デフォルト相関係数のインプライド推計( )

Similar documents
○松本委員

IMES DISCUSSION PAPER SERIES Discussion Paper No. 99-J- 9 -J-19 INSTITUTE FOR MONETARY AND ECONOMIC STUDIES BANK OF JAPAN

y = x x R = 0. 9, R = σ $ = y x w = x y x x w = x y α ε = + β + x x x y α ε = + β + γ x + x x x x' = / x y' = y/ x y' =

財政赤字の経済分析:中長期的視点からの考察

銀行手数料ビジネスの動向と経営安定性


text.dvi

1 Nelson-Siegel Nelson and Siegel(1987) 3 Nelson-Siegel 3 Nelson-Siegel 2 3 Nelson-Siegel 2 Nelson-Siegel Litterman and Scheinkman(199

「国債の金利推定モデルに関する研究会」報告書

LIBORマーケット・モデルのインプリメンテーションについて―本邦の金利派生商品データを用いた具体例を基に―

土地税制の理論的・計量的分析

固定資産の減損会計へのリアル・オプション・アプローチ

(2004 ) 2 (A) (B) (C) 3 (1987) (1988) Shimono and Tachibanaki(1985) (2008) , % 2 (1999) (2005) 3 (2005) (2006) (2008)

本邦国債価格データを用いたゼロ・クーポン・イールド・カーブ推定手法の比較分析

IMES DISCUSSION PAPER SERIES LIBOR Discussion Paper No J- -J-2 INSTITUTE FOR MONETARY AND ECONOMIC STUDIES BANK OF JAPAN

わが国のレポ市場について―理論的整理と実証分析―

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz


商品流動性リスクの計量化に関する一考察(その2)―内生的流動性リスクを考慮したストレス・テスト―


Part () () Γ Part ,

財政赤字の経済分析:中長期的視点からの考察

seminar0220a.dvi

meiji_resume_1.PDF

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,,

相互取引に伴う債権債務の依存構造を考慮した金融機関の与信評価について

, 1), 2) (Markov-Switching Vector Autoregression, MSVAR), 3) 3, ,, , TOPIX, , explosive. 2,.,,,.,, 1

untitled

082_rev2_utf8.pdf

c:/ando/latex/デフォルト確率損実率同時推定/fsa-ando-yamashita.dvi

PFI

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í

2011de.dvi

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi

03.Œk’ì

わが国企業による資金調達方法の選択問題


(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi

fiúŁÄ”s‘ê‡ÌŁª”U…−…X…N…v…„…~…A…•‡Ì ”s‘ê™´›ß…−…^†[…fiŠ‚ª›Âfl’«

SO(2)

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

43 2 PD DR Sommar and Shahnazarianka [19] Simons and Rolwes [17] GDP Figlewski, Frydman and Liang [7] GDP Bonfim [2] 3 Bhattacharjee et al. [1] 2002 [

カルマンフィルターによるベータ推定( )

SekineXu

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ

δ ij δ ij ˆx ˆx ŷ ŷ ẑ ẑ 0, ˆx ŷ ŷ ˆx ẑ, ŷ ẑ ẑ ŷ ẑ, ẑ ˆx ˆx ẑ ŷ, a b a x ˆx + a y ŷ + a z ẑ b x ˆx + b

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

all.dvi

Auerbach and Kotlikoff(1987) (1987) (1988) 4 (2004) 5 Diamond(1965) Auerbach and Kotlikoff(1987) 1 ( ) ,

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

³ÎΨÏÀ

AHPを用いた大相撲の新しい番付編成

Microsoft Word - 表紙.docx

renshumondai-kaito.dvi

1 (1997) (1997) 1974:Q3 1994:Q3 (i) (ii) ( ) ( ) 1 (iii) ( ( 1999 ) ( ) ( ) 1 ( ) ( 1995,pp ) 1

JFE.dvi

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

1: 3.3 1/8000 1/ m m/s v = 2kT/m = 2RT/M k R 8.31 J/(K mole) M 18 g 1 5 a v t πa 2 vt kg (

shuron.dvi

Transcription:

