1: 3.3 1/8000 1/ m m/s v = 2kT/m = 2RT/M k R 8.31 J/(K mole) M 18 g 1 5 a v t πa 2 vt kg (

Similar documents
P F ext 1: F ext P F ext (Count Rumford, ) H 2 O H 2 O 2 F ext F ext N 2 O 2 2

pdf

Note.tex 2008/09/19( )

5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â 0 = Tr Âe βĥ0 Tr e βĥ0 = dγ e βh 0(p,q) A(p, q) dγ e βh 0(p,q) (5.2) e βĥ0

2 1 x 2 x 2 = RT 3πηaN A t (1.2) R/N A N A N A = N A m n(z) = n exp ( ) m gz k B T (1.3) z n z = m = m ρgv k B = erg K 1 R =

構造と連続体の力学基礎

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

8 300 mm 2.50 m/s L/s ( ) 1.13 kg/m MPa 240 C 5.00mm 120 kpa ( ) kg/s c p = 1.02kJ/kgK, R = 287J/kgK kPa, 17.0 C 118 C 870m 3 R = 287J

201711grade1ouyou.pdf

II (No.2) 2 4,.. (1) (cm) (2) (cm) , (

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

( ) ,

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l

PDF

TOP URL 1


5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

68 A mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.


keisoku01.dvi

1 1.1 / Fik Γ= D n x / Newton Γ= µ vx y / Fouie Q = κ T x 1. fx, tdx t x x + dx f t = D f x 1 fx, t = 1 exp x 4πDt 4Dt lim fx, t =δx 3 t + dxfx, t = 1

DE-resume

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

(1) 3 A B E e AE = e AB OE = OA + e AB = (1 35 e ) e OE z 1 1 e E xy e = 0 e = 5 OE = ( 2 0 0) E ( 2 0 0) (2) 3 E P Q k EQ = k EP E y 0

Black-Scholes [1] Nelson [2] Schrödinger 1 Black Scholes [1] Black-Scholes Nelson [2][3][4] Schrödinger Nelson Parisi Wu [5] Nelson Parisi-W

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

K E N Z OU

t χ 2 F Q t χ 2 F 1 2 µ, σ 2 N(µ, σ 2 ) f(x µ, σ 2 ) = 1 ( exp (x ) µ)2 2πσ 2 2σ 2 0, N(0, 1) (100 α) z(α) t χ 2 *1 2.1 t (i)x N(µ, σ 2 ) x µ σ N(0, 1

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1)

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

LLG-R8.Nisus.pdf

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

I 1

( )


/02/18

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

: , 2.0, 3.0, 2.0, (%) ( 2.

Erased_PDF.pdf

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

I ( ) 2019


II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

meiji_resume_1.PDF

u = u(t, x 1,..., x d ) : R R d C λ i = 1 := x 2 1 x 2 d d Euclid Laplace Schrödinger N := {1, 2, 3,... } Z := {..., 3, 2, 1,, 1, 2, 3

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)


S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

Part () () Γ Part ,

高知工科大学電子 光システム工学科

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

成長機構

2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

数学Ⅱ演習(足助・09夏)

春期講座 ~ 極限 1 1, 1 2, 1 3, 1 4,, 1 n, n n {a n } n a n α {a n } α {a n } α lim n an = α n a n α α {a n } {a n } {a n } 1. a n = 2 n {a n } 2, 4, 8, 16,

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,.

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

2 0.1 Introduction NMR 70% 1/2

τ τ

ii 3.,. 4. F. (), ,,. 8.,. 1. (75% ) (25% ) =9 7, =9 8 (. ). 1.,, (). 3.,. 1. ( ).,.,.,.,.,. ( ) (1 2 )., ( ), 0. 2., 1., 0,.

