3-2 PET ( : CYRIC ) ( 0 ) (3-1 ) PET PET [min] 11 C 13 N 15 O 18 F 68 Ga [MeV] [mm] [MeV]

Similar documents
Mott散乱によるParity対称性の破れを検証

1 1 3 ABCD ABD AC BD E E BD 1 : 2 (1) AB = AD =, AB AD = (2) AE = AB + (3) A F AD AE 2 = AF = AB + AD AF AE = t AC = t AE AC FC = t = (4) ABD ABCD 1 1


Bethe-Bloch Bethe-Bloch (stopping range) Bethe-Bloch FNAL (Fermi National Accelerator Laboratory) - (SciBooNE ) SciBooNE Bethe-Bloch FNAL - (SciBooNE

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

23 1 Section ( ) ( ) ( 46 ) , 238( 235,238 U) 232( 232 Th) 40( 40 K, % ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =

福島県立医科大学総合科学教育研究センター紀要 Vol. 4, 1-10, 2015 原著論文 CT 2 ( ) CT 2 Received 2 October 2015, Accepted 16 October CT 2 f 0 (x, y) Radon f 0 2 f (x, y)


Chap11.dvi

29

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

曲面のパラメタ表示と接線ベクトル

Part () () Γ Part ,

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

B line of mgnetic induction AB MN ds df (7.1) (7.3) (8.1) df = µ 0 ds, df = ds B = B ds 2π A B P P O s s Q PQ R QP AB θ 0 <θ<π

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

70 : 20 : A B (20 ) (30 ) 50 1

i IHE IHE-J HIS RIS PACS CT CT CT

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

LLG-R8.Nisus.pdf

(1) D = [0, 1] [1, 2], (2x y)dxdy = D = = (2) D = [1, 2] [2, 3], (x 2 y + y 2 )dxdy = D = = (3) D = [0, 1] [ 1, 2], 1 {

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

pdf

1 1 u m (t) u m () exp [ (cπm + (πm κ)t (5). u m (), U(x, ) f(x) m,, (4) U(x, t) Re u k () u m () [ u k () exp(πkx), u k () exp(πkx). f(x) exp[ πmxdx

2 Chapter 4 (f4a). 2. (f4cone) ( θ) () g M. 2. (f4b) T M L P a θ (f4eki) ρ H A a g. v ( ) 2. H(t) ( )

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π

Gmech08.dvi

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

Microsoft Word - 章末問題

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

A

( ) 2.1. C. (1) x 4 dx = 1 5 x5 + C 1 (2) x dx = x 2 dx = x 1 + C = 1 2 x + C xdx (3) = x dx = 3 x C (4) (x + 1) 3 dx = (x 3 + 3x 2 + 3x +

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

untitled

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

1 12 ( )150 ( ( ) ) x M x 0 1 M 2 5x 2 + 4x + 3 x 2 1 M x M 2 1 M x (x + 1) 2 (1) x 2 + x + 1 M (2) 1 3 M (3) x 4 +

4‐E ) キュリー温度を利用した消磁:熱消磁

sec13.dvi

Untitled


. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

知能科学:ニューラルネットワーク

知能科学:ニューラルネットワーク

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1)

パーキンソン病治療ガイドライン2002

研修コーナー

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP

II 2 II

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

さくらの個別指導 ( さくら教育研究所 ) A a 1 a 2 a 3 a n {a n } a 1 a n n n 1 n n 0 a n = 1 n 1 n n O n {a n } n a n α {a n } α {a


19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional

PET PET

i 18 2H 2 + O 2 2H 2 + ( ) 3K

Λ (Λ ) Λ (Ge) Hyperball γ ΛN J-PARC Λ dead time J-PARC flash ADC 1 dead time ( ) 1 µsec 3

