1: (Emmy Noether; ) (Feynman) [3] [4] {C i } A {C i } (A A )C i = 0 [5] 2

Similar documents
(extended state) L (2 L 1, O(1), d O(V), V = L d V V e 2 /h 1980 Klitzing

1: Sheldon L. Glashow (Ouroboros) [1] 1 v(r) u(r, r ) ( e 2 / r r ) H 2 [2] H = ( dr ψ σ + (r) 1 2 ) σ 2m r 2 + v(r) µ ψ σ (r) + 1 dr dr ψ σ + (r)ψ +

untitled

Hilbert, von Neuman [1, p.86] kt 2 1 [1, 2] 2 2

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

3 3.1 R r r + R R r Rr [ ] ˆn(r) = ˆn(r + R) (3.1) R R = r ˆn(r) = ˆn(0) r 0 R = r C nn (r, r ) = C nn (r + R, r + R) = C nn (r r, 0) (3.2) ( 2.2 ) C

untitled

8 (2006 ) X ( ) 1. X X X 2. ( ) ( ) ( 1) X (a) (b) 1: (a) (b)

DVIOUT-fujin

eto-vol1.dvi

untitled

,, Andrej Gendiar (Density Matrix Renormalization Group, DMRG) 1 10 S.R. White [1, 2] 2 DMRG ( ) [3, 2] DMRG Baxter [4, 5] 2 Ising 2 1 Ising 1 1 Ising

eto-vol2.prepri.dvi

Ÿ Ÿ ( ) Ÿ , , , , , , ,000 39,120 31,050 30,000 1,050 52,649, ,932,131 16,182,115 94,75

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x

2016 ǯ¥Î¡¼¥Ù¥ëʪÍý³Ø¾Þ²òÀ⥻¥ß¥Ê¡¼ Kosterlitz-Thouless ž°Ü¤È Haldane ͽÁÛ

a L = Ψ éiγ c pa qaa mc ù êë ( - )- úû Ψ 1 Ψ 4 γ a a 0, 1,, 3 {γ a, γ b } η ab æi O ö æo ö β, σ = ço I α = è - ø çèσ O ø γ 0 x iβ γ i x iβα i

( š ) š 13,448 1,243,000 1,249,050 1,243,000 1,243,000 1,249,050 1,249, , , ,885

* 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) *

sakigake1.dvi

( ) œ ,475, ,037 4,230,000 4,224,310 4,230,000 4,230,000 3,362,580 2,300, , , , , , ,730 64,250 74

ʪ¼Á¤Î¥È¥Ý¥í¥¸¥«¥ë¸½¾Ý (2016ǯ¥Î¡¼¥Ù¥ë¾Þ¤Ë´ØÏ¢¤·¤Æ)

Aharonov-Bohm(AB) S 0 1/ 2 1/ 2 S t = 1/ 2 1/2 1/2 1/, (12.1) 2 1/2 1/2 *1 AB ( ) 0 e iθ AB S AB = e iθ, AB 0 θ 2π ϕ = e ϕ (ϕ ) ϕ

untitled

TOP URL 1

1: Pauli 2 Heisenberg [3] 3 r 1, r 2 V (r 1, r 2 )=V (r 2, r 1 ) V (r 1, r 2 ) 5 ϕ(r 1, r 2 ) Schrödinger } { h2 2m ( )+V (r 1, r 2 ) ϕ(r 1, r 2

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )


July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

( ) g 900,000 2,000,000 5,000,000 2,200,000 1,000,000 1,500, ,000 2,500,000 1,000, , , , , , ,000 2,000,000

d (i) (ii) 1 Georges[2] Maier [3] [1] ω = 0 1

( ) ) AGD 2) 7) 1


[2, 3, 4, 5] * C s (a m k (symmetry operation E m[ 1(a ] σ m σ (symmetry element E σ {E, σ} C s 32 ( ( =, 2 =, (3 0 1 v = x 1 1 +

Mott散乱によるParity対称性の破れを検証

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1

š ( š ) (6) 11,310, (3) 34,146, (2) 3,284, (1) 1,583, (1) 6,924, (1) 1,549, (3) 15,2

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ

QMI_09.dvi

QMI_10.dvi

1 2 LDA Local Density Approximation 2 LDA 1 LDA LDA N N N H = N [ 2 j + V ion (r j ) ] + 1 e 2 2 r j r k j j k (3) V ion V ion (r) = I Z I e 2 r

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R


第5章 偏微分方程式の境界値問題

Undulator.dvi

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

untitled

薄膜結晶成長の基礎3.dvi

[ ] = L [δ (D ) (x )] = L D [g ] = L D [E ] = L Table : ħh = m = D D, V (x ) = g δ (D ) (x ) E g D E (Table )D = Schrödinger (.3)D = (regularization)