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

II 1 II 2012 II Gauss-Bonnet II


I

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re



all.dvi

³ÎΨÏÀ

Introduction to Numerical Analysis of Differential Equations Naoya Enomoto (Kyoto.univ.Dept.Science(math))

本文/目次(裏白)

IA

Microsoft Word - 11問題表紙(選択).docx


液晶の物理1:連続体理論(弾性,粘性)

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2

II Brown Brown

Auerbach and Kotlikoff(1987) (1987) (1988) 4 (2004) 5 Diamond(1965) Auerbach and Kotlikoff(1987) 1 ( ) ,

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

Korteweg-de Vries

September 25, ( ) pv = nrt (T = t( )) T: ( : (K)) : : ( ) e.g. ( ) ( ): 1

1 1 u m (t) u m () exp [ (cπm + (πm κ)t (5). u m (), U(x, ) f(x) m,, (4) U(x, t) Re u k () u m () [ u k () exp(πkx), u k () exp(πkx). f(x) exp[ πmxdx

H22環境地球化学4_化学平衡III_ ppt

Untitled

Transcription:

1905 1 1.1 0.05 mm 1 µm 2 1 1 2004 21 2004 7 21 2005 web 2 [1, 2] 1

1: 3.3 1/8000 1/30 3 10 10 m 3 500 m/s 4 1 10 19 5 6 7 1.2 3 4 v = 2kT/m = 2RT/M k R 8.31 J/(K mole) M 18 g 1 5 a v t πa 2 vt 6 6 10 16 kg 5 10 11 7 (macroscopic) (microscopic) 2

1902 1903 8 9 1905 8 3 (1902/6/26), 4 (1903/1/26), 5 (1904/3/29), 6 (1905/3/17), 7 (1905/4/30), 8 (1905/5/11), 9 (1905/6/30) 1905 9 3, 4, 5 6 7 8 9 3

10 1905 2 2.1 10 4

τ 11 τ a 12 13 p τ 1) p a 2) p a 3) 1 2p 2 p 1/2 p = 1/6 1/6 2/3 1 2 3 6 τ 2: τ p a p a 2.2 1 6 1/6 1 6 11 τ 12 13 5

1/6 1 1/6 1 6 14 1 6 2, 6, 4, 5, 3, 1 1 6 15 1 6 14 2.3 1 6 i p i 1, 2,..., 6 p 1, p 2,..., p 6 15 6

1. 2. 16 1. 2. 2.3 x, y,... ˆ ˆx, ŷ,... 17 ˆx ˆx x 1, x 2,..., x n n 1, 2, 3, 4, 5, 6 16 17 X, Y,... 7

i = 1, 2,..., n ˆx x i p i p i 0 p i 1 p 1 + + p n = 1 ˆx ˆx ˆx = x 1 p 1 + x 2 p 2 + + x n p n (1) ˆx ˆx ˆx = 1(1/6) + 2(1/6) + + 6(1/6) = 3.5 ˆx, ŷ ˆx + ŷ = ˆx + ŷ (2) ˆx, ŷ ˆx ŷ = ˆx ŷ (3) ˆx N N 1) N ˆx ˆx 2) N x i N p i 18 2.4 x t = 0 x = 0 2.1 N t = Nτ ˆx(t) ˆx(t) N ˆx(t) ˆx(t) = ê 1 + ê 2 + + ê N (4) 18 3.5 3.5 8

ê i i 2.1 a p ê i = a p 0 1 2p (5) ê i = a p + ( a) p + 0 (1 2p) = 0 (6) (ê i ) 2 (ê i ) 2 = a 2 p + ( a) 2 p + 0 (1 2p) = 2pa 2 (7) ˆx(t) ˆx(t) ê i (4) (2) (6) ˆx(t) = ê 1 + ê 2 + + ê N = 0 (8) 0 0 (ˆx(t)) 2 (4) (ˆx(t)) 2 = (ê 1 ) 2 + (ê 2 ) 2 + + (ê N ) 2 + 2ê 1 ê 2 + 2ê 1 ê 3 + + 2ê N 1 ê N (9) N (ê i ) 2 N(N 1)/2 2ê i ê j (i j) 19 (3) (6) 2ê i ê j = 2 ê i ê j = 0 (7) (ˆx(t)) 2 = (ê 1 ) 2 + + (ê N ) 2 + 2ê 1 ê 2 + + 2ê N 1 ê N = 2pa 2 N (10) D D = pa2 τ (11) t = Nτ (10) (ˆx(t)) 2 = 2Dt (12) 19 N = 2, 3 9

