G (n) (x 1, x 2,..., x n ) = 1 Dφe is φ(x 1 )φ(x 2 ) φ(x n ) (5) N N = Dφe is (6) G (n) (generating functional) 1 Z[J] d 4 x 1 d 4 x n G (n) (x 1, x 2

Similar documents
φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1)

2017 II 1 Schwinger Yang-Mills 5. Higgs 1

6 6.1 L r p hl = r p (6.1) 1, 2, 3 r =(x, y, z )=(r 1,r 2,r 3 ), p =(p x,p y,p z )=(p 1,p 2,p 3 ) (6.2) hl i = jk ɛ ijk r j p k (6.3) ɛ ijk Levi Civit

TOP URL 1

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

Introduction SFT Tachyon condensation in SFT SFT ( ) at 1 / 38

Gmech08.dvi

meiji_resume_1.PDF

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

0 ϕ ( ) (x) 0 ϕ (+) (x)ϕ d 3 ( ) (y) 0 pd 3 q (2π) 6 a p a qe ipx e iqy 0 2Ep 2Eq d 3 pd 3 q 0 (2π) 6 [a p, a q]e ipx e iqy 0 2Ep 2Eq d 3 pd 3 q (2π)

Kroneher Levi-Civita 1 i = j δ i j = i j 1 if i jk is an even permutation of 1,2,3. ε i jk = 1 if i jk is an odd permutation of 1,2,3. otherwise. 3 4

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

TOP URL 1

q quark L left-handed lepton. λ Gell-Mann SU(3), a = 8 σ Pauli, i =, 2, 3 U() T a T i 2 Ỹ = 60 traceless tr Ỹ 2 = 2 notation. 2 off-diagonal matrices

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d )

第10章 アイソパラメトリック要素

ohpr.dvi

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

第1章 微分方程式と近似解法

0. Intro ( K CohFT etc CohFT 5.IKKT 6.

TOP URL 1

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ

73

0406_total.pdf

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

Part () () Γ Part ,

,., 5., ,. 2.2,., x z. y,.,,,. du dt + α p x = 0 dw dt + α p z + g = 0 α dp dt + pγ dα dt = 0 α V dα dt = 0 (2.2.1), γ = c p /c

0201

SO(2)

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

keisoku01.dvi

6 6.1 B A: Γ d Q S(B) S(A) = S (6.1) T (e) Γ (6.2) : Γ B A R (reversible) 6-1

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2


all.dvi

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

untitled

chap03.dvi

日本統計学会誌, 第44巻, 第2号, 251頁-270頁

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

B ver B

中央大学セミナー.ppt

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m

50. (km) A B C C 7 B A 0

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + (

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

C : q i (t) C : q i (t) q i (t) q i(t) q i(t) q i (t)+δq i (t) (2) δq i (t) δq i (t) C, C δq i (t 0 )0, δq i (t 1 ) 0 (3) δs S[C ] S[C] t1 t 0 t1 t 0

all.dvi

main.dvi


AHPを用いた大相撲の新しい番付編成

( ) (ver )


A

³ÎΨÏÀ


No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

i 18 2H 2 + O 2 2H 2 + ( ) 3K

2 R U, U Hausdorff, R. R. S R = (S, A) (closed), (open). (complete projective smooth algebraic curve) (cf. 2). 1., ( ).,. countable ( 2 ) ,,.,,

30

linearal1.dvi

Feynman Encounter with Mathematics 52, [1] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull

i

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

Report10.dvi

note1.dvi

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

untitled

II

: , 2.0, 3.0, 2.0, (%) ( 2.

Introduction 2 / 43


,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.


基礎数学I

液晶の物理1:連続体理論(弾性,粘性)

( )

all.dvi

1 α X (path) α I = [0, 1] X α(0) = α(1) = p α p (base point) loop α(1) = β(0) X α, β α β : I X (α β)(s) = ( )α β { α(2s) (0 s 1 2 ) β(2s 1) ( 1 2 s 1)

arxiv: v1(astro-ph.co)

数値計算:有限要素法

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

untitled

02-量子力学の復習

現代物理化学 2-1(9)16.ppt

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

CVMに基づくNi-Al合金の

TOP URL 1

Euler, Yang-Mills Clebsch variable Helicity ( Tosiaki Kori ) School of Sciences and Technology, Waseda Uiversity (i) Yang-Mills 3 A T (T A) Poisson Ha

( )/2 hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

i x- p

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α


09RW-res.pdf

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

Transcription:

6 Feynman (Green ) Feynman 6.1 Green generating functional Z[J] φ 4 L = 1 2 µφ µ φ m 2 φ2 λ 4! φ4 (1) ( 1 S[φ] = d 4 x 2 φkφ λ ) 4! φ4 (2) K = ( 2 + m 2 ) (3) n G (n) (x 1, x 2,..., x n ) = φ(x 1 )φ(x 2 ) φ(x n ) = 0 T (φ(x 1 )φ(x 2 ) φ(x n ) 0 (4) qft1-6-1

