Microsoft Word - 学士論文(表紙).doc

Similar documents
LD

飽和分光

85 4

吸収分光.PDF

Microsoft PowerPoint - 山形大高野send ppt [互換モード]

c 2009 i

Gmech08.dvi

1 Visible spectroscopy for student Spectrometer and optical spectrum phys/ishikawa/class/index.html

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

修士論文

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

第3章


m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

空気の屈折率変調を光学的に検出する超指向性マイクロホン

Xray.dvi

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

2 1 1 α = a + bi(a, b R) α (conjugate) α = a bi α (absolute value) α = a 2 + b 2 α (norm) N(α) = a 2 + b 2 = αα = α 2 α (spure) (trace) 1 1. a R aα =

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

Note.tex 2008/09/19( )

Chap9.dvi

Gmech08.dvi

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

4‐E ) キュリー温度を利用した消磁:熱消磁

TOP URL 1

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

TOP URL 1

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

14 2 5

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

q π =0 Ez,t =ε σ {e ikz ωt e ikz ωt } i/ = ε σ sinkz ωt 5.6 x σ σ *105 q π =1 Ez,t = 1 ε σ + ε π {e ikz ωt e ikz ωt } i/ = 1 ε σ + ε π sinkz ωt 5.7 σ

TOP URL 1

PDF

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

untitled

Part () () Γ Part ,

LCR e ix LC AM m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x (k > 0) k x = x(t)

ẍ = kx, (k > ) (.) x x(t) = A cos(ωt + α) (.). d/ = D. d dt x + k ( x = D + k ) ( ) ( ) k k x = D + i D i x =... ( ) k D + i x = or ( ) k D i x =.. k.



untitled

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

2000年度『数学展望 I』講義録

( ) e + e ( ) ( ) e + e () ( ) e e Τ ( ) e e ( ) ( ) () () ( ) ( ) ( ) ( )

OHO.dvi


tnbp59-21_Web:P2/ky132379509610002944

chap03.dvi

研修コーナー

パーキンソン病治療ガイドライン2002

untitled

本文/目次(裏白)

[ ] [ ] [ ] [ ] [ ] [ ] ADC

keisoku01.dvi

untitled

基礎数学I

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,


V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H


振動工学に基礎

main.dvi

5 c P 5 kn n t π (.5 P 7 MP π (.5 n t n cos π. MP 6 4 t sin π 6 cos π 6.7 MP 4 P P N i i i i N i j F j ii N i i ii F j i i N ii li i F j i ij li i i i

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ

スライド タイトルなし

Undulator.dvi

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s


橡実験IIINMR.PDF

r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t

all.dvi

5. 5.1,, V, ,, ( 5.1), 5.2.2,,,,,,,,,, 5.2.3, 5.2 L1, L2, L3 3-1, 2-2, 1-3,,, L1, L3, L2, ,,, ( 5.3),,, N 3 L 2 S L 1 L 3 5.1: 5.2: 1

Microsoft PowerPoint - 02_資料.ppt [互換モード]

『共形場理論』

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

: α α α f B - 3: Barle 4: α, β, Θ, θ α β θ Θ

news


18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α


pdf

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

Euler Appendix cos, sin 2π t = 0 kx = 0, 2π x = 0 (wavelength)λ kλ = 2π, k = 2π/λ k (wavenumber) x = 0 ωt = 0, 2π t = 0 (period)t T = 2π/ω ω = 2πν (fr

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

,.,. 2, R 2, ( )., I R. c : I R 2, : (1) c C -, (2) t I, c (t) (0, 0). c(i). c (t)., c(t) = (x(t), y(t)) c (t) = (x (t), y (t)) : (1)

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

I 1


x E E E e i ω = t + ikx 0 k λ λ 2π k 2π/λ k ω/v v n v c/n k = nω c c ω/2π λ k 2πn/λ 2π/(λ/n) κ n n κ N n iκ k = Nω c iωt + inωx c iωt + i( n+ iκ ) ωx