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

TOP URL 1

Gmech08.dvi

66 σ σ (8.1) σ = 0 0 σd = 0 (8.2) (8.2) (8.1) E ρ d = 0... d = 0 (8.3) d 1 NN K K 8.1 d σd σd M = σd = E 2 d (8.4) ρ 2 d = I M = EI ρ 1 ρ = M EI ρ EI

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds


l µ l µ l 0 (1, x r, y r, z r ) 1 r (1, x r, y r, z r ) l µ g µν η µν 2ml µ l ν 1 2m r 2mx r 2 2my r 2 2mz r 2 2mx r 2 1 2mx2 2mxy 2mxz 2my r 2mz 2 r

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

Donald Carl J. Choi, β ( )

i

Part y mx + n mt + n m 1 mt n + n t m 2 t + mn 0 t m 0 n 18 y n n a 7 3 ; x α α 1 7α +t t 3 4α + 3t t x α x α y mx + n

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2.

/02/18

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

I 1

Microsoft Word - 11問題表紙(選択).docx


応力とひずみ.ppt

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P

さくらの個別指導 ( さくら教育研究所 ) A 2 2 Q ABC 2 1 BC AB, AC AB, BC AC 1 B BC AB = QR PQ = 1 2 AC AB = PR 3 PQ = 2 BC AC = QR PR = 1

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

I No. sin cos sine, cosine : trigonometric function π : π =.4 : n =, ±, ±, sin + nπ = sin cos + nπ = cos sin = sin : cos = cos :. sin. sin. sin + π si

2011de.dvi

高校生の就職への数学II

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

1 1. x 1 (1) x 2 + 2x + 5 dx d dx (x2 + 2x + 5) = 2(x + 1) x 1 x 2 + 2x + 5 = x + 1 x 2 + 2x x 2 + 2x + 5 y = x 2 + 2x + 5 dy = 2(x + 1)dx x + 1

BIT -2-

1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l

Transcription:

3 PET 3-1 PET 3-1-1 PET PET 1-1 X CT MRI(Magnetic Resonance Imaging) X CT MRI PET 3-1 PET [1] H1 D2 11 C-doxepin 11 C-raclopride PET H1 D2 3-2 PET 0 0 H1 D2 3-1 PET

3-2 PET ( : CYRIC ) ( 0 ) 3-1-2 (3-1 ) 180 2 PET 3-3 - 3-1 PET [min] 11 C 13 N 15 O 18 F 68 Ga 20.39 9.965 1.037 109.8 68.10 + [MeV] [mm] [MeV] + 0.961 4.18 14 N(p,) 11 C 3.1 + 1.20 5.40 16 O(p,) 13 N 5.5 + 1.72 8.19 14 N(d,n) 15 O, 15 N(p,n) 15 O 0, + 0.634 2.42 18 O(p,n) 18 F, 20 Ne(d,) 18 F 2.6, 0 +,EC 1.90 9.32 68 Ge[271d,EC]-> 68 Ga -

3-3 3-4 3-3 2 p µ l L2 () l dl exp () l L1 p = exp µ 0 µ 0 () l dl = exp L µ dl (3-1) 0 ()

3-4 PET

3-1-3 2 PET 3-4 1 PET 3 1 PET(3-5 ) ( ) ( 2 ) 2 3 3-5 2 PET 3 PET

3-1-4 3 PET 2 3 3 PET(3 PET 3-5 ) 3 PET 3 SuperTAINS 1 63 ( 20cm) 1 [2] 3 PET PET 18 F PET PET

3-1-5 3 PET 3 3 2 2 [3] 3 PET PET [4] 3 PET 3 PET 2 (4 ) 3 dead time dead time 3 2 [5]

3-2 PET PET 3 PETSET-2400W ( ) 1-1 3-6 3-2-1 850mm 112 595mm 512mm 256mm 4 200mm 200mm 2 3-15 3 3-16 3-6 A) PET 511keV PET 3-2