,,,.,.,.,,.,,.,,.,,. :,, OU, SUR,.,.,,.,.., 62

1, BIS,.,.,,,,.,,.,.,, [33],,,.,,.,,,,.,,.,,,.. 2,. 3,. 4,,. 5. 2,,.,. 2.1,.,,.,. Giesecke [10] dependen defaul.,,,, GDP,.,,.,...,,,.,.,.,,.,,. Giesecke [10], 1. 63

1 1-(1) (,, ) 1-(2) 1-(3) 2 ( ) 2-(1) 2-(2) 2-(3) 1:.,, 2. ( ) ( ) Meron [22] Duffie and Singleon [7] Jarrow and Turnbull [15] 2:.,..,,..,,. 2.2 2..,,. 2.,,,.,.,.,. 2,., Meron [22].. 64

,.,.,,.,.,,, (Gordy [13])., JP Morgan [16] CrediMerics T M,., Jarrow-Turnbull [15], Duffie-Singleon [7].., 1.,,.,..,.,,.,,.,.,,.,. Kusuoka [21], Jeanblanc and Rukowski [25], Collin-Dufresne, Goldsein and Hugonnier [4].,, (Duffie, Pan and Singleon [6]).,, OU. OU, Aonuma and Nakagawa [1],, [29].. 2.3, (Ω, F, P).,, F, (0 )., (0 < ).,. 1 {A} : A 1, 0, : (0 < ), T : ( T < ), X(, T ) : T, X 0 (, T ) : T, τ : (0 τ < ), δ :, L() :, r 0 () :. 1.,,. 65

N() = 1 {τ },. lim s N() = N( ).,. G : h. H : N(s) (0 s T ).,.,. F., F G H. X(, T ), {τ T }. τ.,. Duffie and Singleon [9].., 1,.,, P - h(). P[ < τ + F ] 1 {τ>} h() = lim 0 (1), > 0., h(). h(), h() 0 h(s)ds = Y () E [exp { H(, T )} F, τ > ] 1. 2 H(, T ) = T h(s)ds. H(, T ) T., P[τ > T F ] = 1 P[τ T F ], (Duffie[5]). [ { ] T P[τ > T F ] = 1 {τ>} E exp h(s)ds} G (2),., P, r 0 (). X 0 (, T ), r 0 (). [ { ] T X 0 (, T ) = Ẽ exp r 0 (s)ds} G (3), r 0 () 0, r 0 (s)ds =. (3) (2),, {τ 0 > }, {τ 0 > T } T 1, {τ 0 T }. τ 0, r 0 3. h 0 {τ 0 > T }, T P h 0 () = r 0 () (0 T ). H 0 (, T ) = T h 0 (s)ds.,., δ τ,., P.,. 2, Y () Y () lim s Y (s), Y () = 0 a.s. 3 ([32]). 66

X(, T ) = 1 {τ>} Ẽ [ 1 {τ>t } exp { H 0 (, T )} + 1 {τ T } δ τ exp { H 0 (, τ)} F ]. (4),. Duffie and Singleon [7], 1 δ, 3. RMV(recovery of marke value) δ = (1 L())X(, T ) RT(recovery of reasury) δ = (1 L())X 0 (, T ) RFV(recovery of face value) δ = (1 L()) L(). RMV, X(, T ) T,,. Duffie and Singleon [7]., Jarrow and Turnbull [15] RT., Jarrow and Turnbull [15]. (4) RT, L() = L, δ 1 L,,. { } X(, T ) = 1 {τ>} X 0 (, T ) δ + (1 δ)ẽ [exp { H(, T )} G ] (5) A., (, T ),. 3 (, T ) = 1 ( ) X(, T ) T log X 0 (, T ) = 1 ( ) T log δ + (1 δ)ẽ [exp { H(, T )} G ],,.,. 3.1,,..,,.,.,.,.,.,,. 3. (6) 3.2 1,. 1,, n. i (1 i n), h i (), τ i. {τ i T }.,., T,, 67

