ランダムウォークの境界条件・偏微分方程式の数値計算

Similar documents
マルコフ連鎖の時間発展の数値計算

疎な転置推移確率行列

ランダムウォークの確率の漸化式と初期条件

曲面のパラメタ表示と接線ベクトル

時系列解析と自己回帰モデル

時系列解析

mugensho.dvi

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

A A = a 41 a 42 a 43 a 44 A (7) 1 (3) A = M 12 = = a 41 (8) a 41 a 43 a 44 (3) n n A, B a i AB = A B ii aa

独立性の検定・ピボットテーブル

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

pdf

分散分析・2次元正規分布

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

カテゴリ変数と独立性の検定

関数のグラフを描こう

2変量データの共分散・相関係数・回帰分析

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.


f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.


5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

I L01( Wed) : Time-stamp: Wed 07:38 JST hig e, ( ) L01 I(2017) 1 / 19

( ) Loewner SLE 13 February

数値計算:有限要素法

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

i

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

2.2 ( y = y(x ( (x 0, y 0 y (x 0 (y 0 = y(x 0 y = y(x ( y (x 0 = F (x 0, y(x 0 = F (x 0, y 0 (x 0, y 0 ( (x 0, y 0 F (x 0, y 0 xy (x, y (, F (x, y ( (

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2

ii

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

1.1 ft t 2 ft = t 2 ft+ t = t+ t d t 2 t + t 2 t 2 = lim t 0 t = lim t 0 = lim t 0 t 2 + 2t t + t 2 t 2 t + t 2 t 2t t + t 2 t 2t + t = lim t 0

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

II K116 : January 14, ,. A = (a ij ) ij m n. ( ). B m n, C n l. A = max{ a ij }. ij A + B A + B, AC n A C (1) 1. m n (A k ) k=1,... m n A, A k k

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

入試の軌跡

平成 22 年度 ( 第 32 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 ~8 22 月年 58 日開催月 2 日 ) V := {(x,y) x n + y n 1 = 0}, W := {(x,y,z) x 3 yz = x 2 y z 2

08-Note2-web

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

基礎から学ぶトラヒック理論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT


1 26 ( ) ( ) 1 4 I II III A B C (120 ) ( ) 1, 5 7 I II III A B C (120 ) 1 (1) 0 x π 0 y π 3 sin x sin y = 3, 3 cos x + cos y = 1 (2) a b c a +

2011de.dvi

1 1 u m (t) u m () exp [ (cπm + (πm κ)t (5). u m (), U(x, ) f(x) m,, (4) U(x, t) Re u k () u m () [ u k () exp(πkx), u k () exp(πkx). f(x) exp[ πmxdx

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

p q p q p q p q p q p q p q p q p q x y p q t u r s p q p p q p q p q p p p q q p p p q P Q [] p, q P Q [] P Q P Q [ p q] P Q Q P [ q p] p q imply / m


meiji_resume_1.PDF

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA appointment Cafe D

Microsoft Word - 触ってみよう、Maximaに2.doc

1 c Koichi Suga, ISBN


Microsoft Word - 11問題表紙(選択).docx

Part y mx + n mt + n m 1 mt n + n t m 2 t + mn 0 t m 0 n 18 y n n a 7 3 ; x α α 1 7α +t t 3 4α + 3t t x α x α y mx + n

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

( 28 ) ( ) ( ) 0 This note is c 2016, 2017 by Setsuo Taniguchi. It may be used for personal or classroom purposes, but not for commercial purp

December 28, 2018

201711grade1ouyou.pdf

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

Note.tex 2008/09/19( )


I 1

x ( ) x dx = ax

gr09.dvi

m d2 x = kx αẋ α > 0 (3.5 dt2 ( de dt = d dt ( 1 2 mẋ kx2 = mẍẋ + kxẋ = (mẍ + kxẋ = αẋẋ = αẋ 2 < 0 (3.6 Joule Joule 1843 Joule ( A B (> A ( 3-2

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)

橡Taro11-報告書0.PDF

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

untitled

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

2014 S hara/lectures/lectures-j.html r 1 S phone: ,

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,.