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

振動と波動

35

0.1 I I : 0.2 I

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

Transcription:

GHz 18 2

1 1 3 1.1....................................... 3 1.2....................................... 3 1.3................................... 3 2 (LDV) 5 2.1................................ 5 2.2....................... 6 2.3 LDV............................... 7 2.4 LDV.............................. 8 3 9 3.1.................................. 9 3.2 (AOM)............................. 9 3.3.................................. 10 3.4 (EOM)............................. 12 4 13 4.1 FBG(Fiber Bragg Grating)........................ 13 4.2....................................... 13 5 16 5.1................................ 16 5.2.............................. 17 5.2.1.................... 17 5.2.2................ 19 6 LDV 20 6.1...................................... 20 6.2 3 db................................... 22 7 LDV 24 7.1................................ 24 7.2............................ 24

2 7.3 SAW.............................. 26 8 27 9 28 10 29 30 31 A 32

3 1 1.1 LAN ID SAW 100 MHz5 GHz [1] (LDV) 1.2 LDV 20 MHz LDV (AOM) LDV AOM AOM (EOM) 10 GHz GHz(3 GHz ) LDV 1.3 1 2 (LDV) 34 5 6 LDV

1 4 7 8910

5 2 (LDV) 2.1 v(t) v(t) ν 0 ν l 0 E(t) = E cos{ν 0 t k 0 nl 0 } (2.1) k 0 n l E(t) = E cos{ν 0 t 2k 0 nl} (2.2) v(t) l l = l 0 v(t)dt (2.3) E(t) = E cos{ν 0 t 2k 0 n(l 0 v(t)dt)} = E cos{ (ν 0 + 2k 0 nv(t))dt 2k 0 nl 0 } = E cos{ (ν 0 + 4πn λ v(t))dt 2k 0nl 0 } (2.4) λ ν = ν 0 + 4πn v(t) (2.5) λ

2 (LDV) 6 (2.5) n = 1 c ν = ν 0 + 4π λ v(t) = ν 0 + 2v(t) ν 0 c = ν 0 + 2v(t) c v(t) ν 0 = c + v(t) c v(t) ν 0 (2.6) ν (2.6) ν = ν ν 0 = 2v(t) c v(t) ν 0 2v(t) ν 0 c = 2v(t) (c v(t)) λ (2.7) 2.2 ν v(t) = V 0 sin ωt ν ν = ν 0 + ν = ν 0 + 2V 0 λ sin ωt (2.8) (FM) 2V 0 λ 0 m f = 2V 0 λf FM f = ω 2π a 0 V 0 = a 0 ω m f m f = 2v 0 λf = 4πV 0 λω = 4πa 0 λ (2.9)

2 (LDV) 7 f m f J n (m f ) = J n ( 4π λ a 0) 2.3 LDV Fig.2.1 LDV V ν ν = 2V c V ν 2V λ (2.10) E 1 E 2 E 1 = A 1 cos(2πνt 2π νt + φ) (2.11) E 2 = A 2 cos(2πνt) (2.12) φ i E 1 + E 2 2 = A2 1 2 + A2 2 2 + A 1A 2 cos(2π νt φ) (2.13) ν Mirror from laser E 2 V Half Mirror E1 Photo Detector Fig. 2.1:

2 (LDV) 8 2.4 LDV LDV E 2 f B E 2 = A 2 cos(2πνt 2πf B t) (2.14) i E 1 + E 2 2 = A2 1 2 + A2 2 2 + A 1A 2 cos(2π(f B + ν)t φ) (2.15) f B ν FM ν f B from laser Mirror E 2 Modulator Half Mirror E1 Photo Detector Fig. 2.2: LDV

9 3 (EO) (AO) 3.1 n n(z, t) = n sin(ω s t k s z) (3.1) (v s ω s k s v s = ω s k s ) θ OA+OB λ θ 2λ s sin θ = λ (3.2) L >> λ s 2 λ 3.2 (AOM) (AOM) TeO 2 PbMoO 4 (LiNbO 3 ) Λ f v Λ = v f y Λ L -

