5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

Similar documents
W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1)

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

1 nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC


微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

( ) ( )


S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

DVIOUT

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

untitled

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

振動と波動

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

mugensho.dvi

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA appointment Cafe D

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

i

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (


2.2 ( y = y(x ( (x 0, y 0 y (x 0 (y 0 = y(x 0 y = y(x ( y (x 0 = F (x 0, y(x 0 = F (x 0, y 0 (x 0, y 0 ( (x 0, y 0 F (x 0, y 0 xy (x, y (, F (x, y ( (

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =



I 1

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

II 2 II

1 8, : 8.1 1, 2 z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = n i=1 a ii x 2 i + i<j 2a ij x i x j = ( x, A x), f =

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1


p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

ẍ = kx, (k > ) (.) x x(t) = A cos(ωt + α) (.). d/ = D. d dt x + k ( x = D + k ) ( ) ( ) k k x = D + i D i x =... ( ) k D + i x = or ( ) k D i x =.. k.

K E N Z OU

Note.tex 2008/09/19( )

D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y

chap1.dvi


phs.dvi

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

pdf

1 yousuke.itoh/lecture-notes.html [0, π) f(x) = x π 2. [0, π) f(x) = x 2π 3. [0, π) f(x) = x 2π 1.2. Euler α

2009 IA I 22, 23, 24, 25, 26, a h f(x) x x a h

body.dvi

Part () () Γ Part ,

webkaitou.dvi

Korteweg-de Vries

v er.1/ c /(21)

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

φ s i = m j=1 f x j ξ j s i (1)? φ i = φ s i f j = f x j x ji = ξ j s i (1) φ 1 φ 2. φ n = m j=1 f jx j1 m j=1 f jx j2. m

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

さくらの個別指導 ( さくら教育研究所 ) A 2 P Q 3 R S T R S T P Q ( ) ( ) m n m n m n n n

v_-3_+2_1.eps

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

数学演習:微分方程式

December 28, 2018

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

Sturm-Liouville Green KEN ZOU Hermite Legendre Laguerre L L [p(x) d2 dx 2 + q(x) d ] dx + r(x) u(x) = Lu(x) = 0 (1) L = p(x) d2 dx

08-Note2-web

QMI_10.dvi

x E E E e i ω = t + ikx 0 k λ λ 2π k 2π/λ k ω/v v n v c/n k = nω c c ω/2π λ k 2πn/λ 2π/(λ/n) κ n n κ N n iκ k = Nω c iωt + inωx c iωt + i( n+ iκ ) ωx

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1

熊本県数学問題正解

1 1 u m (t) u m () exp [ (cπm + (πm κ)t (5). u m (), U(x, ) f(x) m,, (4) U(x, t) Re u k () u m () [ u k () exp(πkx), u k () exp(πkx). f(x) exp[ πmxdx

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

() (, y) E(, y) () E(, y) (3) q ( ) () E(, y) = k q q (, y) () E(, y) = k r r (3).3 [.7 ] f y = f y () f(, y) = y () f(, y) = tan y y ( ) () f y = f y

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

Gmech08.dvi


A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

30 (11/04 )

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,,

1 X X A, B X = A B A B A B X 1.1 R R I I a, b(a < b) I a x b = x I 1.2 R A 1.3 X : (1)X (2)X X (3)X A, B X = A B A B = 1.4 f : X Y X Y ( ) A Y A Y A f

構造と連続体の力学基礎

IA

t (x(t), y(t)), a t b (x(a), y(a)) t ( ) ( ) dy s + dt dt dt [a, b] a a t < t 1 < < t n b {(x(t i ), y(t i ))} n i ( s(t) ds ) ( ) dy dt + dt dt ( ) d

Transcription:

5 5.1 [ ] ) d f(t) + a d f(t) + bf(t) : f(t) 1 dt dt ) u(x, t) c u(x, t) : u(x, t) t x : ( ) ) 1 : y + ay, : y + ay + by : ( ) 1 ) : y + ay, : yy + ay 3 ( ): ( ) ) : y + ay, : y + ay b [],,, [ ] au xx + bu xy + cu yy + du x + eu y + fu g(x, y) (5.1), a, b, c, d, e, f, g(x, y) (g(x, y) ), (5.1) au xx + bu xy + cu yy,,, λ aλ + bλ + c (5.) λ D b ac ( ax + bxy + cy 1,, ) (1) D > (hyperbolic type) () D (parabolic type) (3) D < (elliptic type),, u tt c u xx ( ) u t κu xx ( ) u xx + u yy (),, { u(x, t ), ut (x, t ) u(x, t), u(x, t)