データの分布

1 8, : 8.1 1, 2 z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = n i=1 a ii x 2 i + i<j 2a ij x i x j = ( x, A x), f =

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+

v er.1/ c /(21)

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

Chap11.dvi

「産業上利用することができる発明」の審査の運用指針(案)

( )

³ÎΨÏÀ

DE-resume

i

R pdf

Excel97関数編

Transcription:

B L06(2018-05-22 Tue) : Time-stamp: 2018-05-22 Tue 21:53 JST hig,, 2, multiply transf http://hig3.net L06 B(2018) 1 / 38

L05-Q1 Quiz : 1 M λ 1 = 1 u 1 ( ). M u 1 = u 1, u 1 = ( 3 4 ) s (s 0)., u 1 = 1 7 ( 3 4 ). 2 p(1) = M p(0) = 1 3 ( 1 2 ). 3 M ( ) λ 1 λ 2, u 1, u 2, λ 1 = 1, λ 2 = 1 6, u 1 = ( 3 4 ) s, u 2 = ( 1 1 ) s (s 0). λ 1 = 1,. u 1, u 2 s = 1 ( p(t) ). L06 B(2018) 2 / 38

p(t) =M t p(0) =(UDU 1 ) t p(0) = ( ) ( ) ( ) λ t 1 u 1 u 1 0 2 0 λ t u 1 u 2 p(0) 2 U 1 p(0), ( a b ). ( ) p(t) = u 1 λ t 1 u 2λ t 2 ( a b ) =a u 1 λ t 1 + b u 2 λ t 2. p(0), p(0) = a u 1 + b u 2 a, b a = 1 7, b = 4 7., p(t) = 1 7 ( 3 4 ) + 4 ( 1 ) 7 1 ( 1 6 )t. L06 B(2018) 3 / 38

t + p(t), u 1 1 7 (= ).. 1 6 < 1, p(t) 1 7 ( 3 4 ) (t + ) p(x,t) 1 0.75 4/7 0.5 3/7 0.25 0 0 1 2 3 4 t p(0,t) p(1,t) 4 p(t) = 1 7 ( 3 4 ) + 1 ( 1 ) 14 1 ( 1 6 )t L06 B(2018) 4 / 38

p( ) = 1 7 ( 3 4 ) ( ), p(t) p( ) = ( 4 1 ) 7 1 1 6 t = 4 2 7 1 6 t log p(t) p( ) =t log 1 6 + log 4 2 7, t log, log 2. log p(x,t)-p( ) 0-1 -2-3 -4-5 -6-7 -8 log p(t)-p( ) 0 1 2 3 4 t L06 B(2018) 5 / 38

3, ( 2 ) 3, t. L06-Q2 Quiz : ( 1 λ = 1 1 11 ) 3 2, p(t) = 1 3 ( 11 1 ) 1 6 L06-Q3 Quiz : ( 1 ) ( 0 ( 3 1 4 )t + 1 1 ) 2 6 ( 1 1 4 )t 1 L06 B(2018) 6 / 38

1, E[(X(t) + 1) 2 ] = p(t) = 1 7 ( 3 4 ) + 4 7 1 (x + 1) 2 p(x, t) x=0 ( 1 1 ) ( 1 6 )t. =(0 + 1) 2 ( 3 7 + 4 7 ( 1 6 )t ) + (1 + 1) 2 ( 4 7 + 4 7 ( 1 6 )t ) = 19 7 12 7 ( 1 6 )t 2,, t + u 1 = 1 7 ( 3 4 ) (0 + 1)2 3 7 + (1 + 1)2 4 7. P (X(t) > 0) = E[1 [X>0] (X)] =(0 1) p(t) =p(1, t) = 4 7 4 7 ( 1 6 )t L06 B(2018) 7 / 38