3-2 PET [6, 7] BGO LSO NaI(Tl) CsF BaF 2 Bi 4 Ge 3 O 12 Lu 2 SiO 5 (Ce) 11,53 82,32,8 55,9 56,9 71,14,8 [g/cm3] 3.67 7.13 4.61 4.88 7.4 [nm] 410 480 390 220,300 [nsec] 250 300 5 0.7,620 40 1.85 2.15 1.48 1.56 1.82 100 15 5 8,32 6070 [nsec] 1 3 0.4 0.3 1 8 [%] 18 25 13 15.2 B) [8] (3-7) NaI(Tl) 10-8 sec BGO Bi 3+ [9]

3-7 PET 511keV NaI(Tl) NaI(Tl) 3 BGO BGO PET PET LSO LSO BGO 7.5 1 3.54.5 [10] SET-2400W BGO C) (Photo multiplier) 10 9 sec 10 6 2030% 200V300V 46 10 5 10 =10 7

3-8 SET-2400W 2 ( R1548) 1 2 3-93-3 3-9 2 R1548 3-3 R1548 parameter Value 420[nm] 10 1750[V] 2.510 6 1.8[ns] 20[ns] 1.0[ns] 511[keV] (BGO ) 20[%]

D) [11] SET-2400W BGO 2 2 (3-10)BGO 6 8 48 BGO 48 3-11 BaSO 4 0.15mm BGO BGO BGO BGO BGO 3-10 SET-2400W

3-11

3-2-2 (3-12) 1 4 A,B,C,D BGO X,Y A + C X = A + B + C + D A + B Y = A + B + C + D 3-12 A+BA+C A+B+C+D A/D A+B A+C A+B+C+D XY (POS LUT) (POSITION) (ENERGY LUT) (MULTIPLY) (WINDOW) (270keV) (STROBE)

V (3-13)[8] 3-13 V

3-2-3 [12] 14 (1 32 ) 1 9 (3-14) 9( )7( )63 595mm 15[ns] BGO 1020[ns] 2 3-15 BGO 5 6 3 (3-16) 3-17 3-14

3-15 2 3-16 3

3-2-4 3-17 Table Memory Event Memory 1 Event Memory 128Mbyte 2 Event Memory 4 CYRIC 4 Event Memory Table Memory PET CONT. Table Memory Event Memory 1 347(r )175( ) Event Memory TITAN2( ) dead time Event Memory

3-18

3-3 PET 3-3-1 (3-19) 3-19 PET

A) (2D,3D)E 30 1 3 5 B) (2D)T 2 511keV ( ) C) (2D,3D)N 2D 10000 3D 10 1 D) (2D)B (3-20) 3-20

3-20 16bit -3276832767

3-3-2 N 3-21 N ave D D = N ave N 3-21 ( ) 2 T T B B Acf 2 D = B T T 0 B 55 T B T B ROI(Region of Interset: ) 3 2 T B 3-22 3

B 2 µ ( x, y) + µ ( x, y) ds = ln T 3 µ ( x, y, z) 3 { ( ) } + Acf3 D = exp µ x, y, z dt ( ) µ x, y z B + µ ( x, y) ds = ln T µ x, y, z + 3 exp µ ( ) { ( x, y z) } Acf D =, dt 3-22 3 PET P P = E D Acf 3-23

3-23 SET-2400W 3-4 3-4 SET-2400W [13] BGO 32 [/ring] 672 [mm] 3.86.2530.0 [mm] 595 200 [mm] tangential:3.9(6.3 * [14]),radial:4.0(6.4 * [14]) [mm] [kcps/ci/ml] [kev] [nsec] Direct,cross:4.5 3.9(2D),52.0(3D) 270 15(825 ) * (2DFBP, Butterworse+ramp filter, order 2, cutoff 8mm)

3-3-3 2 [15, 16, 17, 18] f ( x, y) θ p( r, θ ) + p( r, θ ) = f ( x, y) ds 3-1 s y ( x y ) f, θ r x r p( r,θ ) 3-24 f ( x, y) 2 + { πj( αx + y) }dxdy F( α, β ) = f ( x, y)exp 2 β 3-2 r cosθ sinθ x = s sinθ cosθ y 3-3 dxdy = drds { 2πj( αx βy) }dr + + F( α, β ) = f x y ds + (, ) exp + { j( αx + βy) } = p( r, θ )exp 2π dr 3-4 α = ρ cos θ, β = ρ sinθ

F( ρ cosθ, ρ sinθ ) = p( r, θ )exp{ 2πjρr}dr 3-5 + 4-5 θ p( r, θ ) r f ( x, y) 2 θ f ( x, y) π = 2 0 0 { 2πj( xα yβ )} dαdβ f ( x, y) F( α, β )exp + 3-6 d αdβ = ρdρdθ f ( x, y) π π = 2 0 0 { 2 π jρ( x cosθ y sinθ )} ρdρd + F( ρ cosθ, ρ sinθ )exp + = F ρ cosθ, ρ sinθ )exp + 3-7 0 0 { 2πjρ ( x cosθ y sinθ )} ρ dρdθ ( ρ ρ h(r) h r) ρ exp 2 ( + { πjρr} dρ = 3-8 p( r, θ ) h(r) f ( x, y) f ( x, y) = π max p( r, θ ) h( r r ) dr 0 r r max dθ 3-9 p( r, θ ) b( x, y) f ( x, y) 1 psf ( x, y) = 1 2 2 x + y 1 point spread function

+ f ( x, y ) psf ( x x, y y dx dy b ( x, y) = ) 3-10 psf ( x, y) 2 { πj( xα + y )}dxdy PSF( α, β ) = psf ( x, y)exp 2 β = 1 2 2 α + β 1 = 3-11 ρ ρ F( ρ cosθ, ρ sinθ ) ρ (Convolution) r 1 ρ H = 2 r H (ρ) H ( ρ) = ρ B ( ρ) 3-12 w ( ) 1 ρ ρ H B w ( ρ) = 3-13 0 ( ρ ρ H ) 3-25 4-12 ( ) 4( r) 2 ( n r) = 0 n=0 h n r = 1 n: h 3-14 ( ) n: h n r = n π 2 ( r) 2 3-25 2 1

Shepp Logan H 2ρ H ρ) = π 0 ( H πρ ρ ρ H sin 2ρ ρ > ρ H 3-15 3-25 h ( n r) = 2 π 2 2 2 ( r) ( 1 4n ) 3-25 3-16 2D-FBP(Filtered Back Projection) X CT 3-25 Ramachandran-Lakshminarayanan Shepp&Logan

3-4 PET PET + + CON F + 11 C 15 O 13 N 18 F PET 11 C 15 O 13 N 18 F 2 PET 10 18Mev 510Mev 3-26 1m

3-26 1 PET 3-27 5cm 3-27 PET FDG 1 Gunn RN, et al. Parametric imaging of ligand-receptor binding in PET using a simplified reference region model. Neuroimage. 1997 Nov;6(4):279-87.

2 1 3 Michel D, et al. Exact and approximate rebining algorithm for 3-D PET data. IEEE Trans. Med. Imag. 1997; 15: 145-158. 4 10 3 CT 5, 11, 2 3 PET,. 6,,,,,,. 7, 13, PET,. 8,,,. 9 GALENN F. KNOLL,,,,, pp.240-256. 10, PET, RADIOISOTOPES, Vol.46, pp.733-742, 1997. 11,,,, PET 2, RADIOISOTOPES, Vol.45, pp.229-235, 1996. 12, ECT HEADTOME-V(SET-200W ),, Vol.51, pp.59-65, 1994. 13 (CYRIC), pp.41,2001 11. 14,, ( :SET-2400W)2 3,, Vol. 37, pp.35-41, 2000. 15,,,, pp.84-112. 16,, 14,, pp.108-117. 17,,, pp.103-122. 18, 12, PET,