2 1bit erfc erfc(x) = 2 e t2 dt (3.39) π 3.27 BPSK QPSK π/4dqpsk 16QAM BER x 39

AWGN BER 10 0 10-1 10-2 BER 10-3 10-4 10-5 Theory BPSK Measured BPSK Theory QPSK Measured QPSK Theory π/4 DQPSK Measured π/4 DQPSK Theory 16QAM Measured 16QAM -5-3 -1 1 3 5 7 9 11 13 15 SNR per bit (Eb/No) (db) BER 3.27: Bit Error Rate 40

4 SDR A/D,D/A BOX A/D D/A FPGA CPU Low-IF IF DDC I,Q A/D,D/A BOX IF D/A BER BER BPSK QPSK π/4dqpsk 16QAM BER AWGN BER 4 IF RF 41

D2 (Minseok Kim), 42

[1], Blind B Vol. J84-B No.7 pp.1151-1162 2001 7. [2],,. CS,, Vol. 98 Num. 650 pp.31-38 (1999.03) [3],,. SAT,, Vol. 101 Num. 540 pp.25-30 (2002.01) [4],,. DSP,, Vol. 97 Num. 582 pp.29-36 (1998.03) [5] S Mukthavaram, Design and FPGA Implementation of an Adaptive Demodulator,B.S.E.E Osmania University, Hyderabad, India, 1997 [6] S.S. JENG, S.M. CHANG, B.S. LAN, Multi-Mode Digital IF Downconverter for Software Radio Application,IEICI TRANS. COMMUN., VOL.E86-B, NO.12, pp.3498-3511, DEC. 2003. [7], A Study of Implementation of Digital Signal Processing for Adaptive Array Antenna, 14 2. [8], 15 2. [9], 15 2. [10],, 14 2. 43

[11], [12],,MWE 2003 Microwave Workshop Digest. [13], [14], [15], [16] Inter face, CQ, 2001 10. 44