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { ( u(ξ, η) c u(ξ, η) ξ u(ξ, η) η + ξ t η t u(ξ, η) u(ξ, η) c + ( c) ξ η ( ) u(ξ, η) u(ξ, η) c ξ η ( u(ξ,η) η ξ u(ξ, η) ξ ξ η ( c u(ξ, η) u(ξ, η) ξ ξ η ) u(ξ,η) ξ η )} u(ξ, η) ξ η t + η ξ )} { ( u(ξ, η) c + c η ξ ) + u(ξ, η) η { ( u(ξ, η) c u(ξ, η) η u(ξ, η) η c, η t c )} η t )} ( c) (5.5) (5.6), ξ x 1, η x 1 u(x, t) x u(ξ, η) ξ u(ξ, η) η + ξ x η x u(ξ, η) u(ξ, η) + ξ η (5.7) u(x, t) ( ) u(ξ, η) u(ξ, η) ξ + x ξ ξ η x + ( ) u(ξ, η) u(ξ, η) η + η ξ η x ( ) ( u(ξ, η) + u(ξ, η) ) u(ξ, η) + + u(ξ, η) ξ ξ η η ξ η u(ξ, η) + u(ξ, η) + u(ξ, η) (5.8) ξ ξ η η (5.6) (5.8) (5.3) u(ξ, η) ξ η (5.9) η u(ξ, η) ξ φ 1 (ξ) (5.1)

, φ 1 (ξ) ξ ξ u(ξ, η) φ 1 (ξ) dξ + ψ(η) (5.11), ψ(η) η 1,,, φ(ξ), u(ξ, η) φ(ξ) + ψ(η) (5.1) ( P.15[ 3] ) u(x, t) φ(x + ct) + ψ(x ct) (5.13), 1 [ ( )] φ ψ { u(x, ) f(x) u t (x, ) t u(x, t) t g(x) (5.13) t t u {φ(x + ct) + ψ(x ct)} t φ ξ ξ t + ψ η η t ( φ c ξ ψ ) η (5.14) (5.13), (5.14) (t ξ, η x ) { u(x, ) φ(x) + ψ(x) f(x) u t (x, ) u(x, t) t t c( φ(ξ) ψ(η) ) ξ η t c( dφ(x) dψ(x) ) g(x) (5.15) dx dx (5.15) x c(φ(x) ψ(x)) x (5.16) c, (5.15) 1 φ(x) 1 f(x) + 1 c x g(s) ds + C (5.16) g(s) ds + C c ψ(x) 1 f(x) 1 g(s) ds C c c,, (5.13),(5.17),(5.18) x u(x, t) 1 [f(x + ct) + f(x ct)] + 1 c x+ct x ct (5.17) (5.18) g(s) ds (5.19), c 1, u t (x, ) g(x) u(x, t) 1 [f(x + t) + f(x t)]

[ 1 ()] u(, t) x u(, t) 1 [f(ct) + f( ct)] + 1 }{{} c ct g(s) ds ct }{{} f( x) f(x), g( x) g(x), f(x) g(x),, f(x) g(x) x < [ ()] u(, t), u(, t) x u(, t) 1 [f(ct) + f( ct)] + 1 }{{} c 1 ct g(s) ds ct }{{} f( x) f(x), g( x) g(x), f(x) g(x),, x u(, t) 1 [f( + ct) + f( ct)] + 1 }{{} c +ct g(s) ds ct }{{}, f(x) g(x),, x f(x) g(x)

1 1 ( ) 1, u(x, t) c u(x, t) t x u(x, t) φ(x + ct) + ψ(x ct) ( ) { u(x, ) f(x) u t (x, ) t u(x, t) t g(x) () u(x, t) 1 [f(x + ct) + f(x ct)] + 1 c x+ct x ct g(s) ds ( ), c 1, u t (x, ) g(x) u(x, t) 1 [f(x + t) + f(x t)] u(x, ) f(x), u t (x, ) g(x) () 1 u(x, ) f(x), u t (x, ) g(x) u(, t) () u(x, ) f(x), u t (x, ) g(x) u(, t) u(, t) () (u(x, t) φ(x + ct) + ψ(x ct): ) u(x, t) 1[f(x + ct) + f(x ct)] + 1 x+ct c x ct g(s) ds ( ) 1 1 [f(x + ct) + f(x ct)] + 1 x+ct c x ct g(s) ds (f(x), g(x) ) 1 [f(x + ct) + f(x ct)] + 1 x+ct c x ct g(s) ds (f(x), g(x) )

[ ()] ( ) 1 u(x, t) c u(x, t) (5.) t x, u(x,t) t : u(x, ) f(x), t g(x) : u(, t), u(, t) ( : ), f(x), g(x), (5.) () ( ) u(x, t) X(x)T (t) (5.1), X(x) x, T (t) t (5.1) (5.) X(x) T (t) t, c X(x)T (t), X(x) x, T (t) t, d c X(x) x T (t) (5.) 1 d T (t) 1 d X(x) (5.3) c T (t) dt X(x) dx (5.3) t, x, (5.3) k 1 d T (t) 1 d X(x) k (5.4) c T (t) dt X(x) dx, { d X(x) dx kx(x) d T (t) dt c kt (t) (5.5) (5.5) 1 (X (x) kx(x) ) (S1) k > X(x) Ae kx + Be kx (S) k X(x) Ax + B (S3) k < X(x) A cos kx + B sin kx (S1), (S), (S3),, (5.1) u(, t) X()T (t), u(, t) X()T (t) (5.6), T (t) X(), X() (5.7)

(1) k > (S1) (5.7) ( :, k q >, k q ) { A + B Ae (5.8) k + Be k, A B (X(x) ), k () k (S) (5.7) { B A + B (5.9), A B, k (3) k < (S3) (5.7) ( :, k p <, k p ) { A B sin (5.3) k B, sin k, sin nπ (n, 1,, ) k nπ (n, 1,, ) (5.31) n, k, X(x) k nπ (n 1,, ) (5.3) ) nπ nπ k k n ( : (n 1,, ) (5.33) d ( ) X(x) nπ X(x) + (5.34) dx X n (x) B n sin nπ x : (5.35) (5.33) k T (t) (5.5) (T (t) kc T (t) ) d ( ) T (t) cnπ T + (t) (5.36) dt (5.36) X(x) ( k ( ) nπ > ) (S3), c k ( cnπ ) > T n (t) C n cos cnπ t + D n sin cnπ t (5.37) (5.35), (5.37), (5.) (5.1) u n (x, t) T n (t)x n (x) (A n cos cnπ t + B n sin cnπ t) sin nπ x (5.38) u n (x, t) (A n cos ω n t + B n sin ω n t) sin nπ x (ω n cnπ ) (5.39)

[] (5.) u 1 u u 1 t c u 1 x (5.4) u c u (5.41) t x, (5.4), (5.41), c 1, c u 1 c 1 t + c ( u c u 1 c t 1 x + c ) u (5.4) x (5.4) t (c 1u 1 + c u ) c x (c 1u 1 + c u ) (5.43), c 1 u 1 + c u (5.), u 1, u, c 1, c, c 1 u 1 + c u, u i (i 1,, 3, ) (5.), c i u i (5.) (5.) u i1, (5.38), u(x, t) u n (x, t) T n (t)x n (x) (A n cos ω n t + B n sin ω n t) sin nπ x (ω n cnπ ) (5.44), A n, B n,, t u(x, ) A n sin nπ x (5.45) (5.45) f(x) f(x) A n sin nπ x ( : f(x) ) (5.46) (5.46), A n f(x) A n, (5.44) t f(x) sin nπ x dx (n 1,, ) (5.47) u(x, t) t ( A n ω n sin ω n t + B n ω n cos ω n t) sin nπ x (ω n cnπ ) (5.48)