G (n) (x 1, x 2,..., x n ) = 1 Dφe is φ(x 1 )φ(x 2 ) φ(x n ) (5) N N = Dφe is (6) G (n) (generating functional) 1 Z[J] d 4 x 1 d 4 x n G (n) (x 1, x 2,..., x n ) n! n=0 (ij(x 1 ))(ij(x 2 )) (ij(x n )) = 1 Dφ exp (is[φ] + ij φ) (7) N J φ d 4 xj(x)φ(x) (8) φ J (1/i)(δ/δJ(x)) φ(x) Z[J] qft1-6-2

Z[J] = 1 + Z[J] : J J + + + J J J J λ Z[J] λ free S 0 [φ] = d 4 x 1 ( ( φ) 2 m 2 φ 2) 2 = d 4 x 1 2 φ( 2 m 2 )φ (9) S I [φ] = λ d 4 xφ(x) 4 (10) 4! ( 1/N ) generating functional Z 0 [J] Z 0 [J] = Dφ exp (is 0 [φ] + ij φ) (11) J J qft1-6-3

φ : 1 2 φkφ + J φ = 1 2 (φ + K 1 J)(φ + K 1 J) 1 2 JK 1 J (12) ( Z 0 [J] = exp i ) 2 JK 1 J (13) K 1 (x, y) = F (x y) Feynman propagator ( 2 + m 2 iɛ)k 1 (x, y) = δ 4 (x y) K 1 d 4 p (x y) = (p)e ip (x y) (2π) 4K 1 K 1 (p) = 1 p 2 m 2 + iɛ δ/δ(ij) φ Z[J] (14) qft1-6-4

[ ] δ Z[J] = G F [ij] (15) [ ] δ(ij) δ G = exp (is I [δ/δ(ij)]) (16) δ(ij) ( ) i F [ij] = exp 2 (ij) F (ij) = Z 0 [J] = free part (17) S I Feynman diagram [ ] [ ] δ δ G F [ij] = G F [ij]e ijφ (18) δ(ij) δ(ij) φ=0 [ ] [ ] [ ] δ G F [ij]e ij φ δ δ = G F e ij φ (19) δ(ij) δ(ij) δφ qft1-6-5

G F [ ] [ ] [ ] δ δ δ = F G e ij φ = F G[φ]e ij φ (20) δφ δ(ij) δφ [ ] δ G F [ij] = F δ(ij) [ ] δ G[φ]e ij φ (21) δφ φ=0 Z[J] ( ) ( 1 δ Z[J] = exp 2δφ δ ) exp (is I [φ] + ij φ) δφ (22) φ=0 = i F (23) qft1-6-6

δ δφ δ δφ = d 4 x 1 d 4 δ x 2 δφ(x 1 ) (x δ 1 x 2 ) δφ(x 2 ) = ij i j (24) δ δφ(x i ) = i (25) i : N J N 0 (vacuum bubble): ( ) J = 0 e is I is I [φ] = i λ 4! φ4 (26) φ = 0 exp( 1 2 ij i j ) 4 Taylor 2 qft1-6-7

( ) 1 1 2 2! 2 ij i j ( i λ4! ) φ4 = 1 2 ( 1 2 ) 2 ( i λ ) 12 34 1 2 3 4 φ 4 i 4! (27) i φ j = δ ij 4 φ 4 i = 4δ 4iφ 3 i 4! ( ) 1 1 2 ( i λ ) 2 2 4! 4! ii ii = 1 2 ( iλ) }{{} standard factor 1 4 }{{} symmetry factor ii ii 2-loop vacuum bubble diagram i (28) vacuum bubble diagrams Z[J = 0] Dφe is vacuum bubble qft1-6-8

Dφe is+ij φ Z[J] = (29) Dφe is 2 (propagator): O(λ) 2 S I JJ Taylor 3 (S I +J φ) 3 3S I JJ 3 i 3 ( ) 3! 3 S I[φ](J φ) 2 = i3 iλ 3! 3 φ 4 i 4! J jφ j J k φ k (30) 6 exp( 1 2 ij i j ) 3 i 3 ( ) ( ) iλ 1 1 3 3! 3 4! 3! J j J k 12 34 56 1 2 6 (φ 4 i 2 φ jφ k ) (31) Diagram qft1-6-9

combinatirics Combinatorics combinatorics 1 δ 2δφ δ δφ (φ 1φ 2 ) = 1 δ ij (δ j1 φ 2 + φ 1 δ j2 ) 2δφ i = 1 2 ij(δ j1 δ i2 + δ j2 δ i1 ) = 12 ( ij = ji ) 2n φ 1 φ 2 φ 2n ( 1 1 δ n! 2δφ δ ) n (φ 1 φ 2 φ 2n) = 1 ( δ δφ n!2 n δφ δ ) n (φ 1 φ 2 φ 2n) δφ δ/δφ 2n φ i 2n 1 φ i (2n)! qft1-6-10