L05-Q4 Quiz : ( λ = 1 ( ), 10 ) ( 01 ) s + k (s 0 k 0). 1, 0 1 ( 1 ( ) 10 ) (, u 1 =, u 2 = 1 01 ) 2, s u 1 + (1 s) u 2 (0 s 1) 0 1. ( λ = 1 3, 0 ) +1 s(s 0)., ( ( 0 ) ), u 3 =. p(0) +1 1 1 p(t) = a u 1 1 t + b u 2 1 t + c u 3 ( 1 3 )t. L06 B(2018) 8 / 38

( 1 p(0) = 1 11 ) 2 a, b, c, 0 p(t) = 1 2 u 1 + 1 2 u 2 + 1 4 u 3 ( 1 3 )t ( p( ) = 1 21 ) 4. ( 1 2 p(0) = 1 11 ) 3 a, b, c, 1 p(t) = 1 3 u 1 + 2 3 u 2 + 0 u 3 ( 1 3 )t ( p( ) = 1 11 ) 3. 1 3 {0} {1, 2}.,. L06 B(2018) 9 / 38

5 +1 : 6 p(x, t) L06 B(2018) 10 / 38

C I x = 0,..., m 1 m. p(t), p(x, t) 1 double p [ m ] = { 1. 0, 0. 0,...., 0. 0 } ; /. m / 2 / {p ( 0, t ), p ( 1, t ), p ( 2, t ),..., p (m 1, t )} / M = ( p 00 p 01 p 10 p 11 ) = ( 0.1 0.3 0.9 0.7 ) 1 double M[ ] [ 2 ] = { { 0. 1, 0. 3 }, 2 { 0. 9, 0. 7 } } ; / 2 / {{p 00, p 01 }, {p 10, p 11 }} q = M p q x = y M xy p y. 1 p [ ] p ( x, 0 ) ; 2 p ; 3 f o r ( t ){ 4 pn=m p ; / / 5 p=pn ; 6 p ; 7 } L06 B(2018) 11 / 38

+1 : 5 +1 : 6 p(x, t) L06 B(2018) 12 / 38

+1 : X(2) :, ( ) t = 2 x = 3 t = 20 x < 0 X(T ) : T ( ) x(t ) : T ( 1 ) (x(0), x(1), x(2),..., x(t )) : (path) ( ) L06 B(2018) 13 / 38

+1 : ϕ(x(t)) C B(2018)L02 ϕ(x(t )) = 1 N N ϕ(x(t ) (n) ) n=1 1 / 1 / 2 f o r ( n ){ 3 / 2 / 4 f o r ( t ){ 5 / 3 / 6 x=x+getrandom ( g e t u n i f o r m ( ) ) ; 7 / 4 / 8 } 9 / 5 / 10 } 11 / 6 / sum1=0, sum1+=phi(x) ( ϕ(x) = x 3 ), printf( %f,(double)sum1/n)? L06 B(2018) 14 / 38

+1 : C ϕ(x) = 1 [ ] (x) phi? sum1. L06 B(2018) 15 / 38

+1 : ϕ(x(0), X(1),..., X(T ))! : X(0), X(1),..., X(T ) 10. 1 i n t path [TMAX] ; 2 / 1 / 3 f o r ( n ){ 4 / 2 / 5 f o r ( t ){ 6 / 3 / 7 x=x+getrandom ( g e t u n i f o r m ( ) ) ; 8 path [ t ]=x ; / 4 / 9 } 10 / 5 / 11 } 12 / 6 / 13 14 i n t p h i ( i n t path [ ], i n t tend ){ 15 / path [ 0 ],.., path [ tend ] / 16 r e t u r n 0 ; / or 1 / 17 } sum1=0, sum1+=phi(path,t), printf( %f,(double)sum1/n)? phi 1,0. sum count. L06 B(2018) 16 / 38

5 +1 : 6 p(x, t) L06 B(2018) 17 / 38

2 1 sim* X(t) = X(t 1) + R(t), P (R(t) = ±1) = 1 2. P (X(3) = 9) = 1. P (X(t) = x) = p(x, t) 2 markov { p(x, t) = 1 2 p(x 1, t 1) + 1 2 p(x + 1, t 1). p(x, 3) = 1(x = 9) 0( ) p(t) = M p(t 1),, < X(t) < +.? 1 2 int x 2 p(x, t) = double p[m], 0 x < M. M,?. 2 p, M? L06 B(2018) 18 / 38