A. B (h A ()) (h B ()) ( ) ( ) ({τ A T }) ({τ B T }) ( ) ( ),. 3:. A B 2.,..,.,. {τ i > } (i = 1, 2,..., n), [ { ] n P[τ 1 > 1,, τ n > n F ] = E exp H i (, i )} G. (7) (7) A. Kijima [18], Kijima and Muromachi [19]., Kijima and Muromachi [20]. 3.3,. {τ i > } (i = 1, 2,..., n)., T i j (i j) 1 {τi T }, 1 {τj T }., 4. (7), ρ(1 {τi T }, 1 {τj T } F ). 1 {τi T } 1 {τj T }. i=1 Cov(1 {τi T }, 1 {τj T } F ) = E[1 {τi T }1 {τj T } F ] E[1 {τi T } F ] E[1 {τj T } F ] = P[τ i T, τ j T F ] P[τ i T F ] P[τ j T F ] (8), (7),. 4 Giesecke [10].,,,,,.,. 68

1: A B. (9), A B. ρ(1 {τa T }, 1 {τb T } F ) = {(1) ((1) + (2))((1) + (3))}/{((1) + (2))((3) + (4))((1) + (3))((2) + (4))} 1/2. (1) + (2) + (3) + (4) = 1. B A A P[τ A T, τ B T F ] (1) P[τ A T, τ B > T F ] (2) P[τ A T F ] (1)+(2) P[τ A > T, τ B T F ] (3) P[τ A > T, τ B > T F ] (4) P[τ A > T F ] (3)+(4) B P[τ B T F ] (1)+(3) P[τ B > T F ] (2)+(4) 1 (1)+(2)+(3)+(4) ρ(1 {τi T }, 1 {τj T } F ) = Cov(1 {τi T }, 1 {τj T } F ), (i j) (9) V ar(1 {τi T } F )V ar(1 {τj T } F ) 1., ρ(1 {τi T }, 1 {τj T } F ) = ρ(1 {τi>t }, 1 {τj>t } F ). = T,, 0. 4 Ornsein-Uhlenbeck,. OU,.,,,.,. 4.1 OU Vasicek,., OU,. h() = (h 1 (), h 2 (), h n ()) OU. 5 dh i () = (a i b i h i ())d + σ i dw i (), 0. (10), a i /b i = h i,. dh i () = b i (h i h i ())d + σ i dw i (), 0. (11), P h i h i (), b h i, σ i. W (), ρ. ρ ii = 1. ρ ji. dw i ()dw j () = ρ ij d (12) 5 OU,, h().,. OU., CIR. dh = b(h h())d + σh() c dw (), 0. h(0) 0, c = 1,, 2.. 69

β i () i, T W i () = W i () + P. β i (), φ i (). 0 β i (u)du, 0 T (13) β i () = a i φ i () σ i, 0 T, i = 0, 1,, n. (14), β i () = β i., W i ()., φ i () = φ i, P., φ i /b i = h i, dh i () = (φ i b i h i ())d + σ i d W i (), 0 T. (15) dh i () = b i ( h i h i ())d + σ i d W i (), 0 T. (16) P, h i h i ()., β i. β i = b i σ i (h i h i ), 0 T, i = 0, 1,, n. (17) i = 0, X 0 (, T ) Vasicek [26]. 4.2,,. h i (0 T ),. h i () = h i (0) exp{ b i } + h i (1 exp{ b i }) + σ i exp{ b i ( s)}dw i (s) (18), h i (). 0 E [h i ()] = h i (0) exp{ b i } + h i (1 exp{ b i }), (19) V [h i ()] = σ2 i 2b i (1 exp{ 2b i }) (20) E [h i ()] h i, h h().,. ( T h i (s)ds = h ) T i(u) (1 exp{ b i (T )}) + h i T exp { b i (T s)} ds b i [ T, µ i (, T ) = E µ i (, T ) = h i() b i = h i() b i (1 exp{ b i (T )}) + h i (1 exp{ b i (T )}) + h i 70 + σ T i b i (1 exp{ b i (T s)}) dw i (s) (21) ] h i (s)ds G. ( T T exp { b i (T s)} ds ( T 1 ) (1 exp{ b i (T )}) b i ) (22)