1/2 n n! (2n)! (2n)!!(2n 1)!! = = (2n 1)!! 2 n n! 2 n n! propagators combinations φ i pair φ j 2n 1 propagator 2n 2 φ 2n 3 propagator choice (2n 1)!! n propagator 1 n! ( 1 δ 2δφ δ ) n (φ 1 φ 2 φ 2n) = i1 i δφ 2 i3 i 4 i2n 1 i 2n (32) distinct qft1-6-11

1 propagator φ i propagator Symmetry factor vertex 1 φ 4 : (4 1)!! = 3 diagrams 12 34 + 13 24 + 14 23 (33) 3 i qft1-6-12

2 φ 1 φ 2 φ 4 3 : (6 1)!! = 15 2 (a) 3 1 2 (b) 1 2 3 (a) 12 vacuum bubble 3 (b) φ 1 φ 2 φ 4 3 contract 4 3 = 12 15 symmetry factor qft1-6-13

6.2 (connected) W [J] diagram connected disconnected W [J] 1 iw [J] = d 4 x 1 d 4 x n G (n),c (x 1, x 2,..., x n ) n! = n=0 (ij(x 1 ))(ij(x 2 )) (ij(x n )) 1 n! G(n),c i 1 i 2...i n (ij i1 )(ij i2 ) (ij in ) (34) n=0 Z[J] W [J] Combinatoric Method Z[J] n W [J] n W [J] n qft1-6-14

W [J] n! W [J] i convention Z[J] = i n n! W [J]n = e iw [J] (35) W [J] Helmholtz F (V, T ) V J, T : rescale T coupling constant φ 4 φ = λ 1/2 χ S = 1 ( 1 d 4 x λ 2 µχ µ χ m 2 χ2 1 ) 4! χ4 (36) T λ qft1-6-15

φ i c = 1 Z δ Z = δiw δij i δij i = δw δj i (37) Z disconnected diagrams φ i φ j = 1 1 δ 1 δ Z Z i δij i i δij j W [J] : = δ2 iw δij i δij j + δiw δij i δiw δij j = φ i φ j c + φ i c φ j c (38) W [J] connected cluster decomposition N- cluster space-like qft1-6-16

connected disconnected Connected propagator damp disconnected damp connected graph source support qft1-6-17

Ω 1 Ω 2 J 1 (x) 0, J 2 (x) = 0 J 2 (x) 0, J 1 (x) = 0 J(x) = J 1 (x) + J 2 (x) S local interaction S[φ] + J φ = d n x(l + J 1 φ) + d n x(l + J 2 φ) Ω 1 Ω 2 + d n xl (J i ) + Ω i x / Ω 1,Ω 2 (39) qft1-6-18

generating functional factorize : Z[J] = Z 1 [J 1 ]Z 2 [J 2 ]Z 12 [J 1, J 2 ] (40) Z i [J i ] = (41) x Ω i Dφe i(s+j i φ) Z 12 = Ω i (42) linear scale up volume Z = e iw W [J] = W 1 [J 1 ] + W 2 [J 2 ] (43) W qft1-6-19

J iw [J] = 1 dx 1 dx 2 dx n ig (n) c (x 1,..., x n )(ij(x 1 )) (ij(x n )) n! = 1 dx 1 dx p dy p+1 dy n n! ig (n) c (x 1,..., x p, y p+1... y n )i n J 1 (x 1 ) J 1 (x p ) J 2 (y p+1 ) J 2 (y n ) x i Ω 1, y j Ω 2 iw 1 [J 1 ] + iw 2 [J 2 ] source G (n) c (x 1,..., x p, y p+1... y n ) 0 as min x i y j (44) connected disconnected diagrams qft1-6-20

6.3 1PI = W [J] Helmholtz Gibbs G(P, T ) Γ[Φ] V J P Φ i Legendre Φ i δiw = δw = φ i c in the presence of J i (45) δij i δj i ( iγ[φ]) (ij i )Φ i iw Γ[Φ] = W J i Φ i (46) (45) (46) Φ i δ( iγ) δφ i = ij i + δij j Φ j δiw δφ i δφ i = ij i + δij j Φ j δiw δij j (47) δφ i δij j δφ i (45) 2 3 δ( iγ) δφ i = ij i δγ δφ i = J i (48) qft1-6-21

