Similar documents
1. A0 A B A0 A : A1,...,A5 B : B1,...,B

1. A0 A B A0 A : A1,...,A5 B : B1,...,B

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

7-12.dvi

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

6.1 (P (P (P (P (P (P (, P (, P.

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

Excel ではじめる数値解析 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

6.1 (P (P (P (P (P (P (, P (, P.101

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p

A µ : A A A µ(x, y) x y (x y) z = x (y z) A x, y, z x y = y x A x, y A e x e = e x = x A x e A e x A xy = yx = e y x x x y y = x A (1)

newmain.dvi

(CC Attribution) Lisp 2.1 (Gauche )


2011de.dvi

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%


2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2


r3.dvi

応力とひずみ.ppt

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

r3.dvi

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

4 (induction) (mathematical induction) P P(0) P(x) P(x+1) n P(n) 4.1 (inductive definition) A A (basis ) ( ) A (induction step ) A A (closure ) A clos

( z = x 3 y + y ( z = cos(x y ( 8 ( s8.7 y = xe x ( 8 ( s83.8 ( ( + xdx ( cos 3 xdx t = sin x ( 8 ( s84 ( 8 ( s85. C : y = x + 4, l : y = x + a,

all.dvi

f (x) f (x) f (x) f (x) f (x) 2 f (x) f (x) f (x) f (x) 2 n f (x) n f (n) (x) dn f f (x) dx n dn dx n D n f (x) n C n C f (x) x = a 1 f (x) x = a x >

ii-03.dvi

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

Collatzの問題 (数学/数理科学セレクト1)

dy + P (x)y = Q(x) (1) dx dy dx = P (x)y + Q(x) P (x), Q(x) dy y dx Q(x) 0 homogeneous dy dx = P (x)y 1 y dy = P (x) dx log y = P (x) dx + C y = C exp

,2,4

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

³ÎΨÏÀ

II 2 II


応用数学特論.dvi

v er.1/ c /(21)

I

D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y

meiji_resume_1.PDF

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

: 1g99p038-8

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

1 : f(z = re iθ ) = u(r, θ) + iv(r, θ). (re iθ ) 2 = r 2 e 2iθ = r 2 cos 2θ + ir 2 sin 2θ r f(z = x + iy) = u(x, y) + iv(x, y). (x + iy) 2 = x 2 y 2 +

( 28 ) ( ) ( ) 0 This note is c 2016, 2017 by Setsuo Taniguchi. It may be used for personal or classroom purposes, but not for commercial purp

Pascal Pascal Free Pascal CPad for Pascal Microsoft Windows OS Pascal

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

, = = 7 6 = 42, =

ii

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

sec13.dvi

DVIOUT

17 ( ) II III A B C(100 ) 1, 2, 6, 7 II A B (100 ) 2, 5, 6 II A B (80 ) 8 10 I II III A B C(80 ) 1 a 1 = 1 2 a n+1 = a n + 2n + 1 (n = 1,


( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

数学の基礎訓練I

F S S S S S S S 32 S S S 32: S S rot F ds = F d l (63) S S S 0 F rot F ds = 0 S (63) S rot F S S S S S rot F F (63)

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1)

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

renshumondai-kaito.dvi

webkaitou.dvi

2012 A, N, Z, Q, R, C

/02/18

II Time-stamp: <05/09/30 17:14:06 waki> ii

ax 2 + bx + c = n 8 (n ) a n x n + a n 1 x n a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 4

1 1 [1] ( 2,625 [2] ( 2, ( ) /

2014 x n 1 : : :



I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10


2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

CALCULUS II (Hiroshi SUZUKI ) f(x, y) A(a, b) 1. P (x, y) A(a, b) A(a, b) f(x, y) c f(x, y) A(a, b) c f(x, y) c f(x, y) c (x a, y b)

x h = (b a)/n [x i, x i+1 ] = [a+i h, a+ (i + 1) h] A(x i ) A(x i ) = h 2 {f(x i) + f(x i+1 ) = h {f(a + i h) + f(a + (i + 1) h), (2) 2 a b n A(x i )