[ ] T, v i (, T ) = V i h i (s)ds G Io s Isomery,. ( v i (, T ) = E σ T 2 i (1 exp{ b i (T s)}) dw i (s)) b i G = σ2 i b 2 i = σ2 i b 2 i T (1 exp{ b i (T s)}) 2 ds ( T + 2 (1 exp{ b i (T )}) 1 ) (1 exp{ 2b i (T )}) b i 2b i (21), OU., [ (0 T ) P[τ i > T F ] = E exp{ ] T h i (s)ds} G. { P[τ i > T F ] = exp µ i (, T ) + v } i(, T ) 2,,. 4.3,.,. OU,,, v ij (, T ) = Cov ij [ T v ij (, T ) = σ i σ j T = ρ ij σ i σ j b i b j h i (s)ds, T ] h j (s)ds G. 1 (1 exp{ b i (T )}) 1 (1 exp{ b j (T )}) ρ ij ds b i b j ( T 1 exp{ b i(t )} 1 exp{ b j(t )} + 1 exp{ (b ) i + b j )(T )} b i b j b i + b j (25) v ii (, T ) = v i (, T ). (7),,. n P[τ 1 > T,... τ n > T F ] = exp µ i (, T ) + 1 n n v ij (, T ) (26) 2 i=1 i=1 j=1 Cov(1 {τi T }, 1 {τj T } F ) Cov(1 {τi>t }, 1 {τj>t } F ), (8) Cov(1 {τi T }, 1 {τj T } F ). { Cov(1 {τi T }, 1 {τj T } F ) = exp (µ i (, T ) + µ j (, T )) + v } i(, T ) + v j (, T ) (exp {v ij (, T )} 1). 2, V ar(1 {τi T } F ) = P[τ i T F ]P[τ i > T F ], (9),. (9),. (23) (24) ρ(1 {τi T }, 1 {τi T } F ) = exp {v ij (, T )} 1 (exp {vii (, T )} 1)(exp {v jj (, T )} 1) (27) 71

4.4 (11) OU h i ().,., h i (). 3. RT, δ i = (1 L i ())X 0 (). L i () = L i. h i. i (i = 1,..., n), ˆr(). Kijima [17], lim T i (, T ) = ˆr i () r 0 (), (6),(24),. ˆr i () r 0 () = (1 δ i )h i () (28) δ i.,,., h i ()., 6, ( ). h i () P., OU. OU, GMM,. h(),, GMM,.,., h() SUR GLS.,,., P h i (). h i ( + ) h i () = b i ( h i h i ()) + σ ϵ i (29), ϵ i (i = 1, 2,..., n) 0, E[ϵ i ϵ j ] = ρ ij (i j). h i0 = h i (), h i1 = h i ( + ),..., h ik = h i ( + k ),..., h ik = h i ( + K ). 1/250.,. h ik+1 h ik = b i ( h i h ik ) + σ i ϵik (i = 1, 2,..., n, k = 0, 1,..., K). (30), h i., h i h i (), h i h ik (k = 0,... K).. Y ik = b i Z ik + u ik (31) Y ik = h ik+1 h ik., Z ik = ( h i h ik ). u ik 0, σi 2.., h() SUR. Y i = Z i b i + u i (i = 1,..., n) E[u ik ] = 0 (i = 1,..., n, k = 0,..., K) E[u 2 ik ] = σ2 i (i = 1,..., n, k = 0,..., K) E[u ik u jk ] = σ i σ j ρ ij (i, j = 1,..., n, k = 0,..., K) E[u ik u jl ] = 0 (if k l) 6,,. (32) 72

Y i = (Y i1,... Y ik ), Z i = (Z i1,... Z ik ), u i = (u i1,... u ik ). Y i Y j (i, j = 1,..., N, i j)., GLS b i, σ i, ρ ij. P h, (9) P 7. β, h i. β,, (24). 5,., Bloomberg,.,,.. δ i = 0.5 (i = 1, 2,..., n)., β i = 0 (i = 0, 1,..., n)., ( ) 8., β = 0, P h() P h().,,,.,,., (McCulloch[23]). 5.1 (11) OU. Bloomberg 1998 9 2003 9.,,,,. 25., 4.., h(), h = 0.0036, b = 25.4669, σ = 0.0038, h = 0.0066, b = 1.3188, σ = 0.0032., ρ = 0.1997. 2 25. 2003 9 1.,, h = 0.0302, b = 2.8461, σ = 0.0138., 2 ρ = 0.4 0.8., BB, h = 0.0858, b = 0.3175, σ = 0.0283, A, h = 0.0058, b = 3.4078, σ = 0.0063.,., BB b,, h()., 5. β = 0, P.,. 7, h. P h h (9),. 8,. 73