3 10 f B f B Fig. 3.1: (AOM) n(z, t) = n 0 + n sin(ωt Kz) (3.3) Ω K y E(y, z, t) = E 0 sin[ωt (n 0 + n sin(ωt Kz)) 2π λ y] (3.4) E(y, z, t) = E 0 m Jm ( 2π λ nl) sin[(ω + mω)t (2π λ y + 2πm z)] (3.5) Λ - ω + mω 3.3 E = E 0 e i(k r ωt) (3.6)

3 11 Fig. 3.2: (3.7) i = x, y, z D m = D i m i = 0 m 2 x 1/n 2 1/ɛ x + D = ɛ 0 n 2 {E m(m E)} (3.7) D i = ɛ 0 n 2 { D i ɛ 0 ɛ i m i (m E)} (3.8) D i m i = m2 i ɛ 0(m E) 1/n 2 1/ɛ i (3.9) m 2 y 1/n 2 1/ɛ y + m 2 z 1/n 2 1/ɛ z = 0 (3.10) m, x, y, z v, v x, v y, v z n, n x, n y, n z v = c 0 n y = 1 ε 0 µ 0 ε i = ( C0 n i (3.11) ) 2 (3.12) () m 2 x v 2 v 2 x + m2 y v 2 v 2 y + m2 z v 2 v 2 z = 0 (3.13) m 2 x(v 2 v 2 y)(v 2 v 2 z) + m 2 y(v 2 v 2 z)(v 2 v 2 x) + m 2 z(v 2 v 2 x)(v 2 v 2 y) = 0 (3.14) v 2 m

3 12 ε x = ε y ε z v x = v y = v 0 v x = v e (v 2 v0){(m 2 2 x + m 2 y)(v 2 ve) 2 + m 2 z(v 2 v0)} 2 = 0 (3.15) m φ m 2 x + m 2 y + m 2 z = 1 m 2 x + m 2 y = sin 2 φ (3.16) m 2 z = sin 2 φ (3.17) (3.15) v 2 1 = v 2 0 (3.18) v 2 2 = v 2 e sin 2 φ + v 2 0 cos 2 φ (3.19) δ 3.4 (EOM) LiNbO 3 z x y y z

13 4 4.1 FBG(Fiber Bragg Grating) FBG FBG Bragg Bragg FBG λ = 2nΛ (4.1) λ (Bragg ) Λ n Bragg R B λ B L n R B = tanh 2 ( πl nη ) (4.2) λ B λ B = { λ2 B πnl } π 2 + ( π nl ) λ 2 (4.3) B η z 0 z L n(z) n(z) = n 0 + n cos(kz)k = 2π/Λ (4.4) n 0 n Λ Bragg λ B 4.2 FBG Fig.4.1 SLD Fig.4.2

4 14 (a) (b) Fig. 4.1: FBG (a) (b) (25 ) (a-1) (b-1) (a-2) (b-2) Fig. 4.2: FBG (a-1, 2) (b-1, 2) (16.3 )

4 15 (a) (b) Fig. 4.3: FBG (a) (b) (17.2 ) FBG Fig.4.3

16 5 5.1 Fig.2.1 1 V p p Mirror from laser E2 f Half Mirror Photo Detector E1 Function generator Oscilloscope Fig. 5.1: 8 Hz 15 khz 8 Hz 10 khz φ (2.13) φ φ (1)(2)(3) LDV

5 17 Fig. 5.2: i (1) (2) (3) [rad.] Fig. 5.3: 5.2 5.2.1 Fig.5.4 19.90 MHz (SAW) PZT 10 khz φ 6 V p p 50 nm SAW 10 khz 10 khz 1 ms A sin φa cos φ A = A 2 (sin 2 φ + cos 2 φ) Fig.5.5 10 khz 19.90 MHz

5 18 Fig. 5.4: (: SAW (19.90 MHz)) Fig. 5.5: SAW (19.90 MHz)