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

( )/2 hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1

n ( (

2012専門分科会_new_4.pptx

半 系列における記号の出現度数の対称性

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>


Transcription:

1. A0 A B A0 A : A1,...,A5 B : B1,...,B12 2. 5 3. 4. 5.

A0 (1) A, B A B f K K A ϕ 1, ϕ 2 f ϕ 1 = f ϕ 2 ϕ 1 = ϕ 2 (2) N A 1, A 2, A 3,... N A n X N n X N, A n N n=1 1

A1 d (d 2) A (, k A k = O), A O. f : R d R d f(x) = Ax.. (1) A p(x) X d. (2) A. (3) a n = rank(a n ), d = a 0 a 1 a d = 0. (4) Im(f) = Ker(f), {a n } A. A2 1 < x < 1, f(x) =. (1) f(x). (2) F (x). x 0 dt t 4 1 F (x) = (3) F (x) Taylor. x 0 f(t)dt (4) D : x 2 + y 2 < 1 2, 2 φ(x, y) = f(x2 + y 2 ). 2

A3 C C O : A O A = A C O (1) f(z) = z 2 f : C C (2) B = {z C z < 1} (3) Z 2 = { n + m 1 } n, m Z A4 N(µ, σ 2 ) f(x) = 1 (x µ)2 e 2σ 2 2πσ 2.. (1) X N(µ, σ 2 ), Z = X µ σ. (2) a 1, a 2. X 1 X 2, N(µ 1, σ 2 1), N(µ 2, σ 2 2), Y = a 1 X 1 + a 2 X 2. (3) n 2. X k (k = 1,..., n) N(µ, σ 2 ), W = 1 n X k. n k=1 3

A5 Pascal ( ) const n = max; var a : array [1..n] of integer; p, c : integer; function src(t : integer) : boolean; var b, e, m : integer; begin if t <= 0 then begin src := false; p := 0; c := 0 end else begin b := 1; e := n; c := 1; while b <= e do begin m := (b + e) div 2; c := c + 1; if t < a[m] then e := m 1 else b := m + 1 end; p := e; { * } src := (t = a[e]) end end; (1) max max = 8 a[1] a[n] 2, 3, 5, 7, 11, 13, 17, 19 src(10) p (2) max a[1] a[n] (1) m src(m) m (3) (2) { * } (4) max t a[1] < a[2] < < a[n] a src(t) c O(log max) 4

B1 G = A 7 7 σ = (1 2 3 4 5 6 7) σ(1) = 2, σ(2) = 3,..., σ(7) = 1 S = σ G X N G (X) = { g G gx = Xg } C G (X) = { g G gx = xg ( x X) } (1) C G (S) N G (S) (2) N G (S) (3) ρσρ 1 = σ 2 ρ ( G) ρ C G (S) (4) ρσρ 1 = σ m (1 m 7) ρ ( G) m (5) N G (N G (S)) = N G (S) B2 K = Q( 4 2),. (1) K Q. (2) K Q L. (3) Gal(L/Q) 8. (4) L. 5

B3 f : R 4 R f(x, y, z, w) = x 2 + y 2 + z 2 + w 2 1 ( f (1) f 1 (0) f J(f) = x, f y, f z, f ) w (2) M = f 1 (0) F : R 4 R 2 M = F 1 (0) F (x, y, z, w) = ( x 2 + y 2 + z 2 + w 2 1, x 2 + y 2 z 2 w 2) (3) M F J(F ) (4) M (5) φ : M R φ(x, y, z, w) = x + y + z + w φ φ M ξ i φ/ ξ i = 0 ( i) B4 R 3 A, B, S A = { (x, 0, 0) x 1 } B = { (x, y, 0) x + y 1 } S = { (x, y, z) x + y + z = 1 } X = A S, Y = B S (1) X Y (2) H q (X; Z), H q (Y ; Z) (q = 0, 1, 2) (3) i : X Y i : H q (X; Z) H q (Y ; Z) i (H q (X; Z)) (q = 0, 1, 2) 6