0.45 0.4 新日本石油株式会社 麒麟麦酒株式会社 ) ) ( S ( ムアミレプのトーレトッポス 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0 001/10/23 001/11/23 001/12/23 002/1/23 002/2/23 002/3/23 002/4/23 002/5/23 002/6/23 002/7/23 002/8/23 002/9/23 002/10/23 002/11/23 002/12/23 003/1/23 003/2/23 003/3/23 003/4/23 003/5/23 003/6/23 003/7/23 003/8/23 003/9/23 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4:. 2001 10 23 2003 9 23. h(), h = 0.0036, b = 25.4669, σ = 0.0038, h = 0.0066, b = 1.3188, σ = 0.0032., ρ = 0.1997. S() = ˆr() r 0 (), S(). 2: Bloomberg 1998 9 2003 9 25. 2003 9 1. (h) (b) (σ).0302 2.8461.0138 A.0058 3.4078.0063 BBB.0155 1.9728.0081 BB.0858 -.3175.0283 74

35 ( % ) 30 全体 A 以上 BBB BB 以下 ) ] T 25 [τ P ( 率 20 確トルォフ15 デ ドイラ10 プンイ 5 0 1 2 3 4 5 期間 ( T ) ( 年 ) 5:. Bloomberg 1998 9 2003 9 25,., h(0) h. 2003 9 1.,,.,. 5.2,,, 1. 25 10 ( ), 10,.,. 3., 4, 5. 0.1 0.6.,, 0.4 0.8. 1.5%, (5),.,,,.,,,.. 5.3 6. 5.. ρ ij ρ(1 {τi T }, 1 {τi T } F ), B. 75

3: Bloomberg 1998 9 2003 9. (h) (b) (σ) (P [τ 1]) 1.0106.4572.0050.0178 2.0060 1.0624.0046.0101 3.0110-1.1132.0052.0272 4.0093.0768.0050.0171 5.0091 1.3629.0062.0137 6.0080 3.3173.0052.0097 7.0085.2988.0050.0126 8.0054 4.1091.0047.0063 9.0081 1.3360.0051.0113 10.0127 -.0011.0052.0208.0089 1.0906.0051.0147 4:. Bloomberg 1998 9 2003 9 25 10. 1 2 3 4 5 6 7 8 9 10 1 1.3559.0962.1736.2817.3779.3657.5539.6835.1528 2.3559 1.1751.1309.6189.6010.6426.4118.3621.4354 3.0962.1751 1.0658.2032.2329.2074.0551.0982.1234 4.1836.1309.0658 1.1029.1039.1719.2796.2553.0999 5.2817.6159.2032.1028 1.5706.5775.2761.2839.4641 6.3779.6010.2329.1039.5706 1.7057.3050.2969.2979 7.3657.6426.2074.1719.5775.7057 1.3971.3661.3947 8.5539.4118.0551.2798.2761.3050.3971 1.7932.2188 9.6835.3621.0982.2553.2839.2969.3661.7932 1.2062 10.1528.4354.1234.0999.4641.2979.3947.2166.2062 1 76