5 19 5.2.2 10 khz 19.90 MHz 10 khz6 V p p -48.6 dbm 50 nm Fig. 5.6 Fig. 5.6: SAW (19.90 MHz)

20 6 LDV 6.1 Fig. 6.1 FBG (1) (2) Faraday Rotator Laser ω 10 GHz Phase Modulator ω Circulator 3 db Coupler 10 GHz Amp. f 10 GHz Oscillator (3) f ω (4) 10 GHz ω Polarized wave Controller Sample Circulator Faraday Rotator FC connector 3 db Coupler Local Oscillator 9 GHz 10GHz P.D. beat DBM DC2 GHz Fig. 6.1: EOM FBG LDV Fig. 6.2

6 LDV 21 Fig. 6.2: EOM FBG LDV()

6 LDV 22 Fig. 6.3 1547.04 nm FBG Fig. 4.3-19 dbm f B f B f B Fig. 6.3: 6.2 3 db 3 db Fig. 6.4 Fig. 6.4: 3 db

6 LDV 23 3 db 2 1 3 4 3 db(50 )

24 7 LDV 7.1 1 GHz SAW (Fig. 7.1) Fig. 7.1: (1 GHz) 7.2 f B =1 GHz f B + ν 1 2 J 0 J 1 A 20 khz PZT LDV hold Fig. 7.2Fig. 7.3 1 2 Fig. 7.3 FBG 10 GHz FC 10 GHz 10 GHz 1 GHz

7 LDV 25 Fig. 7.2: PZT (20kHz) Fig. 7.3: PZT (10kHz)

7 LDV 26 1 2 0 1 7.3 SAW SAW φ = 160µm SAW 20 MHz 100 µm 20 Fig. 7.4 0.01 mm Fig. 7.4: SAW (19.90 MHz)(a)28.46V p p (b)56.92v p p

27 8 φ φ SAW 200 LDV 10kHz 20 khz LDV 1 2 0 1 LDV SAW 19.90 MHz 0.01 mm SAW

28 9 LDV J n (x) x a 0

29 10 FM

30 [1],,1976.10,Tokyo [2],,1987.4,Tokyo [3],,1986.7,Tokyo [4],,2000.2,Tokyo [5] Y.Yeh,H.Z.Cummins.Localized Fluid Flow Measurements with An He-Ne Laser Spectrometer.Apl.Phys.Let,Vol. 4,No. 10,1964 [6] H.Z.Cummins,N.Knable.Single Sideband Modulation of Coherent Light by Bragg Reflection from Acoustical Waves.Proc.IEEE,p.1264;Septempber [7],2001.2 [8],2003.2 [9],,2005.2 [10],,2001.2 [11],,2003.2 [12] SAW,,2002.2

31

32 A ν = ν 0 + ν = ν 0 + 2V 0 λ sin ωt (A.1) 2V 0 λ m f = 2V 0 λf = 4πV 0 λω (A.2) (f ) p sin(α + β) = sin α cos β + cos α sin β (A.3) i = I c sin(ωt + m f sin pt) = I c [sin ωt cos(m f sin pt) + cos ωt sin(m f sin pt)] (A.4) cos(m f sin pt) sin(m f sin pt) cos(m f sin pt) = J 0 (m f ) + 2J 2 (mf) cos(2pt) + sin(m f sin pt) = 2J 1 (m f ) sin pt + 2J 3 (m f ) sin(3pt) + (A.5) (A.6) sin α cos β = 1 {sin(α + β) + sin(α β)} 2 (A.7) cos α sin β = 1 {sin(α + β) sin(α β)} 2 (A.8) (A.4) i = I c [J 0 (m f ) sin ωt+j 1 (m f ){sin(ω+p)t sin(ω p)t}+2j 2 (m f ){sin(ω+2p)t sin(ω 2p)t}+ ] (A.9) np(n ) J n

A 33 0 1 J 0 (x) J 1 (x) m f = x (A.2) a 0 Fig. A.1 Fig. A.1: