note4.dvi

Similar documents
Note5.dvi

E 1/2 3/ () +3/2 +3/ () +1/2 +1/ / E [1] B (3.2) F E 4.1 y x E = (E x,, ) j y 4.1 E int = (, E y, ) j y = (Hall ef

Aharonov-Bohm(AB) S 0 1/ 2 1/ 2 S t = 1/ 2 1/2 1/2 1/, (12.1) 2 1/2 1/2 *1 AB ( ) 0 e iθ AB S AB = e iθ, AB 0 θ 2π ϕ = e ϕ (ϕ ) ϕ

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

30


I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

eto-vol1.dvi

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

PDF

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

29

, 1. x 2 1 = (x 1)(x + 1) x 3 1 = (x 1)(x 2 + x + 1). a 2 b 2 = (a b)(a + b) a 3 b 3 = (a b)(a 2 + ab + b 2 ) 2 2, 2.. x a b b 2. b {( 2 a } b )2 1 =

: , 2.0, 3.0, 2.0, (%) ( 2.

Xray.dvi

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d

[1.1] r 1 =10e j(ωt+π/4), r 2 =5e j(ωt+π/3), r 3 =3e j(ωt+π/6) ~r = ~r 1 + ~r 2 + ~r 3 = re j(ωt+φ) =(10e π 4 j +5e π 3 j +3e π 6 j )e jωt

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â 0 = Tr Âe βĥ0 Tr e βĥ0 = dγ e βh 0(p,q) A(p, q) dγ e βh 0(p,q) (5.2) e βĥ0

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (



untitled

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

Microsoft Word - 印刷原稿富山産業政策集積2.doc

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1)

τ τ

TOP URL 1

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

0406_total.pdf


4/15 No.

* 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) *

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

2011de.dvi

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,,

LLG-R8.Nisus.pdf

ver Web

d > 2 α B(y) y (5.1) s 2 = c z = x d 1+α dx ln u 1 ] 2u ψ(u) c z y 1 d 2 + α c z y t y y t- s 2 2 s 2 > d > 2 T c y T c y = T t c = T c /T 1 (3.

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

untitled

B ver B

( )

02-量子力学の復習

数学Ⅱ演習(足助・09夏)

newmain.dvi

eto-vol2.prepri.dvi

phs.dvi

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

Note.tex 2008/09/19( )

量子力学 問題

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

keisoku01.dvi

QMI_09.dvi

φ s i = m j=1 f x j ξ j s i (1)? φ i = φ s i f j = f x j x ji = ξ j s i (1) φ 1 φ 2. φ n = m j=1 f jx j1 m j=1 f jx j2. m

QMI_10.dvi

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4


I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

基礎数学I

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

Part () () Γ Part ,

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d


2000年度『数学展望 I』講義録

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F


JKR Point loading of an elastic half-space 2 3 Pressure applied to a circular region Boussinesq, n =

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

untitled

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

²ÄÀÑʬΥ»¶ÈóÀþ·¿¥·¥å¥ì¡¼¥Ç¥£¥ó¥¬¡¼ÊýÄø¼°¤ÎÁ²¶á²òÀÏ Asymptotic analysis for the integrable discrete nonlinear Schrödinger equation

2012 A, N, Z, Q, R, C


Gmech08.dvi

第10章 アイソパラメトリック要素

all.dvi

Hilbert, von Neuman [1, p.86] kt 2 1 [1, 2] 2 2

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

2D-RCWA 1 two dimensional rigorous coupled wave analysis [1, 2] 1 ε(x, y) = 1 ε(x, y) = ϵ mn exp [+j(mk x x + nk y y)] (1) m,n= m,n= ξ mn exp [+j(mk x

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k


,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

(1) (2) (1) (2) 2 3 {a n } a 2 + a 4 + a a n S n S n = n = S n

Transcription:

10 016 6 0 4 (quantum wire) 4.1 4.1.1.6.1, 4.1(a) V Q N dep ( ) 4.1(b) w σ E z (d) E z (d) = σ [ ( ) ( )] x w/ x+w/ π+arctan arctan πǫǫ 0 d d (4.1) à ƒq [ƒg w ó R w d V( x) QŽŸŒ³ džq x (a) (b) 4.1 (a) (b) 10-1

3 m 500nm 4. (a) InAs(111)B - - MBE [111] InAs (b) GaN-InGaN - (a) (b) (4.1) d η DEG V sg = eηe z (d) V sg (x) 4.1(b) *1 4.1(b) z x 1 4.1(b) MBE T 4.1. 4.(a) InAs(111)B - - MBE [111] InAs 4.(b) GaN InGaN - (Carbon nanotube) 4. 1 4..1 pn pn p n p n *1 10-

(quantum coherence length) * l φ scattering centers ( quantum entanglement) ψ = ψ 1 +ψ = ψ 1 + ψ + ψ 1 ψ cosθ χ ψ 1 ψ 1 χ 1, ψ ψ χ ψ 1 ψ cosθ χ 1 χ χ 1 χ ψ χ (maximally entangled state) ( F) ( (environment) ) χ 1 χ *3 (monochromaticity) E F E = k B T τ π fτ = π Eτ/h = πk B Tτ/h π τ c τ c = h k B T l = Dτ l th l th = hd k B T (4.) * *3 ( ) 10-3

(thermal diffusion length) v F l th = hv F k B T (thermal length) l φ l φ l φ ( ) l φ (characteristic length) (magnetic B l B = h/eb l B l φ (4.3) 4.. Landauer 0 (Kubo formula) [1]Landauer Landauer L L S R ev L 1 1 (particle reservoir) µ L µ R k j(k) L e/l J J = kr k L j(k) = e L v g = e de(k) L dk j(k) L π dk = e h µl (4.4) µ R de = e h (µ L µ R ) = e h V (4.5) G = J G = e h G q R 1 q. (4.6) (quantum conductance) e /h R q k x 1 e/ x 10-4

y ƒq [ƒg E 1 E E 3 ŽŸŒ³ džq ƒq [ƒg ó R w Veff ( x ) E 3 V( y) E E 1 x (a) (b) 4.3 (a) (Quantum Point Contact, QPC, ) (b) QPC E 1,,3 (4.9) V eff (x) E/ k x k = π E = ev J = e E x k = e h V (4.7) (quantum wire, QW) (quantum point contact, QPC) (two-dimensional electron gas, DEG) QPC 4.3(a) DEG 4.1.1 4.3(b) x E = E kx +E ky x y E kx E ky ( ) 4.1(b) y W ϕ n (y) = cos(nπy/w) (n ) sin(nπy/w) (n ) x y ψ(x,y) = ϕ n (y)φ(x) ( Hψ(x,y) = m = ϕ n (y) m x + y ) ϕ n (y)φ(x) ( x + ( nπ W ) ) φ(x) = Eϕ n (y)φ(x) (4.8) (4.8) x ( ) V eff (n,x) = nπ (4.9) m W(x) 10-5

4.3(b) y n V eff (n,x) E tot = E kx (n,x)+v eff (n,x) (4.10) n (conductance channel) (8.1) d f = 1 E kx (n,x) E F k xf QPC (4.9) W(x) 4.4(a) (AFM) 4.4(b) V g QPC G( e ) ) G V g e /h G e /h (4.6) 4.5 QPC n e /h(n ) ( ) (AFM) QPC QPC 4.5(b) n = n = 3 n = 1 1 y n *4. d C ` ± x (e / h) 14 1 10 8 6 4 0-1.0-0.8 ƒq [ƒg dˆ³ (V) -0.6 (a) (b) 4.4 (a)qpc Al- GaAs/GaAs (b) QPC 30 mk *4 3 1 3 1 ǫ 0 1/ ǫ ǫ 0 10-6

