タイトル

Similar documents
untitled

MOSFET HiSIM HiSIM2 1

PowerPoint プレゼンテーション

untitled

untitled

スライド 1

devicemondai

Part () () Γ Part ,

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

1/68 A. 電気所 ( 発電所, 変電所, 配電塔 ) における変圧器の空き容量一覧 平成 31 年 3 月 6 日現在 < 留意事項 > (1) 空容量は目安であり 系統接続の前には 接続検討のお申込みによる詳細検討が必要となります その結果 空容量が変更となる場合があります (2) 特に記載

(4.15a) Hurwitz (4.15a) {a j } (s ) {a j } n n Hurwitz a n 1 a n 3 a n 5 a n a n 2 a n 4 a n 1 a n 3 H = a n a n 2. (4.16)..... a Hurwitz H i H i i H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

genron-3


研究成果報告書

Note.tex 2008/09/19( )


熊本県数学問題正解

橡Taro11-卒業論文.PDF

Conduction Mechanism at Low Temperature of 2-Dimensional Hole Gas at GaN/AlGaN Heterointerface (低温におけるGaN/AlGaN ヘテロ界面の2 次元正孔ガスの伝導機構)

42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 =

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

B1 Ver ( ), SPICE.,,,,. * : student : jikken. [ ] ( TarouOsaka). (, ) 1 SPICE ( SPICE. *1 OrCAD

The Physics of Atmospheres CAPTER :

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

窒化アルミニウムによる 高効率フィールドエミッションを実現 ディスプレイパネル実用レベルのフィールドエミッション特性

2001 Mg-Zn-Y LPSO(Long Period Stacking Order) Mg,,,. LPSO ( ), Mg, Zn,Y. Mg Zn, Y fcc( ) L1 2. LPSO Mg,., Mg L1 2, Zn,Y,, Y.,, Zn, Y Mg. Zn,Y., 926, 1

F8302D_1目次_ doc

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100


2

IMO 1 n, 21n n (x + 2x 1) + (x 2x 1) = A, x, (a) A = 2, (b) A = 1, (c) A = 2?, 3 a, b, c cos x a cos 2 x + b cos x + c = 0 cos 2x a

pdf

LMC7101/101Q Tiny Low Pwr Op Amp w/Rail-to-Rail Input and Output (jp)

P F ext 1: F ext P F ext (Count Rumford, ) H 2 O H 2 O 2 F ext F ext N 2 O 2 2

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)


PowerPoint Presentation

I 1

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

i

From Evans Application Notes

空き容量一覧表(154kV以上)

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

( )

2/8 一次二次当該 42 AX 変圧器 なし 43 AY 変圧器 なし 44 BA 変圧器 なし 45 BB 変圧器 なし 46 BC 変圧器 なし

2004/4/16 (Power Technology) O 2 ( ) (Information Technology) ( ) Gas (4H) GaN andgap (ev) Electron mobility (cm 2 /Vs)

Triple 2:1 High-Speed Video Multiplexer (Rev. C

PowerPoint Presentation

スライド 1


1: *2 W, L 2 1 (WWL) 4 5 (WWL) W (WWL) L W (WWL) L L 1 2, 1 4, , 1 4 (cf. [4]) 2: 2 3 * , , = , 1


2 Chapter 4 (f4a). 2. (f4cone) ( θ) () g M. 2. (f4b) T M L P a θ (f4eki) ρ H A a g. v ( ) 2. H(t) ( )

(1) (2) (1) (2) 2 3 {a n } a 2 + a 4 + a a n S n S n = n = S n

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x



() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

0.1 I I : 0.2 I

36 th IChO : - 3 ( ) , G O O D L U C K final 1

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

W 1983 W ± Z cm 10 cm 50 MeV TAC - ADC ADC [ (µs)] = [] (2.08 ± 0.36) 10 6 s 3 χ µ + µ 8 = (1.20 ± 0.1) 10 5 (Ge