5:. Bloomberg 1998 9 2003 9. 1 2 3 4 5 6 7 8 9 10 1 1.7493.7193.6113.4913.5707.6836.6091.5730.5925 2.7493 1.7381.6131.5546.6410.7696.7248.6385.5575 3.7193.7381 1.6058.4997.5714.7463.6043.5966.5909 4.6113.6131.6058 1.4224.5457.6099.5449.5164.7726 5.4913.5546.4997.4224 1.6232.5314.5811.6285.4098 6.5707.6410.5714.5457.6232 1.6590.7392.7980.5030 7.6836.7696.7463.6099.5314.6590 1.7109.6768.5594 8.6091.7248.6043.5449.5811.7392.7109 1.6999.4844 9.5730.6385.5966.5164.6285.7980.6768.6999 1.4783 10.5925.5575.5909.7726.4098.5030.5594.4844.4783 1 6:. Bloomberg 1998 9 2003 9. 1 2 3 4 5 6 7 8 9 10 1 1.7552.7505.6201.4997.5878.6905.6323.5807.6022 2.7552 1.7800.6232.5602.6511.7766.7402.6427.5686 3.7505.7800 1.6327.5361.6365.7750.6829.6374.6172 4.6201.6232.6327 1.4333.5688.6188.5734.5274.7800 5.4997.5602.5361.4333 1.6329.5411.5937.6337.4215 6.5878.6511.6365.5688.6329 1.6809.7409.8070.5265 7.6905.7766.7750.6188.5411.6809 1.7407.6857.5693 8.6323.7402.6829.5734.5937.7409.7407 1.7124.5121 9.5807.6427.6374.5274.6337.8070.6857.7124 1.4901 10.6022.5686.6172.7800.4215.5265.5693.5121.4901 1 77

6,,,.,..,,.,,.,., OU,,.,.,,.., P GLS,, h., h,.. A (5), (5). RT, (L() = L), δ 1 L,,. X(, T ) = 1 {τ>} Ẽ [ exp { H 0 (, T )} { δ + (1 δ)1 {τ>t } } F ],. X(, T ) = 1 {τ>} Ẽ [ exp { H 0 (, T )} { } ] δ + (1 δ)1 {τ>t } F = 1 {τ>} X 0 (, T ) {δ + (1 δ)ẽ [ ] } 1 {τ>t } F { = 1 {τ>} X 0 (, T ) δ + (1 δ) P } [τ > T F ] { } = 1 {τ>} X 0 (, T ) δ + (1 δ)ẽ [exp { H(, T )} G ] (A1) (7), (7)., T G T, H, G T H, h i ()., {τ i > } (i = 1, 2,..., n),. P[τ i > T G T H ] = exp { H i (, T )} [31]. (0 T ). {τ i > } (i = 1, 2,..., n), P[τ i > T F ] = E [P [τ i > T G T H ] F ] = E [exp { H i (, T )} F ] 78

.,. P[τ 1 > 1,, τ n > n G T H ] = n P[τ i > i G T H ], T,,., Soyanov [24].,. {τ i > } (i = 1, 2,..., n), i=1 P[τ 1 > 1,, τ n > n F ] = E [P[τ 1 > 1,, τ n > n G T H ] F ] [ n ] = E P[τ i > i G T H ] F i=1 [ n ] = E exp { H i (, i )} F i=1 [ { ] n = E exp H i (, i )} F i=1 [ { ] n = E exp H i (, i )} G. (A2), (G T H ) (G H ) = F.,. exp { n i=1 H i(, i )} H. B. i=1 B(b i, b j, σ i, σ j,, T ) σ iσ j b i b j ( T 1 exp{ b i(t )} 1 exp{ b j(t )} + 1 exp{ (b ) i + b j )(T )} b i b j b i + b j, (25),. T 1 v ij (, T ) = σ i σ j (1 exp{ b i (T )}) 1 (1 exp{ b j (T )}) ρ ij ds b i b j ( σ i σ j = ρ ij T 1 exp{ b i(t )} 1 exp{ b j(t )} + 1 exp{ (b ) i + b j )(T )} b i b j b i b j b i + b j ρ ij B(b i, b j, σ i, σ j,, T ) v ii (, T ) = v i (, T )., ρ ij ρ ij., ρ(1 {τi T }, 1 {τi T } F ) = exp {ρ ijb(b i, b j, σ i, σ j,, T )} B(b i, b j, σ i, σ j,, T ) ρ ij (exp {vii (, T )} 1)(exp {v jj (, T )} 1) (B3), ρ ij, ρ ij., B(b i, b j, σ i, σ j,, T ) ρ ij = 1. ρ ij = 1.,,.,, ρ ij 1, ρ ij 1. 79