: iγ, iw, ij i Γ[Φ] : Γ[Φ] 2 : (48) ij i δ ij = δ2 ( iγ) δij i δφ j = δφ k δij i δ 2 ( iγ) δφ k δφ j = φ i φ k δ2 ( iγ) δφ k δφ j (49) δ 2 ( iγ) δφ k δφ j = φ k φ j 1 (50) inverse propagator wave operator qft1-6-22

3 : (49) ij l 0 = φ i φ k φ l φ k φ j 1 δ 3 ( iγ) + φ i φ k φ l φ m δφ m δφ k δφ j iδ 3 Γ φ i φ j φ k = φ i φ i φ j φ j φ k φ k (51) δφ i δφ j δφ k propagator amputated 3-point function ij l φ i φ j φ k φ l = δ iδ 3 Γ ( φ i φ i φ j φ j φ k φ k ) δij l δφ i δφ j δφ k iδ 4 Γ + φ i φ i φ j φ j φ k φ k φ l φ l δφ i δφ j δφ k δφ l qft1-6-23

1 3 connected 3-pt functions (51) Γ (3) i(j, k) j(k, i) l k(i, j) + Γ 1 propagator 1 1 (1-particle-irreducible=1PI) 1PI n-point function (n 3) amputated Green s function i Γ Γ i1 i 2...i n qft1-6-24

Γ = i 2 Φ ig 1 ij Φ j i 1 n! Γ i 1 i 2...i n Φ i1 Φ i2 Φ in (52) 2 Γ ij Tree level : = G 1 ij (53) Tree level Γ scalar ( ) Γ (0) = 1 2 Φ i( 1 F ) ijφ j 1 n! λ i 1 i 2...i n Φ i1 Φ i2 Φ in = i 2 Φ i 1 ij Φ j 1 n! λ i 1 i 2...i n Φ i1 Φ i2 Φ in (54) qft1-6-25

Γ : Γ (0) i 1 i 2...i n = iλ i1 i 2...i n (55) δγ/δφ i = J i source S : 6.4 Γ[Φ] 1PI diagram 1PI diagram 1 line diagram connected effective action Γ[Φ] diagrams ( Φ φ ) qft1-6-26

Propagator trick: modify S ɛ = 1 dxdyφ(x)φ(y) [K(x, y) + ɛ] + V (φ) (56) 2 K(x, y) = wave operator, ɛ = small parameter (57) Modified propagator ɛ dz ɛ (x, z) [K(z, y) + ɛ] = δ(x y) (58) ɛ ɛ ɛ = + ɛ (1) + (59) = K 1 = propagator (60) (58) ɛ [ ] ɛ dz (x, z) + (1) (x, z) 1 (z, y) = 0 (61) (y, w) y dz (x, z) dy (y, w) + (1) (x, w) = 0 (62) qft1-6-27

η(x) dz (x, z) (1) (x, y) = η(x)η(y) (63) ɛ (x, y) = (x, y) ɛη(x)η(y) + O(ɛ 2 ) (64) ɛ factorize insert Feynman diagram line ɛ Γ ɛ [φ] O(ɛ) diagrams connected qft1-6-28

Γ ɛ [φ] : Z ɛ [J] O(ɛ) ɛ ( Z ɛ [J] e iwɛ[j] = Dφ 1 + i ɛ ) dxdyφ(x)φ(y) e i(s+j φ) + O(ɛ 2 ) ( 2 = 1 + i ɛ dxdy 1 ) δ 1 δ e iw [J] + ( 2 i δj(x) i δj(y) = 1 + i ɛ [ ( dx δw ) 2 + 1 ]) δ 2 W dxdy e iw [J] + 2 δj(x) i δj(x)δj(y) W ɛ [J] W [J] + ɛ 2 [ ( dx δw ) 2 + 1 δj(x) i ] δ 2 W dxdy δj(x)δj(y) (65) O(ɛ) disconnect Γ Legendre W [J] global parameter ɛ qft1-6-29

Legendre Γ[φ] = W [J] dxj(x)φ(x) (66) φ(x) = δw δj(x) = ɛ (67) Γ[φ] ɛ chain rule LHS = Γ ɛ + dx φ(x) δγ (68) ɛ δφ(x) RHS = W ɛ dxj(x) φ(x) (69) ɛ δγ/δφ(x) ɛ = 0 J(x) Γ ɛ = W ɛ=0 ɛ (70) ɛ=0 ɛ Γ W (65) Γ ɛ [φ] = Γ[φ] + ɛ dxdyφ(x)φ(y) + ɛ δ 2 W dxdy 2 2i δj(x)δj(y) + (71) qft1-6-30

2 actin 3 source connected propagator cut connected φ φ J φ φ φ φ J φ φ x y φ φ J φ φ φ φ J φ φ φ φ J φ φ Γ[φ] 1PI diagram generating function qft1-6-31