4_Laser.dvi

LT 低コスト、シャットダウン機能付き デュアルおよびトリプル300MHz 電流帰還アンプ

Transcription:

4 AlGaN/GaN HEMT

AlGaN/GaN HEMT.6 7 cm/s 3.4 ev 3 6 V/cm FET AlGaN/GaN HEMT FET FET FET ( ). V -8 V ( ) SiO FET SiO FET SiO FET SiO AlGaN 4 cm -.5 ev.5 ev Id-Vg..5 ev( ) Id-Vg ( 3).5,. ev AlGaN Id-Vg SiO/AlGaN OFF SiO AlGaN/GaN HEMT (a) 4 (b) SiO 3 V ds =.V DEG GaN FET (a) (b) I d [ A] SiO SiO 5 V g [V] Id-Vg I d [ A] 5 E T =.5eV.eV Metal Gate..5eV 8 6 4 V g [V] 3

FET FET FET FET I-V FET I-V

C-V TLM 3

947 948 John Bardeen Walter Brattain Point-Contact Transistor William Shockley [] (Si) [] Si 7 cm/s (GaAs) (InP) (GaN) (SiGe) InP HEMT(High Electron Mobility Transistor) (f T ) 5GHz SiGe HBT(Heterojunction Bipolar Transistor) 35GHz Si MOSFET(Metal Oxide Semiconductor Field Effect Transistor).3 m 5mV Si nm GaN Si Si Si [3] 993 MESFET(Metal Semiconductor Field Effect Transistor) M. Asif Khan [4] AlGaN/GaN HEMT [5].6 7 cm/s GaAs. m GHz [6] 3.4eV 3 6 V/cm 3W 3.5W/mm [7] 4

3 IMT International Mobile Telecommunication GHz LAN Local Area Network Bluetooth.4GHz IEEE8.a 5GHz FWA( 6GHz Gbps FET [8] [9] [] AlGaN/GaN HEMT FET 3 FET 4 FET AlGaN/GaN HEMT / 5 4 6 5

[] Si NSS(E)[cm - ev - ] FET OFF [] [] [3] Si GaAs 6

GaN (ET) ( ) (NT) DLTS(Deep Level Transient Spectroscopy) C-V(Capacitance-Voltage) XPS(X-ray Photoelectron Spectroscopy) DLTS MIS(Metal Insulator Semiconductor) C-V MIS C-V C-V XPS X FET 7

FET FET AlGaN/GaN HEMT 3. 3. 33 m MOCVD(Metal-Organic Chemical Vapor Deposition) GaN m 6,3% AlGaN 3nm A A B B 3. RIE(Reactive Ion Etching) Ti/Al /nm 65 SiO 6nm Ni/Au 5/6nm 3. A B [ m] [cm -3 ] [ m] [cm -3 ] Undoped-AlGaN Al=.6.3 Al=.3.5 Undoped-GaN 33 33 8

RIE) 6nm Ti/Al /nm) N,65 min 3. SiO 6nm) Ni/Au 5/6nm) 3. 9

(SiO) (a) MES (b) MIS 3.3 4 m MESFET MISFET 3.3 5 m 4 m Id-Vd 3.4 3.4 A,B MES MIS A gd 5V 5 V Id-Vg 3.5 3.5 A,B MIS MES SiO MIS SiO MES SiO 5 6pF (gm)

V g : to 8V, V step V g : to 8V, V step 5 (a) 5 (b) I d [ma] I d [ma] 5 5 5 5 V d [V] V g : to 8V, V step 5 V d [V] V g : to 8V, V step 5 5 (c) 5 (d) I d [ma] I d [ma] 5 5 5 5 V d [V] 5 V d [V] 5 3.4 Id-Vd (a) A MES (b) A MIS (c) B MES (d) B MIS g m µ WC i = Vd (3.) L g m µ WCi = ( Vg VT ) L (3.) (gm: : W: L: Ci: Vd: Vg: VT: )

3.6 3.6 MIS khz gm SiO 5.6 9 cm AlGaN ev AlGaN 6 3 cm 3.7 A 4cm /Vs B 4cm /Vs I d [A] 3 4 (a) I d g m V d =V V d =V V d =.V 5 g m [ms/mm] I d [A] 3 4 (b) I d g m V d =V V d =V V d =.V 5 g m [ms/mm] 5 5 V d =.V 6 5 V g [V] V d =.V 6 5 V g [V] I d g m V d =V I d g m V d =V I d [A] 3 4 (c) V d =.V 5 g m [ms/mm] I d [A] 3 4 (d) V d =.V 5 g m [ms/mm] 5 V d =V 5 V d =V 6 V d =.V 5 V g [V] 6 V d =.V 5 V g [V] 3.5 Id-Vg (a) A MES (b) A MIS (c) B MES (d) B MIS

L g =4 m W g =5 m V d =V, V g = 4V.5 STDFET g m [ms].5 MISFET 4 6 Frequency [Hz] 3.6 B C-V 3.8 A 6 B 6 C-V 3.9 A,B AlGaN/GaN cm -3 nm 6 cm -3 AlGaN/GaN 3 (a) 3 (b) Mobility [cm /Vs] Mobility [cm /Vs] 8 6 4 V g [V] 8 6 4 V g [V] 3.7 (a) (b) A B 3

Capacitance [pf] 8 6 4 (a) 6 6 Phase [degree] Capacitance [pf] 8 6 4 (b) 6 6 Phase [degree] 8 6 4 Voltage [V] 3.8 C-V (a) A (b) B 8 6 4 Voltage [V] GaN (RC) TLM(Transmission Line Model) ( 3 ) 3. 3. A (RS) 464 /.38 mm B.6 3 / 35. mm (a) (b) Carrier Conc. [cm 3 ] 8 6 Carrier Conc. [cm 3 ] 8 6 4 4 6 Depth [nm] 4 4 6 Depth [nm] 3.9 (a) A (b) B 4

5 Rs=464 [ ] Rc=.38[ mm] 6 Rs=.6 3 [ ] Rc=35. [ mm] Resistance [ ] 5 R=R s /W L+R c /W Resistance [ ] 8 4 R=R s /W L+R c /W (a) 3 4 Length [ m] (b) 3 4 Length [ m] 3. TLM (a) A (b) B 5

FET XPS MISFET C-V Terman FET FET FET FET 4. FET FET m m 4 m FET SiO FET SiO FET (a) (b) SiO DEG GaN 4. FET (a) (b) 6

FET I-V A,B Id-Vd 4. MES ( 4.(a),(d)) A,B FET ( 4.(b),(e)) FET ( 4.(c),(f)) A Id-Vd B FET Id-Vg 4.3 A MES Id-Vg FET SiO SiO B MES SiO FET A SiO FET A SiO gm FET (gm) g m µ WCiVd = (4.) L ( : W: Ci: Vd: L: ) SiO FET SiO FET g mwp W wp = Wnp (4.) g mnp 7

Vg : to 8V, V step (a) V g : to V, V step (d) I d [ma] I d [ma] 5 5 V d [V] 5 V d [V] 5 V g : to V, V step (b) (e) I d [ma] I d [ma] V g : to 8V, V step 5 5 V d [V] 5 V d [V] 5 V g : to 8V, V step V g : to V, V step (c) (f) I d [ma] I d [ma] 5 5 V d [V] 5 5 V d [V] 4. FET Id-Vd (a) A MES (b) A (c) A (d) B MES (e) B (f) B (Wwp:SiO Wnp:SiO gmwp:sio 8

4 V ds =.V 4 V ds =.V 3 (a) 3 (b) I d [ A] SiO SiO 5 V g [V] I d [ A] SiO SiO 5 5 V g [V] 4.3 FET Id-Vg (a) A (b) B gmnp:sio ) (4.) Wnp=6 m gmwp=.6-6 S gmnp=5. -7 S Wwp=.7 m ~7 m A,B SiO/AlGaN [] Shockley-Read-Hall(SRH) f T dft dt = nc f ) e f pc f + e ( f ) (4.3) n ( T n T p T p T (t: n: p: Cn: Cp: en: ep: ) 9

(4.3) df T /dt= f T f T ncn + pc p = (4.4) C n + n ) + C ( p + p ) n ( p 4 f T (Efn) (Efp) 4...5eV f T 4.4(a) (e) 4. f T (Eg) 3.4 [ev] (me).8 (mp).6 (NC).74 8 [cm -3 ] (NV).7 9 [cm -3 ] ( e) -3 [cm ] ( p) -3 [cm ] 4.4(a)~(e)..5eV f T..5eV.7eV (ET) n (HT)

(a) ET=.eV (b) ET=.5eV ft ft.8.8.6.6.4.4..5 EV.5 Efn [ev].5.5.5.5 3 3.5 EC Efp [ev] 3 3.5 EC EV..5 EV.5 Efn [ev].5 3 3.5.5 EV EC.5.5 3 3.5 EC Efp [ev] ET=.7eV ET=.eV ft (c) ft (d).8.8.6.6.4.4. EV.5.5 Efn [ev].5 3 EC 3.5.5 3 EC.5.5 Efp [ev] 3.5 EV.. 5 EV.5 Efn [ev].5 3 3.5 EC.5 EV.5.5 3 3.5 EC Efp [ev] ET=.5eV.8 ft (e) 4.4 f T.6.4 (a)et=.ev (b)et=.5ev..5 EV.5 Efn [ev].5 3 3.5.5 EC EV 3.5.5.5 3 EC Efp [ev] (c)et=.7ev (e)et=.5ev (d)et=.ev p n-et-n n-ht-n p-et-p p-ht-p n-et-n n ( 4.5(a)) n-ht-n p pn ( 4.5(b)) p-et-p pn ( 4.5(c)) p-ht-p

(a) n (b) HT n ET n EC n EC EF EV EC (c) p ET p EF EV EC (d) p HT p EF EV EF EV 4.5 pn (a)n-et-n (b)n-ht-n (c)p-et-p (d)p-ht-p ( 4.5(d)) FET I-V SiO FET SiO FET SiO AlGaN ( 4.6(a)) ( 4.6(b)) N P

(a) (b) B =.8eV E C B =.8eV E C E F.6eV E F.6eV E V E V 4.6 (a) (b) N P n p FET FET ( 4.7) DEG V AlGaN DEG 4.8 N P SiO/AlGaN (ET) (HT) 4 N SiO/AlGaN ( 4.8(a)) n - -DEG n-n-n P ( 4.8(b)) p-n-n pn AlGaN DEG N ( 4.8(c)) n-p-n pn 3

Ec Ef AlGaN GaN AlGaN GaN Ev ET,HT (a) (b) AlGaN DEG n 4.7 FET (c) (d) 4.8 FET (a)n-e-n (b)p-e-n (c)n-h-n (d)p-h- AlGaN DEG P ( 4.8(d)) p-p-n DEG FET 4.9 N-ET-n P-ET-n DEG ( 4.9(b)) N-HT-n P-HT-n ( 4.9(c)) FET Id-Vg 4. N-HT-n P-HT-n FET P-ET-n VTV N-ET-n AlGaN pn 4

N,P E,H AlGaN Id DEG n P-E-n Vg s ( ) fn ( ) N-E-n N-H-n VT Vg Vg s fn 4. FET Id-Vg 4.9 (a) FET (b) N-E-n P-E-n (c) N-H-n P-H-n GR ( 4.3) ( 4.) SiO FET N-HT-n P-HT-n N-ET-n AlGaN FET AlGaN.3 SiO N-ET-n P-ET-n AlGaN AlGaN SiO N-HT-n P-HT-n 5