, t u(x, t) t B n ω n sin nπ t x (5.49) (5.49) g(x) g(x) B n ω n sin nπ x ( : g(x) ) (5.5) g(x) ω n (5.51), B n g(x) ω n B n sin nπ x (5.51) B n g(x) sin nπ x dx (n 1,, ) (5.5) ω n, (5.), u(x, t) (A n cos ω n t + B n sin ω n t) sin nπ x (ω n cnπ ) (5.53), A n, B n, f(x), g(x), A n f(x) sin nπ x dx (n 1,, ) : f(x) (5.54) B n g(x) sin nπ g(x) x dx (n 1,, ) : (5.55) ω n ω n (1) u(x,t) t t g(x), (5.53) (B n ) u(x, t) ( ) nπ A n cos (ω n t) sin x (ω n cnπ ) (5.56) A n f(x) sin nπ x dx (n 1,, ) (5.57) () u(x, ) f(x), (5.53) (A n ) u(x, t) ( ) nπ B n sin (ω n t) sin x (ω n cnπ ) (5.58) B n g(x) sin nπ x dx (n 1,, ) (5.59) ω n

(P.139 5.) ( a) t, ( x < a) u(x, ) f(x), u t (x, ) g(x) 1 ( a x +a ( +a < x ), u(x, t) (A n cos ω n t + B n sin ω n t) sin nπ x (ω n cnπ ), f(x), A n, B n ) B n ω n ω n ω n +a nπω n nπω n a nπω n ( nπ { nπω n 4 sin nπ nπω n 4 cn π sin nπ g(x) sin nπ x dx sin nπ x dx ) [cos nπ x ] +a cos nπ ( + a { cos ( nπ + nπa { cos nπ { sin nπ a } ) cos nπ ( a ) ) cos (nπ nπa nπa cos sin nπ } nπa sin sin nπa sin nπa (ω n cnπ ) ) } sin nπa cos nπ cos nπa sin nπ } nπa sin 4 u(x, t) cn π sin nπ nπa sin sin } {{ } B n cnπ t sin nπ x f(x) g(x) 1 x +a a 1 a +a x f(x) g(x)

[ ()] u(x, ) f(x), u(x, t) u t (x, ) g(x) ( x ) u(x, t) X(x)T (t) { d X(x) kx(x) dx d T (t) kc T (t) dt x u(x, t) X(x)T (t), (5.6) X(x) ( x ) X(x) k ω (k < ) ( :, k p < ), { d X(x) + ω X(x) dx d T (t) (5.61) + c ω T (t) dt X(x) e λx ( :, X(x) e ax ) 1 λ X(x) + ω X(x) (λ + ω )X(x) X(x) e λx ( ), λ ±iω, X ω (x) Ae iωx + Be iωx () (ω cω), T ω (t) Ce icωt + De icωt (), u ω (x, t) X ω (x)t ω (t) (Ae iωx + Be iωx )(Ce icωt + De icωt ) A e iω(x+ct) + B e iω(x ct) + C e i( ω)(x+ct) + D e i( ω)(x ct) ω, u(x, t) 1 π 1 π 1 π 1 π 1 π u ω (x, t) dω { A(ω)e iω(x+ct) + B(ω)e iω(x ct)} dω + 1 π { A(ω)e iω(x+ct) + B(ω)e iω(x ct)} dω + 1 π { A(ω)e iω(x+ct) + B(ω)e iω(x ct)} dω + 1 π { A(ω)e iω(x+ct) + B(ω)e iω(x ct)} dω { C(ω)e i( ω)(x+ct) + D(ω)e i( ω)(x ct)} dω { C(ω)e iω (x+ct) + D(ω)e iω (x ct) } ( dω ) { C(ω)e iω (x+ct) + D(ω)e iω (x ct) } dω

u(x, ) f(x) 1 {A(ω) + B(ω)} e iωx dω π }{{} F (ω) u t (x, ) g(x) 1 icω {A(ω) B(ω)} e iωx dω π }{{} G(ω), F (ω) G(ω) f(x) g(x) 1 A(ω) + B(ω) F (ω) icω {A(ω) B(ω)} G(ω) A(ω) F (ω) B(ω) F (ω) + G(ω) icω G(ω) icω u(x,t) t t g(x) (G(ω) ) A(ω) B(ω) F (ω) u(x, t) 1 { F (ω) π eiω(x+ct) + F (ω) } eiω(x ct) dω

1 ( ) 1, u(x, t) c u(x, t) t x { u(x, ) f(x) u t (x, ) t u(x, t) t g(x) (): u(x, t) (A n cos cnπ t + B n sin cnπ t) sin nπ x A n B n f(x) sin nπ g(x) ) sin nπ ( cnπ x dx (n 1,, ) x dx (n 1,, ) ( ):, (: X(x) ( x )) u(x, t) {A(p)e ip(x+ct) + B(p)e ip(x ct) } dp A(p) F (p) 4π + G(p) 4πicp, F (p) B(p) 4π G(p) 4πicp, F (p) G(p) f(x) g(x) u(x, t) 1 {A(ω)e iω(x+ct) + B(ω)e iω(x ct) } dω π A(ω) F (ω) + G(ω) icω, F (ω) B(ω) G(ω) icω