S = {0, 1,..., m 1}. x = 0, x = m 1, ( )?. h = 1/2, m = 6. p(0, t) p(1, t). p(m 2, t) p(m 1, t) p(t) = M p(t 1) 0 h 0 0 0 0 h 0 h 0 0 0 = 0 h 0 h 0 0 0 0 h 0 h 0 0 0 0 h 0 h 0 0 0 0 h 0! p(0, t ) p(1, t ). p(m 2, t ) p(m 1, t ) L06 B(2018) 19 / 38

= 1 x m 2, x = 0, x = m 1 ( ). x = 0 =.. x = 1 x = 0 x = 1 x = 0 x = 1 x = 1 x = 0 x = m 2 ( ). x = 0 x = m 2. x = m 2 x = m 1 X M.,, x = 0, m 1. L06 B(2018) 20 / 38

p M? 0 h 0 0 0 0 h 0 h 0 0 0 0 h 0 h 0 0 0 0 h 0 h 0 0 0 0 h 0 h 0 0 0 0 h 0 ( A),p(0, t) =, ( B) 0 h 0 0 0 0 h 0 h 0 0 0 0 h 0 h 0 0 0 0 h 0 h 0 0 0 0 h 0 h 0 0 0 0 h 0 ( A), p (0, t) =, ( B) x 0 h 0 0 0 0 h 0 h 0 0 0 0 h 0 h 0 0 0 0 h 0 h 0 0 0 0 h 0 h 0 0 0 0 h 0, p(0, t) = p(m 1, t) L06 B(2018) 21 / 38

L06-Q1 Quiz( ) {x} = {0, 1, 2, 3, 4} X(t),. X(t) =X(t 1) + R(t), (t = 1, 2,...) X(0) =2, R(t) (t = 0, 1, 2,...) 1 7 (r = 1) 4 P (R(t) = r) = 7 (r = 0) 2 7 (r = +1) 0 ( )., x = 0, 4.. 1 M. 2. L06 B(2018) 22 / 38

( ),. ( ) ( S = {x},,, ( ) ) ( ) AR(M), ARMA(m), ARIMA(m), ( ) L06 B(2018) 23 / 38

p(x, t) 5 +1 : 6 p(x, t) L06 B(2018) 24 / 38

p(x, t) p(x, t) x, t:, p(x, t),x(t):, t + 1, x ± 1,,, x, t:, p(x, t) X(t):, t + t, x ± x, p(x, t) = 1 2 p(x 1, t 1) + 1 2p(x + 1, t 1) p(x, t + 1) = 1 2 p(x 1, t) + 1 2p(x + 1, t) p(x, t + t) = 1 2 p(x x, t) + 1 2p(x + x, t) : f(x + x) f(x) f (x) x f(x + x) f(x) x f(x) f(x x) x df(x) (x) ( x 0) dx df(x) (x) ( x 0) dx L06 B(2018) 25 / 38

p(x, t) ± t, ± x p(x, t + t) p(x, t) = 1 [(p(x + x, t) p(x, t)) 2 (p(x, t) p(x x, t))] p t (x, t) t =1 2 p t (x, t) t =1 2 ( ) p p (x, t) (x x, t) x x x ( ) p (x, t) x x x x p t (x, t) =1 ( x) 2 2 p (x, t) 2 t x2 p(x, t), u(x, t). 1 ( x) 2 2 t D > 0:. A, p x (x, t). ( x x). L06 B(2018) 26 / 38

p(x, t) (diffusion equation, heat equation) u t (x, t) =D 2 u x 2 (x, t) (x min < x < x max, t > 0) u(x, 0) =x (x min < x < x max ) u(x min, t) =u(x max, t) = 0 (t 0) x,,,, u(x, t) : t, x u:, x, t: L06 B(2018) 27 / 38