GaAs.8eV [] GaN.8eV FET HT pn AlGaN - - N-HT-N P-HT-P 4. N-HT-N P-HT-P V g N-HT-N g g g g g P-HT-P g g g 4. FET Id-Vg 4.3.V g V -V -4V -6V -8V g V 4. 4.3 SiO FET N-HT-N Ec Ef Ev (a) Ec Ef Ev (b) 4. FET (a)p-h-p (b)n-h-n 6

P-H-P Id I d [ A] 4 V d =.V V g =V V N-H-N Vg=Vg Vg 4. Id-Vg 4V 6V 8 6 4 V g [V] 4.3 Id-Vg FET AlGaN/GaN HEMT SiO SiO SiO FET SiO AlGaN 7

4 FET 5 ISE DESSIS 3 FET 3 DESSIS Si LSI GaAs 8

5. AlGaN/GaN HEMT AlGaN. 3nm GaN m AlGaN/GaN 3 cm - AlGaN GaN 4 cm -3 FET m 5 m.6 m 3.8 m SiO 6nm AlGaN/GaN Z Y X Gate SiO AlGaN GaN Source 5. 9

ev -3 cm SiO AlGaN 4 cm - SiO/AlGaN 5 3 cm -.V.5eV.5eV Vg -8V Id-Vg 5. FET -5.V gm.3 I d [ A] 5 E T =.5eV.eV Metal Gate..5eV 8 6 4 V g [V] 5. (Id-Vg ) 3

-5 S gm g µεε W = (5.) dl m V d ( : :AlGaN : d:algan W: L: Vd: ) gm (5.).5.eV..5eV 5 m 5.3 V.eV,.5eV V Energy [ev] 5 Gate 4 3 (a) 3 4 SiO /AlGaN Gate E C E F E V 5 3 4 5 X [ m] Energy [ev] 5 4 (b) 3 3 Gate 4 SiO /AlGaN E C E F E V Gate 5 3 4 5 X [ m] Energy [ev] 5 4 (c) Gate 3 3 4 SiO /AlGaN Gate E C E F E V 5 3 4 5 X [ m] 3 Energy [ev] 5 4 (d) 3 3 Gate 4 SiO /AlGaN 5 3 4 X [ m] 5.3 ( ) (a) ET=.eV, Vg=V (b) ET=.eV, Vg=-V (c) ET=.5eV, Vg=V (d) ET=.5eV, Vg=-V E C E F E V Gate 5

-V.eV V ev.5ev V.eV X=.6,4.4 m V X=.6,4.4 m.v 5.4 5.4 V.eV.5eV AlGaN/GaN cm- 3 (a) (b) (c) (d) 5.4 (Y=5. m) (a) E T=.eV Vg=V (b) ET=.eV g V =-6V (c) E T=.5eV g V =V (d) E T=.5eV g V =-6V 3

-6V.eV.5eV.eV -6V.5eV 4 cm - -3 cm 33

FET AlGaN/GaN HEMT SiO/AlGaN FET Id-Vg SiO FET AlGaN SiO FET SiO/AlGaN 4 FET 4 SiO/AlGaN OFF SiO 4 SiO 4 cm SiO 34

AlGaN/GaN HEMT RIE(Reactive Ion Etching) Ti/Al EB EB Ni/Au 35

3min 3min HPR83,5rpm(5sec)/3rpm(5sec)) (, 4min) 5sec MIF:H O=:3, 6sec 3 RIE BCl 3, SCCM; (8, 8min) 5W;.5minutes 4, ( ) 3min 3. 36

HPR83,5rpm(5sec)/3rpm(5sec)) (, 4min) 5sec MIF:H O=:3, 6sec (8, 8min) 5W, 4sec HCl:H O = :, min 3 EB Ti= 4 3min 3min 5 65, min, N 4. 37