Ÿ ( ) ,166,466 18,586,390 85,580,076 88,457,360 (31) 1,750,000 83,830,000 5,000,000 78,830, ,388,808 24,568, ,480 6,507,1

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K

QMI13a.dvi


note4.dvi

September 9, 2002 ( ) [1] K. Hukushima and Y. Iba, cond-mat/ [2] H. Takayama and K. Hukushima, cond-mat/020

量子力学 問題

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

untitled

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

68 JAXA-RR r v m Ó e ε 0 E = - Ó/ r f f 0 f 1 f = f 0 + f 1 x k f 1 = f k e ikx Ó = Ó k e ikx Ó k 3

スケーリング理論とはなにか? - --尺度を変えて見えること--

Kaluza-Klein(KK) SO(11) KK 1 2 1

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

 NMRの信号がはじめて観測されてから47年になる。その後、NMRは1960年前半までPhys. Rev.等の物理学誌上を賑わせた。1960年代後半、物理学者の間では”NMRはもう死んだ”とささやかれたということであるが(1)、しかし、これほど発展した構造、物性の

1/2 ( ) 1 * 1 2/3 *2 up charm top -1/3 down strange bottom 6 (ν e, ν µ, ν τ ) -1 (e) (µ) (τ) 6 ( 2 ) 6 6 I II III u d ν e e c s ν µ µ t b ν τ τ (2a) (

note1.dvi

untitled

(Basic of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Weak Law

E 1/2 3/ () +3/2 +3/ () +1/2 +1/ / E [1] B (3.2) F E 4.1 y x E = (E x,, ) j y 4.1 E int = (, E y, ) j y = (Hall ef

橡超弦理論はブラックホールの謎を解けるか?

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

1. ( ) L L L Navier-Stokes η L/η η r L( ) r [1] r u r ( ) r Sq u (r) u q r r ζ(q) (1) ζ(q) u r (1) ( ) Kolmogorov, Obukov [2, 1] ɛ r r u r r 1 3

Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R M End R M) M R ut R M) M R R G R[G] R G Sets 1 Λ Noether Λ k Λ m Λ k C Λ

122 丸山眞男文庫所蔵未発表資料.indd

官報(号外第196号)

T g T 0 T 0 fragile * ) 1 9) η T g T g /T *1. τ τ η = Gτ. G τ

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz

untitled

Xray.dvi

Grushin 2MA16039T

9, 10) 11, 12) 13, 14) 15) QED 16) , 19, 20) 21, 22) tight-binding Chern Hofstadter 23) Haldane 24) tight-binding Chern 25, 26) Chern 3 18, 1

1 1.1 hν A(k,ε)[ k ρ(ω)] [1] A(k,ε) ε k μ f(ε) 1/[1 + exp( ε μ k B T )] A(k,ε)f(ε) ρ(ε)f(ε) A(k,ε)(1 f(ε)) ρ(ε)(1 f(ε)) A(k,ε) σ(ω) χ(q,ω) k B T ev k

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 =

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

I , : ~/math/functional-analysis/functional-analysis-1.tex

š ( š ) 7,930,123,759 7,783,750, ,887, ,887 3,800,369 2,504,646,039 i 200,000,000 1,697,600, ,316.63fl 306,200,

『共形場理論』

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

untitled

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

1).1-5) - 9 -

6 6.1 L r p hl = r p (6.1) 1, 2, 3 r =(x, y, z )=(r 1,r 2,r 3 ), p =(p x,p y,p z )=(p 1,p 2,p 3 ) (6.2) hl i = jk ɛ ijk r j p k (6.3) ɛ ijk Levi Civit

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x


note5.dvi

( )

金融機関の資産取引ネットワーク

q π =0 Ez,t =ε σ {e ikz ωt e ikz ωt } i/ = ε σ sinkz ωt 5.6 x σ σ *105 q π =1 Ez,t = 1 ε σ + ε π {e ikz ωt e ikz ωt } i/ = 1 ε σ + ε π sinkz ωt 5.7 σ

Transcription:

2003 1 1 (Emmy Noether 1) [1] [2] [ (Paul Gordan Clebsch-Gordan ] 1915 habilitation habilitation außerordentlicher Professor Außerordentlich(=extraordinary) 1

1: (Emmy Noether; 1882-1935) (Feynman) [3] [4] {C i } A {C i } (A A )C i = 0 [5] 2

2 (Gell=Mann-Brueckner) (Baym-Kadanoff) [6] (Luttinger-Ward) Ω 2 Σ Ω Σ 2: (Luttinger-Ward) Ω 3

3 (Maksym) [7] (yrast spectrum) [8] [V = m 2 ω2 (x 2 + y 2 )] 1920 (Fock-Darwin) 3(a) [V = m 2 (ω2 xx 2 + ωyy 2 2 )] 3(b) ( 3(c) (1 + cos2θ) 0, ±2 1,3 4

3: (a) 2 2 [ (Fock-Darwin) ] (b) ( hω x = 17 mev, hω y = 10 mev) [8] 4 1/r L Runge-Lenz 5