T j ƒq [ƒg ƒq [ƒg x A V y (a) (b) 4.5 (a)qpc (SPM) QPC SPM (b) QPC ( ) n ch = 3 ( Topinka et al., Science 89, 33 (000) ) QPC E F E F n D nd 4.6(b) **(c) i j T ij e /h T = 1 {T ij } G G = e h T ij (4.11) i,j 10-7

inlet outlet i j (a) (b) (c) 4.6 (a) (b) (c) (4.11) (Landauer formula for -terminal conductance) 4..3 S ( ) (electron waveguide) (S ) (scattering matrix, S-matrix) 4.7(b) a 1 (k) a (k) b 1 (k) b ( ) b1 (k) = S b (k) ( ) ( )( ) a1 (k) rl t = R a1 (k) a (k) t L r R a (k) A i (k) t L,R r L,R (phase shift) T L,R R L,R (4.1) T L,R = t L,r = 1 R L,R = 1 r L,R (4.13) S T (4.1) QPC G = n e /h n (4.1) a 1 (k) S ( ) A 1 A a 1 a M T S B 1 B b 1 b (a) (b) 4.7 (a)t- M T (b) S- S 10-8

ψ ai (k F ) a i (k) = v Fi ψ ai (k F ) (4.14) (b i ) t t = T (4.14) S ( ) T S 8 S ( ( b1 r (A) L t (A) R b ) = S A ( a1 a ) = t (A) L r (A) R ) (a1 a ), ( b3 b 4 ) ( ) ( a3 r (B) = S B = L a 4 t (B) L t (B) R r (B) R ) (a3 a 4 ) (4.15) a 1 a a 3 a 4 S A S B b 1 b b 3 b 4 S AB = r(a) L +t (A) R r(b) L t (B) L ( I r (A) ( I r (A) R r(b) L ) 1t R r(b) (A) L L ) 1t (A) L b = a 3, a = b 3 (4.16) S S S AB ( t (A) R r (B) R +t(b) L ) 1t L r(a) (B) R R I r (B) ( I r (A) R r(b) L ) 1r (A) R t(b) R. (4.17) (4.17) (1,1) ( ) 1 I r (A) R r(b) (A) L = I +r R r(b) L +(r(a) R r(b) L ) +(r (A) R r(b) L )3 + (4.18) A B S (4.1) a b a 3 b 3 b 1 a 1 S a j b j T S T S (10.18) (4.18) 1 I a 1 r (A) r ( ) S (wire 10-9

connection) S T ( ) ( ) S 4..4 S (unitarity) (10.18) a = Sa (Onsagar reciprocity) S B S(B) = t S( B) (S mn (B) = S nm ( B)) (4.19) Schrödinger Schrödinger [ (i +ea) m ] +V ψ = Eψ (4.0) A A [ ] (i +ea) +V ψ = Eψ m {ψ ( B)} = {ψ(b)} (4.1) ψ(b) ψ ( B) ({ } ) ψ(b) Schrödinger (4.0) Sc{a b}(a S b ) Sc{a(B) b(b)} {ψ(b)}, (4.) i.e., b(b) = S(B)a(B) (4.3) (4.3) b (B) = S (B)a (B). (4.4) exp(±ikr) *5 Sc(b (B) a (B)) {ψ (B)} (4.5) B B Sc{b ( B) a ( B)} {ψ ( B)} = {ψ(b)} (4.6) i.e. a ( B) = S(B)b ( B) (4.7) (4.7) b (B) = S 1 ( B)a (B) (4.8) (4.4) S (B) = S 1 ( B) = S ( B) ( unitarity SS = S S = I) S(B) = t S( B) (4.9) *5 (4.0) Schrödinger iωt ikr 10-10