B5 C f(z) (1) f(z) z z C (2) k M f(z) M z k z C (3) k M f(z) M z k z > 1 z C (4) f(0) = f (0) = 0, f(1) = 1 z C f (z) 2 z B6 f CR 1 [0, 1] [0, 1] 1 ( )., f, g H H = {f C 1 R[0, 1] : f(0) = 0} f, g = 1 0 f (t)g (t)dt, f = f, f. (1) f H x [0, 1]. f(x) f x (2) {f n } H Cauchy, 2 h {f n },. g(x) = x 0 h(t)dt (x [0, 1]) 7

B7 p(x), q(x) I R 2 y + p(x)y + q(x)y = 0 (E) (E) y 1 (x), y 2 (x) W (y1,y 2 )(x) W (y1,y 2 )(x) = y 1 (x) y 2 (x) y 1(x) y 2(x) = y 1(x)y 2(x) y 1(x)y 2 (x) (1) y 1 (x), y 2 (x) (E) I W (y1,y 2 )(x) = 0 (x I) (2) y 1 (x), y 2 (x) (E) W (y1,y 2 )(x) I (3) y = y(x) (E) a, b I (a < b) y(x) y(a) = y(b) = 0 y(x) 0 (a < x < b). y (a)y (b) < 0 (4) y 1 (x), y 2 (x) (E) y 1 (x) y 2 (x) 8

B8 X 1, X 2,... (Ω, F, P ), p(x) (x Z)., p(x) = p( x) (x Z).. (1) X 1 + X 2 p(x) (x Z). (2) x Z. P (X 1 + X 2 = 0) P (X 1 + X 2 = x) (3) n x Z. ( 2n ) ( 2n P X j = 0 P X j = x j=1 j=1 ) B9 X 1, X 2,..., X n, µ, σ 2 D µ, σ 2 > 0 n 2 X = 1 n n i=1 X i, S 2 = 1 n 1 n (X i X) 2 i=1 (1) X 2 E[X 2 ] (2) S 2 σ 2 (3) D N(µ, σ 2 ) X k E[(X µ) k ] k 9

B10 A : N 2 N ( N 0 ) (1) σ : N 3 N A(0, y) = y + 1 A(x + 1, 0) = A(x, 1) A(x + 1, y + 1) = A(x, A(x + 1, y)) σ(x, y, z) = { 1 if A(x, y) = z 0 otherwise A A(x, y) > x + y A(x, y) < A(x, y + 1) A(x, y) < A(x + 1, y) (2) B : N N B(A(x, y)) = p(x, y ) A(x, y) = A(x, y ) p : N 2 N p 1 (p(x, y)) = x, p 2 (p(x, y)) = y p 1, p 2 B11 p, q n = pq e 1, e 2 φ(n) f f(x, e) = x e mod n m n n n, e 1, e 2, f(m, e 1 ), f(m, e 2 ) m φ x, y xz 1 mod y z I 10

B12 Scheme (define (enumerate-tree tree) (cond ((null? tree) ()) ((not (pair? tree)) (list tree)) (else (append (enumerate-tree (car tree)) (enumerate-tree (cdr tree)))))) (define t0 (list 1 (list 2 (list 3 4) 5))) (1) (enumerate-tree t0) (2) (enumerate-tree t0) cons (a) enumerate-tree list cons (b) enumerate-tree append cons list append 1 cons (3) t ( ) l prepend-leaves (equal? (append (enumerate-tree t) l) (prepend-leaves t l)) #t (prepend-leaves t ()) cons (enumerate-tree t) list cons prepend-leaves set-car! set-cdr! 11