5.3 ( ) [1 ( )] 1 ( ) u(x, t) κ u(x, t) (5.6) t x [ ( )] : u(x, ) f(x) : u(, t) u(, t) ( :, ), (5.6), u(x, t) u(x, t) X(x)T (t) (5.63) (5.63) (5.6) T (t) X(x) t κ X(x) x T (t) (5.64), κx(x)t (t), X(x) x, T (t) t 1 dt (t) 1 d X(x) ( k) (5.65) κt (t) dt X(x) dx (5.65) t, x, (5.65) k, { d X(x) kx(x) dx dt (t) (5.66) κkt (t) dt (5.66) 1 5. k,, 3 (S1 S3), u(, t) u(, t), T (t) X()T (t) X()T (t) (5.67) X() X() (5.68),, k < (S3) X(x) A cos kx + B sin kx (5.69) (5.68) { X() A X() A cos k + B sin k (5.7) A A cos k + B sin k (5.71) cos k 1, sin k, (5.71), cos nπ 1, sin nπ (n, 1,, ) k nπ (n, 1,, ) (5.7)

, X(x) ) nπ nπ k k n ( : (n, 1,, ) (5.73) X n (x) A n cos nπ x + B n sin nπ x : (5.74) (5.73) (5.66) dt (t) dt ( ) nπ T + κ (t) (5.75) (5.75) T n (t) C n e κ( nπ ) t (5.76) (5.74), (5.76), (5.6)(5.63) u n (x, t) X n (x)t n (t) { un (x, t) (A n cos nπ x + B n sin nπ x)e κ( nπ ) t (n 1,, ) u (x, t) A (n ) (5.77) [], (5.6) u(x, t) u n (x, t) n n T n (t)x n (x) A + (A n cos nπ x + B n sin nπ nπ x)e κ( ) t (5.78), A, A n, B n,, u(x, ) A + (A n cos nπ x + B n sin nπ x) f(x) (5.79) (5.79), A, A n, B n f(x) A n 1 B n 1 f(x) cos nπ x dx (n, 1,, ) (5.8) f(x) sin nπ x dx (n 1,, ) (5.81) (5.6) u(x, ) f(x), u(, t) u(, t), (5.78), A n, B n (5.8) (5.81)

(P.146 5.3) π t > u(x, ) f(x) (π x)x, u(x, t) A + (A n cos nπ x + B n sin nπ nπ x)e κ( ) t,, f(x) π, B n, f(x) A n, π,, π A n 1 π f(x) cos nπ x dx f(x) cos nπ x dx 4 (πx x ) cos nx dx π 4 π ( ) sin nx (πx x ) dx π n 4 ( [ ( )] sin nx π (πx x ) π n π (π x) sin nx dx πn πn πn πn π ( (π x) { [ (π x) ( ( π n 1 n 1 n (n ) 1 n π ) cos nx dx n )] π cos nx 1 n n ) π [sin nx] (π x) sin nx dx π cos nx dx } ) n A 1 4 π π 4 π ( π 3 4 π π 3 u(x, t) π 6 f(x) dx f(x) dx (πx x ) dx [ 1 πx 1 3 x3 )] π 8 π3 4 ) cos nx e κ(n) t n

[ ] u(x, ) f(x) u(x, t) ( x ) u(x, t) X(x)T (t) { d X(x) kx(x) dx dt (t) κkt (t) dt x u(x, t) X(x)T (t), (5.8) X(x) ( x ) X(x) k ω (k < ) ( :, k p < ), { d X(x) + ω X(x) dx dt (t) (5.83) + κω T (t) dt 1 X(x) e λx λ X(x) + ω X(x) (λ + ω )X(x) X(x) e λx ( ), λ ±iω, X ω (x) Ae iωx + Be iωx (), T (t) e λt, (λ + κω )T (t), T ω (t) Ce κω t, u ω (x, t) X ω (x)t ω (t) (Ae iωx + Be iωx )e κω t ω, u(x, t) 1 π 1 π 1 π 1 π 1 π 1 π 1 π u ω (x, t) dω ( A(ω)e iωx + B(ω)e iωx) e κωt dω A(ω)e iωx e κωt dω + 1 π A(ω)e iωx e κωt dω + 1 π A(ω)e iωx e κωt dω + 1 π F (ω)e iωx e κωt dω F (ω)e iωx κωt dω B(ω)e i( ω)x e κ( ω)t dω B(ω)e iω x e κω t ( dω ) B(ω)e iω x e κω t dω