[1] Aonuma, K., and Nakagawa, H., Valuaion of Credi Defaul Swap and Parameer Esimaion for Vasicek-pe Hazard Rae Model., Working paper. [2] Basel Commiiee on Banking Supervision. (1999). Credi Risk Modelling: Curren Pracice and Applicaion. [3] Basel Commiiee on Banking Supervision. (2003). The New Basel Capial Accord, Third Consulaive Paper. [4] Collin-Dufresne,P., R.S.Goldsein, and J.Hugonnier. (2003) A general formula for valuing defaulable securiies. Working paper, CMU. [5] Duffie, D. (1998) Firs-o-Defaul Valuaion. Working paper, Sanford Universiy. [6] Duffie, D., J. Pan, and Singleon, K.. (2000) Transform Analysis and Asse Pricing for Affine Jump Diffusions. Economerica, 68, 1343-1376. [7] Duffie, D., and Singleon, K. (1999). Modeling erm srucures of defaulable bonds. Review of Financial Sudies, 12, 687-720. [8] Duffie, D., and Singleon, K. (1999). Simulaing credi correlaion., Workingpaper, GSB, Sanford Universiy. [9] Duffie, D., and Singleon, K. (2003). Credi Risk: Pricing, Managemen, and Measuremen (Princeon Series in Finance), Princeon Universiy Prress. [10] Giesecke, K. (2004). Credi risk modeling and valuaion: an inroducion in Credi Risk: Models and Managemen, 2, Edied by D. Shimko, Riskbooks, London. [11] Giesecke, K., and Weber, S. (2003). Cyclical correlaions, credi conagion, and porfolio losses. o appear in Journal of Banking and Finance. [12] Giesecke, K., and Weber, S. (2003). Correlaed defaul wih imcomplee informaion. o appear in Journal of Banking and Finance. [13] Gordy, M.B. (2003). A risk-facor model foundaion for raing-based bank capial rules. Journal of Financial Inermediaion, 12, 199-232. [14] Jacobson, T., and Roszbach, K. (2003). Bank lending policy, credi scoring and value-a-risk. Journal of Banking and Finance, 27, 615-633. [15] Jarrow, R.A., and Turnbull, S.M. (1995). Pricing derivaives on financial securiies subjec o credi risk. Journal of Finance, 50, 53-86. [16] JP Morgan. (1997). CrediMerics Technical Documen. JP Morgan, New York. [17] Kijima, M. (1999). A gaussian erm srucure model of credi risk spreads and valuaion of yield-spread opions., Workingpaper, Tokyo Meropolian Universiy. [18] Kijima, M. (2000). Valuaion of a credi swap of he baske ype. Review of Derivaives Research, 4, 79-95. [19] Kijima, M., and Muromachi,Y. (2000). Credi evens and he valuaion of credi derivaives of baske ype. Review of Derivaives Research, 4, 53-77. [20] Kijima, M., and Muromachi,Y. (2000). Evaluaion of credi risk of a porfolio wih sochasic ineres rae and defaul processes. Journal of Risk, 3(1),5-36. [21] Kusuoka, S., A remark on defaul risk models. Advances in Mahemaical Economics 1, 69-82, 1999 [22] Meron, R. (1974). On he pricing of corporae deb: The risk srucure of ineres raes. Journal of Finance, 29, 449-470. 80

[23] McCulloch, J.H. (1971) Measuring he erm srucure of ineres raes. Journal of Business, 44, 19-31. [24] Soyanov, J. (1987). Counerexamples in Probabiliy. Wiley, New York. [25] M. Jeanblanc and Rukowski, M. (2000). Modeling defaul risk: Mahemaical ools. Universie d Evry and Warsaw Universiyof Technology. [26] Vasicek, Oldrich. (1977). An Equilibrium Characerizaion of he Term Srucure, Journal of Financial Economics, 5, 177-188. [27],. (1999).,. [28]. (2004).,. [29],,. (2001).,. [30]. (2002).., 50(2), 217-240. [31],, 2001 [32],, 1991 [33],,. (2003)... 81