A = p L r/r 1920 A = 1 (p L L p) r/r 2 L A L SU(2) SU(2) SO(4) [9] [10] [11] [ (Yang-Baxter) ] (rapidity 2 (Sutherland) [12] non-diffractive 6

(rapidity) 4: 1 tj AB J/t [14] SU(2)( ) [11, 13] 4 [14] 7

anticrossing 4 anticrossing 4 tj t J [15] J = 0 2 1 J = 2t J J = 0, 2t 1 AB rapidity [14] (Hans Bethe) 1931 1906 (!) habilitation PhD 8

5 C P T Bloch 5 1929 PhD [16] 5: Felix Bloch; 1905-1983) Nobel Foundation Ψ Ψ l H ˆT l [H, ˆT l ] = 0 9

H ˆT l Ψ ˆT l Ψ(r) Ψ(r + l) = λψ(r) ˆT l Ψ [ λ = 1 Ψ ] Ψ α (r) = e if α(r) u α (r) α f α (r) u α ˆT l1 ˆT l2 ˆT ˆTl1 l2 = ˆT l1 +l 2 f(r) r (f(l 1 ) + f(l 2 ) = f(l 1 + l 2 ) k Ψ Ψ sk (r) = eik r u sk (r) f k s( ) 1929 k e ik l k a 1, a 2, a 3 (a i b j = 2πδ ij ) G = n 1 b 1 + n 2 b 2 + n 3 b 3 (n i k k + G e ik l u (u k = u k+g ) k k + G ˆT 1, ˆT 2, ˆT 3 ˆT 1 ˆT 2 ˆT 3 ˆT i e ik l E s (k) E s (k + G) = E s (k) k Ψ Ψ E s ( k) = E s (k) p k k G hk 10

crystal momentum k k + G (G 0 ) (Peierls) (Umklapp) (Bragg) k Ψ(r 1, r 2 ) e ik l Ψ(r 1, r 2 ) k G k G [17] [18] k 6 [19] 11

6: 6 (Kramers) GaAs E(k, ) = E( k, ) 7 GaAs 12

7: (Rashba) BCS (B 1g ) (E u ) 7 (Gutzwiller) 13

[20] L z 19 (Hadamard) (genus) (trace formula) [21] [22, 23] 8: [ (Schwarz) P ] 8 (Schwarz) [24] 14

(Bonnet) 8 U(1) (Thouless) [25] (nonintegrable phase) (Berry) [26] [27] 9 15

[1] Emmy Noether, Nachr. Gesellsch. Wiss. Göttingen 2, 235 (1918). [2] : p.28 (1997) [ 1999) p.80 ] Constance Reid: Hilbert (Springer, New York, 1996) Sonya Kovalevskaya Joan Spicci: Beyond the limit The dream of Sonya Kovalevskaya (Tom Doherty Associates, New York, 2002) [3] Jagdish Mehra, The Beat of a Different Drum The life and science of Richard Feynman (Oxford Univ. Press, 1996). [4] 2001 [5] M. Suzuki, Physica 51, 277 (1971). [6] 1999 [7] Peter A. Maksym 53, 36 (1998) [8] P.A. Maksym, Physica B 249-251, 233 (1998). [9] Brian G. Wybourne, Classical Groups for Physicists (Wiley, 1974). [10] K. Asano and T. Ando, Phys. Rev. B 65, 115330 (2002) [11] 1996 1 [12] Bill Sutherland in Exactly Solvable Problems in Condensed Matter and Relativistic Field Theory ed. by B.S. Shastry et al (Springer, 1985), p.1. [13] 1990 [14] R. Arita, K. Kusakabe, K. Kuroki and H. Aoki, J. Phys. Soc. Jpn 66, 2086 (1997). [15] 1999 16

[16] 57, 118 (2002) [17] K. Yamada and K. Yosida, Prog. Thoer. Phys. 76, 621 (1986). [18] R. Arita, K. Kuroki and H. Aoki, Phys. Rev. B 61, 3207 (2000). [19] Johannes Kepler: Gesammelte Werke (Frankfurt, 1634; Beck sche Verlag, München 1988 [20] Martin C. Gutzwiller, Chaos in classical and quantum mechanics (Springer, 1990). [21] 1999 3 [22] :, 1997 [23] E.B. Bogomolny et al, Phys. Rep. 291, 219 (1997). [24] H. Aoki, M. Koshino, H. Morise, D. Takeda, and K. Kuroki, Phys. Rev. B 65, 035102 (2001). [25] David J. Thouless: Topological Quantum Numbers in Nonrelativistic Physics (World Scientific, Singapore, 1998). [26] 29, No.11, p.11 (1991) [ 1999 p.107 ] [27] [25] Y. Hatsugai, J. Phys. Condens. Matt. 9, 2507 (1997) 17