t u(x, ) f(x) 1 F (ω)e iωx dω π, F (ω) f(x) F (ω) f(x)e iωx dx, u(x, t) u(x, t) 1 π [ ] f(y)e iωy dy }{{} f(x) F (ω) e iωx κωt dω

[ ()] : u(x, ) f(x) : u(, t) u(, t) ( : ),, u(x, t) u(x, t) X(x)T (t) (5.84) (5.84) T (t) X(x) t κ X(x) x T (t) (5.85), κx(x)t (t), X(x) x, T (t) t 1 dt (t) 1 d X(x) ( k) (5.86) κt (t) dt X(x) dx (5.86) t, x, (5.86) k, { d X(x) dx kx(x) dt (t) dt κkt (t) (5.87) 1 (X (x) kx(x) ) (S1) k > X(x) Ae kx + Be kx (S) k X(x) Ax + B (S3) k < X(x) A cos kx + B sin kx (S1), (S), (S3),, (5.84) (5.87) u(, t) X()T (t), u(, t) X()T (t) (5.88), T (t) X(), X() (5.89) (1) k > (S1) (5.89) { A + B Ae k + Be k (5.9), A B (X(x) ), k () k (S) (5.89) { B A + B (5.91), A B, k (3) k < (S3) (5.89) { A B sin k (5.9)

B, sin k, sin nπ (n, 1,, ) k nπ (n, 1,, ) (5.93) n, k, X(x) k nπ (n 1,, ) (5.94) ) nπ nπ k k n ( : (n 1,, ) (5.95) d ( ) X(x) nπ X(x) + (5.96) dx X n (x) B n sin nπ x : (5.97) (5.95) k T (t) (5.87) (T (t) κkt (t) ) ( ) dt (t) nπ T + κ (t) (5.98) dt (5.98) T n (t) C n e κ( nπ ) t (5.99) (5.97), (5.99), (5.84) u n (x, t) X n (x)t n (t) ( ) nπ u n (x, t) B n sin x e κ( nπ ) t (n 1,, ) (5.1) [], u(x, t) u n (x, t) T n (t)x n (x) ( ) nπ B n sin x nπ κ( e ) t (5.11), B n,, ( ) nπ u(x, ) B n sin x f(x) (5.1) (5.1), B n f(x) B n f(x) sin nπ x dx (n 1,, ) (5.13) u(x, ) f(x), u(, t) u(, t), (5.11), B n (5.13)

π t > u(x, ) f(x) (π x)x, u(x, t) B n sin nπ nπ x e κ( ) t, B n f(x), f(x), π B n 1 π π π π π π πn πn πn 4 πn f(x) sin nπ x dx f(x) sin nπ x dx (πx x ) sin nx dx ( ) (πx x cos nx ) dx n ( )] π ([ (πx x ) cos nx n (π x) cos nx dx + 1 n π ( ) sin nx (π x) dx n { [ ( )] sin nx π (π x) + n n [ ] cos nx π n 4 πn 3 {1 ( 1)n } { 8 πn 3 π π ) (π x) cos nx dx sin nx dx (n ) (n ) } u(x, t) 4 1 ( 1) n sin nx e κn t π n 3 [ 8 1 π (n 1) sin (n 1)x t 3 e κ(n 1) ]

1 ( ) 1, u(x, t) t κ u(x, t) x u(x, ) f(x) (u(, t) u(, t)): u(x, t) A + (A n cos nπ x + B n sin nπ nπ x)e κ( ) t A n 1 f(x) cos nπ x dx (n, 1,, ) B n 1 f(x) sin nπ x dx (n 1,, ) (: X(x) ( x )): u(x, t) 1 F (ω)e iωx κωt dω π F (ω) f(x)e iωx dx u(x, ) f(x) x u(x, t) ( ) 1 u(x, ) f(x) : u(, t) u(, t) ( ) u(x, ) f(x) : u(, t) u(, t) ( P.151) ( ) 3 u(x, ) f(x) : u x (, t) u x (, t) ( P.163) ( )