HPR83,5rpm(5sec)/3rpm(5sec)) (, 4min) 5sec MIF:H O=:3, 6sec (8, 8min) 3 EB SiO,6 4 3.4 5. HPR83,5rpm(5sec)/5rpm(5sec)) (, 4min) 5sec MIF:H O=:3, 6sec (8, 8min) 5W, 4sec HCl:H O = :, min 3 EB Ni=5 Au=5 4 3.4 38

C-V C-V C-V ( ) AlGaN/GaN HEMT AlGaN AlGaN AlGaN n-gan AlGaN/GaN HEMT ( ) n-gan ε C = t GaN ε S depletion t = depletion ε GaNε V qn D bi kt q () ( ) AlGaN/GaN HEMT ε AlGaNε S C = () t AlGaN (C: : GaN:GaN AlGaN:AlGaN S: tdepletion: talgan:algan q: ND: Vbi: k: T: ) C-V Meter C G Y 39

n-gan S= m Vbi=.V ND= 7 cm -3 tdepletion=nm C=8pF C-V d V dy = qn D ε (3) (3) V () = dv dy y= W =, V ( W ) = V (4) (3) V qn D = ε y qn DW + ε y (5) W W = ε V qn D bi V kt q (6) ε C = = W V bi εqn D kt V q (7) C = εqn D V bi V kt q (8) /C -V 8 4

d C dv = εqn D (9) /C V (7) W= /C /C ND[cm -3 ] (/C )/dv Vg 3 /C -Vg Depth[nm] 4 4

3 TLM TLM(Transmission Line Model) GaN TLM TLM TLM (RS) (RC) (L) (W) (R) R L RC R = + () W W S L x R y y RC/W RS ( 3) RC 5 m m 5 m m 5 m 3 m TLM R RC RS RC =RC/W =Rs/W 3 L-R L 4

MOSFET 4 W[ cm] C[ cm ] RS[ ] V[V] 4 5 R dx I W S dv = (x) () W di = ρ C dx V ( x) (3) R dv = S I ( x) (4) dx W di W = dx ρ C V ( x) (5) (4) V [V] W [mm] c [ cm ] Rs [ ] 4 FET 43

+x V(x)+dV c /(Wdx) V(x) di I(x)-dI Rs dx/w I(x) 5 d V dx R = S I ( x) (4 ) W (4 ) (5) d V dx R = S V( x) (6) ρ C Rs/ c V γx γx ( x) = Ae + Be (7) - V(x) x= V=V A= B=V (7) V γx ( x) = Ve (8) I(x) (5) di dx W γx = Ve (9) ρc I x W V e γx ( ) = () ρcγ (8)() x= R V ( x) R = = I( x) ρc = W R ρ s c = V W V ρ γ c R ρ s W c ρ cγ = W () 44

W R = ρ [ mm] () C R S C () 45

4 (f T ) (e-capture) (e-emit) (p-capture) (p-emit) 4 4 ( ) e-capture dft dt = nc f ) () n ( T ( ) e-emit dft dt = e f () n T (i) (ii) ( ) p-capture dft dt = pc f (3) p T (iv) (iii) ( ) p-emit dft dt = e f ) (4) p ( T (f T : t: n: p: Cn: Cp: en: ep: ) Cn= nvthn Cp= pvthp n: p: vthn:vthp: 3kT/=mevthn /=mpvthp / 4 dft dt = nc f ) e f pc f + e ( f ) (5) n ( T n T p T p T :EF 46

+ = kt E E f F T T exp (6) (ET: ) T n T T n T f e N f C nn dt dn + = ) ( (7) (NT: ) dn/dt= en T T n n f f nc e = (8) (8) (6) + + = kt E E kt E E C kt E E N e F T F T n F C C n exp exp exp (9) n F T F C C n C kt E E kt E E N e = exp exp () n n T C C n C n C kt E E N e exp = = () = kt E E N n T C C exp () en ( T p T T p T f e N f C pn dt dp = ) (3) 47

f E E = = N exp C = p C (4) T T V e p pc p V p ft kt EV ET p = NV exp (5) kt (5) () (4) p dft dt n ( ft ) n Cn ft pc p ft + pc p ( ft ) = nc (6) (df T /dt=) f T f T ncn + pc p = (7) C n ( n + n ) + C p ( p + p ) 48