p(x, t) (PDE=partial differential equation), u(x 1, x 2,..., x n ), u (t) = 2u(t). x (t) = x(t). x(t): x. u(x, t): u(x) (4 ) http: //www.a.math.ryukoku.ac.jp/~hig/course/compsci2_2013/img/pde-diff.gif L06 B(2018) 28 / 38

p(x, t) 2,, A B L06 B(2018) 29 / 38

p(x, t) D > 0. A u(x, t) = a(2t + x 2 ) + bx + c.,,,. 1 u(x, t) = e x2 2Dt. t, 0, 2πDt Dt N(0, Dt). u(x, t) = e c2 Dt sin(cx). (c R ) L06 B(2018) 30 / 38

p(x, t) L06-Q2 Quiz( ),? 1 B p(x, t) 2 II mx = kx bx. 3 II I x + ax + bx = c. 4-5 A 6 II, L06 B(2018) 31 / 38

p(x, t) L06-Q3 Quiz( ) t, x. ( ). u t (x, t) =2 2 u (x, t) (0 < x < 2π) x2 u(x, 0) = sin(3x) (0 < x < 2π) u(0, t) =u(2π, t) = 0 (t 0) u(x, t) = Ae Bt sin(cx), A, B, C R,. L06 B(2018) 32 / 38

5 +1 : 6 p(x, t) L06 B(2018) 33 / 38

:,. < x < +, p(t) 100. L06-Q4 Quiz( ), S = {x} = {0, 1, 2,..., m 1}. 0 1 0 0. 0 0 1................. M =........ 1 0. 0.. 0 1 1 0 0 0 1 double p [m], q [m] ; p, q, p q = M p 1 i n t m u l t i p l y t r a n s ( double q [ ], double p [ ], i n t m) ;. M 2, M (= O(m 2 ) O(m) ). L06 B(2018) 34 / 38

m 1 i n t m u l t i p l y t r a n s ( double q [ ], double p [ ], i n t m){ 2 i n t x, y ; 3 double M[ ] [ NS ] = { { 0. 0, 1. 0, 0. 0, / /, 0, } ; 4 f o r ( y =0;y<m; y++){ 5 q [ y ]=0; 6 f o r ( x =0;x<m; x++){ 7 q [ y]+=m[ y ] [ x ] p [ x ] ; 8 } 9 } 10 r e t u r n 1 ; 11 } Quiz : 1: 1 i n t m u l t i p l y t r a n s ( double q [ ], double p [ ], i n t m){ 2 i n t x ; 3 f o r ( x =0;x<m 1;x++){ 4 q [ x ]=1.0 p [ x +1] / +0.0 p [ x+2] / ; 5 } 6 q [m 1]=1.0 p [ 0 ] 7 r e t u r n 0 ; 8 } q = M p. m 1 q x = M xy p y = 0 + + 0 + 1 p x+1 + 0 + + 0. y=0 sparse matrix 0. 2,. L06 B(2018) 35 / 38

L06-Q5 Quiz( ), {x} = {0, 1, 2,..., m 1}. 7 2 10 10 0 0 3 5 2 10 10 10 0. 3 5. 0..... M = 10 10... 0...... 2 10 0.... 3 5 2 10 10 10 3 8 0 0 10 10 1 double p [m], q [m] ; p, q, p q = M p 1 i n t m u l t i p l y t r a n s ( double q [ ], double p [ ], i n t m) ;. M 2, M. L06 B(2018) 36 / 38

( )! 2018-06-05 5, 10 ( )+80 ( ), 20..., Visual Studio Excel R. 2018-05-29. (0) (1), (2) p(x, t), (3), (4) n p(x, t), (L03) (L03) M p(t) (L05), (L04,L05), X, M (L06),,, (L06) C. srand rand (L01,L02) (sim11,sim13) (L07) L06 B(2018) 37 / 38

https://learn.math. ryukoku.ac.jp/moodle. : CamScanner on https://download. ios/android moodle.org/mobile https://www.camscanner. com/ /Math 1-614 2018-06-05 ( ) Visual Studio.. L06 B(2018) 38 / 38