(ˆx(t)) 2 (ˆx(t)) 2 (12) 2Dt t t t t 3 3: 2.5 20 ρ(t, x) t x ρ(t, x) x a t a ρ(t, x) τ 20 4.2 10

p a ρ(t, x) a p a ρ(t, x) 21 a p a ρ(t, x + a) p a ρ(t, x a) a ρ(t + τ, x) = a ρ(t, x) 2paρ(t, x) + pa ρ(t, x a) + pa ρ(t, x + a) (13) ρ(t, x) t x 22 Taylor ρ(t + τ, x) ρ(t, x) + τ ρ(t, x) ρ(t, x), ρ(t, x ± a) ρ(t, x) ± a + a2 2 ρ(t, x) t x 2 x 2 (14) (13) a 2 /τ a 0, τ 0 τ a t 2 ρ(t, x) = D ρ(t, x) (15) x2 D (11) (15) D N 0 x = 0 (15) ρ(t, x) = N 0 exp[ x2 4πDt 4Dt ] (16) (12) (15) a, τ, p a, τ, p (12) (15) D 23 (12) (15) D 21 a ρ(t, x) 2.3 22 23 a 11

3 3.1 x f > 0 24 τ a ˆx(t) (4) ê i a p ag ê i = a p + ag 0 1 2p g > 0 g f g ag (1) ê i (17) ê i = a(p ag) + ( a)(p + ag) + 0 (1 2p) = 2a 2 g (18) (4) ˆx(t) ˆx(t) = ê 1 + ê 2 + + ê N = 2a 2 gn = u t (19) t = Nτ u u = 2a2 g τ > 0 (20) u g f (20) 24 f 12

3.2 2.5 ρ(t, x) 2 ρ(t, x) = u ρ(t, x) + D ρ(t, x) (21) t x x2 (11) (20) a 2 /τ a 0, τ 0 (15) u u (16) ρ(t, x) = N 0 (x + ut)2 exp[ ] (22) 4πDt 4Dt x 0 x = 0 x f x = 0 (21) ρ eq (x) eq equilibrium= (21) 0 u d dx ρ eq(x) + D d2 dx 2 ρ eq(x) = 0 (23) α ρ eq (x) = ( ) exp( αx) α = 0, u/d 13

α = 0 ρ eq (x) = ρ 0 exp[ u x], x 0 (24) D x = 0 x (24) u/d f x fx x = 0 x (24) 0 0 dx fx ρ eq (x) dx ρ eq (x) 0 = f 0 dx x exp[ (u/d)x] dx exp[ (u/d)x] = f D u (25) 1.2 T (R/N A )T R 8.31 J/(K mol) 1 N A 25,26 25 [3] 26 N A R 14

27 (25) (R/N A )T f D u = R N A T (26) 28 3.3 (28) 2 (12) 2Dt (15) D D D 3.1 x = 0 u 27 28 ρ eq (x) exp[ (f x)/(kt )] 15

f u u = µ f (27) µ (27) (26) f D = R N A T µ (28) D µ (R/N A )T T 29 (28) µ = (6πηa) 1 a η 30 (28) D = RT N A 1 6πηa 1905 a 31 t D 29 (28) 3.2 30 η 1 10 3 kg/(m s) poise = g/(cm s) 31 2 16 (29)

(29) η R T a D N A (29) N A N A 4 4.1 0 x L L x = 0 x = L n ρ = n/l (12) 2Dt (15) D (11) ρ f 17

32 (20) u j ρ u j = ρu j σ = lim (30) f 0 f f 0 f (27) σ = ρµ (28) k = R/N A Dρ = σkt (31) 4.2 n D f j (30) σ f 0 D σ 32 18

(31) Dρ 2 κ = σ (32) κ κ = ( L ) 1 p(t, L, n) (33) L κ = (ρkt ) 1 (32) (31) (32) Green- σ = 1 dt J(0)J(t) (34) 2kT L 0 J(t) t σ (32) σ = h L 0 dt 1/(kT ) 0 dλ Ĵ( i hλ)ĵ(t) (35) (34) Ĵ(t) J(t) (35) (34) (35) 4.3 (28), (31), (32) 19

33 34 (35) 20 (30) f 0 35 33 (1927) (1928) 34 (1931) 35 20

36 37 38 39 40 36 3.2 kt 37 38 39 40 Raffiniert ist der Herr Gott, aber boshaft ist er nicht. [3] [3] 21

[1], 1976 [2], 1986 [3] Abraham Pais, Subtle Is the Lord: The Science and the Life of Albert Einstein (Oxford University Press, 1982), 1987 22