: u tt c u xx u(x, ) f(x), u t (x, ) g(x) ( ): (): u(, t) u(, t) X(x) ( x ) X (x) kx(x) X (x) + ω X(x) (k ω ) T (t) c kt (t) T (t) + c ω T (t) u(x, t) (A n cos cnπ t + B n sin cnπ t) sin nπ x 1 {A(ω)e iω(x+ct) + B(ω)e iω(x ct) } dω π A n B n f(x) sin nπx g(x) nπx sin ( cnπ ) F (ω) dx A(ω) + G(ω) icω F (ω) dx B(ω) G(ω) icω g(x) A n, B n : f(x), ( cnπ F (ω), G(ω) : f(x), g(x) ) : : x+ct x ct g(s) ds 1 {f(x + ct) + f(x ct)} + 1 c 1 {f(x + ct) + f(x ct)} + 1 c (f(x), g(x) ) x+ct g(s) ds x ct : u t κu xx u(x, ) f(x) : u(, t) u(, t) : X(x) ( x ) X (x) kx(x) X (x) + ω X(x) (k ω ) T (t) κkt (t) T (t) + κω T (t) u(x, t) F (ω)e iωx κωt dω A + A n 1 B n 1 (A n cos nπ x + B n sin nπ x)e κ( nπ ) t 1 π nπx f(x) cos dx F (ω) nπx f(x) sin dx A n, B n : f(x) f(x)e iωx dx u(x, ) f(x) ( P.151): ( P.163): u(, t) u(, t) u x (, t) u x (, t) X (x) kx(x) X (x) kx(x) T (t) κkt (t) T (t) κkt (t) u(x, t) 5-3 1 5 [3]

5.4 [ ] u(x, y) x + u(x, y) y (5.14) u(x, y) t,, [ ] u(, y) u(a, y) u(x, b) u(x, ) f(x), (5.14), u(x, y) u(x, y) X(x)Y (y) (5.15) (5.15) (5.14) X(x)Y (y) d X(x) Y (y) X(x) d Y (y) (5.16) dx dy 1 d X(x) 1 d Y (y) k (5.17) X(x) dx Y (y) dy (5.17) x, y, (5.17) k ( :, k p <, k p ) d X(x) kx(x) dx d Y (y) dy ky (y) (5.18) { X()Y (y) X(a)Y (y) X(x)Y (b) (5.19) X(x), Y (y) { X() X(a) Y (b) (5.11) (5.18) 1 5. k,, 3 (S1 S3), X(x) k < X(x) A cos kx + B sin kx (5.111) (5.11) 1 { X() A X(a) A cos ka + B sin ka B sin ka (5.11)

(5.11), X(x) sin ka (5.113) ka nπ (n 1,, ) (5.114) k nπ a k n ( nπ a X(x) X n (x) B n sin nπ a ) (n 1,, ) (5.115) x (n 1,, ) (5.116) (5.115) (5.18) (5.117) (5.11) d Y (y) dy ( nπ a ) Y (y) (5.117) Y (y) Ae nπ a y + Be nπ a y (5.118) Y (b) Ae nπ a b + Be nπ a b (5.119) B nπ e a b (B Ae nπ a b ) (5.1) A, n 1,,, C n Y n (y) Ae nπ a y Ae nπ a b e nπ a y Ae nπ a b (e nπ a (y b) e nπ a (y b) ) C n(e nπ a (y b) e nπ a (y b) ) C n sinh nπ a (y b) (sinh x ex e x, C n C n) (5.11) (5.116), (5.11), (5.14) (5.15) u n (x, y) X n (x)y n (y) B n sin nπ a x sinh nπ (y b) (n 1,, ) (5.1) a B n, (5.14) u(x, y) B n sin nπ a x sinh nπ (y b) (5.13) a, u(x, ) ( B n sinh nπ a b) sin nπ x f(x) (5.14) a (5.14) a B n sinh nπ a b f(x) sin nπ x dx (n 1,, ) (5.15) a a a B n a sinh nπb f(x) sin nπ x dx (n 1,, ) (5.16) a a (5.14) (5.13), B n (5.16) u(x, y) a f(x) sin nπ x dx a a sinh nπb sin nπ a x sinh nπ (b y) (5.17) a a