(ρ xx ) ( ) ρ xx (B) = ρ xx ( B) (4.30) 4..5 Landauer-Büttiker S Landauer-Büttiker p q 4.8 p µ p = ev p p J p p p J p = e h [T q p µ p T p q µ q ] (4.31) q T p q q ev q q J q 1 1 ev 1 J 1 Ž J ev T pq T p q (p q), T pp q pt q p T J = t (J 1,J, ) µ = t (µ 1,µ, ) ( ) J = e h T µ J p p p ev p V q = µ q e, J p = q G pq e h T p q [G qp V p G pq V q ] (4.3) 4.8 LB J q = 0 (4.33) q [G qp G pq ] = 0 (4.34) B Onsager q G qp (B) = G pq ( B) (4.35) 10-11

S-matrix Onsager 4 V 4 = 0 J 1 J = G 1 +G 13 +G 14 G 1 G 13 G 1 G 1 +G 3 +G 4 G 3 V 1 V (4.36) G 31 G 3 G 31 +G 3 +G 34 V 3 J 3 (Casimir) J 1 = J 3, J = J 4 (4.37) J = 0 1 3 4 V ij V i V j ( ) ( )( ) J1 α11 α = 1 V13 (4.38) J α V 4 α 1 α 11 = G q [ T 11 S 1 (T 14 + T 1 )(T 41 + T 1 )] α 1 = G q S 1 (T 1 T 34 T 14 T 3 ) α 1 = G q S 1 (T 1 T 43 T 3 T 41 ) α = G q [ T S 1 (T 1 T 3 )(T 3 + T 1 )] (4.39a) (4.39b) (4.39c) (4.39d) S = T 1 + T 14 + T 3 + T 34 = T 1 + T 41 + T 3 + T 43 (4.40) (4.38) (4.37) V 1 V V 3 B B Landauer-Büttiker 4 (4.35) (4.38) α 11 (B) = α 11 ( B), α (B) = α ( B), α 1 (B) = α 1 ( B) (4.41) 13: 4: LB R 13,4 R 13,4 = V V 4 J 1 = α 1 α 11 α α 1 α 1 (4.4) Onsager R (4.30) R 4,13 = α 1 α 11 α α 1 α 1 (4.43) (4.41) T km T ln T kn T lm R mn,kl = R q, D R D q(α 11 α α 1 α 1 )S (4.44) 10-1

R mn,kl (B) = R kl,mn ( B) (4.45) B B [1] ( 007). [] S. Datta, ElectronTransport in Mesoscopic Systems (Cambridge Univ. Press, 1995). [3] ( 00) F ψ = ( A + B )/ φ = ( 1 + )/ ψ φ Φ Φ = ψ φ = ( A 1 + A + B 1 + B )/ Φ = A + B 1 (F.1) ψ A φ (F.1) (maximally entangled state) ( ) (entanglement entropy) H A H B A = d A i=1 b i η i B = d B j=1 c j ξ j A B = d A,d B i,j=1 b i c j η i ξ j ψ AB = d A,d B i,j c ij η i ξ j (F.) 10-13

ψ AB (Schmidt decomposition) { η i } { ξ j } { u i } { v i } d ψ AB = d k u k v k, k=1 d d k = 1 (d = min(d A,d B )) k=1 (F.3) { u i v i } d k A B ρ A = k d k u k u k, ρ B = k d k v k v k (F.4) ρ A ρ B d S(ρ A ) = S(ρ B ) d klog (d k) k=1 (F.5) S (entanglement entropy) (von Neumann entropy) { φ, φ } { χ, χ } 1 ψ s = 1 ( φ χ φ χ ) (F.6) ρ = 1 ( ) 1 0, S(ρ) = 1 (F.7) 0 1 Ψ = 1 ( ψ 1 χ 1 + ψ χ ) (F.8) χ 1 χ = 0 S(ρ) = 1 χ 1 = χ Ψ = ( ψ 1 + ψ ) χ S(ρ) = 0 10-14