5 49

[] S. M. Sze, Physics of Semiconductor Devices nd Edition, pp.33, A Wiley-Interscience publication, 98 [] R. H. Dennard, F. H. Gaensslen, N. H. Yu, V. L. Rideout, E.Bassou, anda. R. LeBlanc, "Design of ion-implanted MOSFETs with very small physicaldimension," IEEE J.Solid-State Circuits, SC-9, pp.56 (974) [3],, GaN,, 69 7 () [4] M. A. Khan, J. N. Kuznia, A. R. Bhattarai, and D. T. Olson, "Metal semicoductor field effect transistor based on single crystal GaN," Appl. Phys. Lett., Vol. 6, No. 5, pp.786-788, April 993 [5] M. A. Khan, J. N. Kuznia, D. T. Olson, W. J. Schaff, J. W. Burm, and M. S. Shur, "Microwave performance of a.5 um gate AlGaN/GaN heterostructure field effect transistor," Appl. Phys. Lett., vol. 65, no. 9, pp.-3, 9 Aug. 994 [6] V. Kumar, W. Lu, R. Schwindt, A. Kuliev, G. Simin, J. Yang, M. Asif Khan, and Ilesanmi Adesida,"AlGaN/GaN HEMTs on SiC With f T of Over GHz," IEEE Electron Device Letters, Vol. 3, No. 8, pp.455-457, Aug. [7] Y. Ando, Y. Okamoto, H. Miyamoto, N. Hayama, T. Nakayama, K. Kasahara, M. Kuzuhara, "A -W AlGaN/GaN HETEROJUNCTION FET ON THINNED SAPPHIRE SUBSTRATE," IEEE International Elec tron Devices Meeting (IEDM) Technical Digest, pp.7.3.-7.3.4, () [8] M. Asif Khan, X. Hu, A. Tarakji, G. Simin, J. Yang, R. Gaska, and M. S.Shur, "AlGaN/GaN metal-oxide-semiconductor heterostructure field-effect transistors on SiC substrates," Appl. Phys. Lett. Vol. 77 No. 9, pp.339-34 () [9] S. Binari, K. Ikosssi, J. Roussos, W. Kruppa, D. Park, H. Dietrich, D.Koleske, A. Wickenden, and R. Henry, "Trapping Effects and Microwave Power Performance in AlGaN/GaN HEMTs," IEEE Trans. Electron Devices, Vol. 48 No. 3, pp.465-47 5

() [] K. Kunihiro, Y. Takahashi and Y. Ohno, "Improvement of Off-State Breakdown Voltage in Power GaAs MESFETs Based on Accurate Simulation Scheme," 998 IEEE International Electron Devices Meeting (IEDM) Technical Digest, pp.7-74 (998) [],, ( ), pp.43-44,, 989. [] Y. Ohno, P. Francis, M. Nogome and Y. Takahashi, "Surface-States Effects on GaAs FET Electrical Performance," IEEE Transactions on Electron Devices, 46, p.4-9 (999) [3],,,, " GaAs MESFET," ED 9-4 (99) 5

.,,, FET AlGaN/GaN HEMT,, ED- (). Katsushi Nishino, Daigo Kikuta, Shiro Sakai, Bulk GaN growth by direct synthesis method, Journal of Crystal Growth, 37-39, pp.9-95 (). Jin-Ping Ao, Daigo Kikuta, Yasuo Ohno, Copper-Gate AlGaN/GaN HEMTs with Low Gate Leakage Current,, ED- () 9 6 FET AlGaN/GaN HEMT FET AlGaN/GaN HEMT 5