n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

Similar documents
all.dvi

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

OHP.dvi

~nabe/lecture/index.html 2

all.dvi


変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

all.dvi

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

第86回日本感染症学会総会学術集会後抄録(I)

Report98.dvi

k m m d2 x i dt 2 = f i = kx i (i = 1, 2, 3 or x, y, z) f i σ ij x i e ij = 2.1 Hooke s law and elastic constants (a) x i (2.1) k m σ A σ σ σ σ f i x

構造と連続体の力学基礎


73

TOP URL 1

四変数基本対称式の解放

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

OHP.dvi


B ver B

SO(3) 49 u = Ru (6.9), i u iv i = i u iv i (C ) π π : G Hom(V, V ) : g D(g). π : R 3 V : i 1. : u u = u 1 u 2 u 3 (6.10) 6.2 i R α (1) = 0 cos α

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d )

all.dvi

本文/目次(裏白)

note1.dvi

TOP URL 1


: , 2.0, 3.0, 2.0, (%) ( 2.

5 c P 5 kn n t π (.5 P 7 MP π (.5 n t n cos π. MP 6 4 t sin π 6 cos π 6.7 MP 4 P P N i i i i N i j F j ii N i i ii F j i i N ii li i F j i ij li i i i

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

n 2 + π2 6 x [10 n x] x = lim n 10 n n 10 k x 1.1. a 1, a 2,, a n, (a n ) n=1 {a n } n=1 1.2 ( ). {a n } n=1 Q ε > 0 N N m, n N a m

プログラム

( )

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

1.1 foliation M foliation M 0 t Σ t M M = t R Σ t (12) Σ t t Σ t x i Σ t A(t, x i ) Σ t n µ Σ t+ t B(t + t, x i ) AB () tα tαn µ Σ t+ t C(t + t,

CVMに基づくNi-Al合金の

JKR Point loading of an elastic half-space 2 3 Pressure applied to a circular region Boussinesq, n =

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

linearal1.dvi

基礎数学I

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

量子力学 問題

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

転位の応力場について

TOP URL 1

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ

A

Part () () Γ Part ,

C (q, p) (1)(2) C (Q, P ) ( Qi (q, p) P i (q, p) dq j + Q ) i(q, p) dp j P i dq i (5) q j p j C i,j1 (q,p) C D C (Q,P) D C Phase Space (1)(2) C p i dq

日本内科学会雑誌第102巻第4号

newmain.dvi

meiji_resume_1.PDF

1 1.1 / Fik Γ= D n x / Newton Γ= µ vx y / Fouie Q = κ T x 1. fx, tdx t x x + dx f t = D f x 1 fx, t = 1 exp x 4πDt 4Dt lim fx, t =δx 3 t + dxfx, t = 1

弾性定数の対称性について

LLG-R8.Nisus.pdf

第5章 偏微分方程式の境界値問題

τ τ

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

第10章 アイソパラメトリック要素

II 1 II 2012 II Gauss-Bonnet II

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

koji07-01.dvi

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 8, : 8.1 1, 2 z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = n i=1 a ii x 2 i + i<j 2a ij x i x j = ( x, A x), f =

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

Ł\”ƒ-2005


第90回日本感染症学会学術講演会抄録(I)

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

4 Mindlin -Reissner 4 δ T T T εσdω= δ ubdω+ δ utd Γ Ω Ω Γ T εσ (1.1) ε σ u b t 3 σ ε. u T T T = = = { σx σ y σ z τxy τ yz τzx} { εx εy εz γ xy γ yz γ


液晶の物理1:連続体理論(弾性,粘性)

x y x-y σ x + τ xy + X σ y B = + τ xy + Y B = S x = σ x l + τ xy m S y = σ y m + τ xy l σ x σ y τ xy X B Y B S x S y l m δu δv [ ( σx δu + τ )

numb.dvi

BayesfiI‡É“ÅfiK‡È−w‘K‡Ì‡½‡ß‡ÌChow-Liu…A…‰…S…−…Y…•

S K(S) = T K(T ) T S K n (1.1) n {}}{ n K n (1.1) 0 K 0 0 K Q p K Z/pZ L K (1) L K L K (2) K L L K [L : K] 1.1.

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

s s U s L e A = P A l l + dl dε = dl l l

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

QMII_10.dvi

量子力学3-2013

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

6.1 (P (P (P (P (P (P (, P (, P.


gr09.dvi

V 0 = + r pv (H) + qv (T ) = + r ps (H) + qs (T ) = S 0 X n+ (T ) = n S n+ (T ) + ( + r)(x n n S n ) = ( + r)x n + n (d r)s n = ( + r)v n + V n+(h) V

chap10.dvi

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

housoku.dvi

A

SO(2)

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

Transcription:

1 2 (a 1, a 2, a n ) (b 1, b 2, b n ) A (1.1) A = a 1 b 1 + a 2 b 2 + + a n b n (1.1) n A = a i b i (1.2) i=1 n i 1 n i=1 a i b i n i=1 A = a i b i (1.3) (1.3) (1.3) (1.1) (ummation convention) a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2 (1.4) a n1 x 1 + a n2 x 2 + + a nn x n = b n (1.4) [A] {x} = {b} (1.5) (1.4) n a ij x j = b i (i = 1, 2, n) (1.6) j=1 1

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz = 1( v 2 z + w ) y γ zx = 1( w 2 x + u ) z γ xy = 1( u 2 y + v ) x (1.8) ε ij = 1 2 (u i,j + u j,i ) (1.9) i, j x, y, z, i x i f x, f y, f z σ x x + τ xy y + τ xz z + f x = 0 τ yx (1.10) x + σ y y + τ yz z + f y = 0 (1.10) τ zx x + τ zy y + σ z z + f z = 0 σ ij,j + f i = 0 (1.11) λ, µ σ x = (2µ + λ)ε x + λε y + λε z σ y = λε x + (2µ + λ)ε y + λε z (1.12) σ z = λε x + λε y + (2µ + λ)ε z τ xy = 2µγ xy τ yz = 2µγ yz τ zx = 2µγ zx σ ij = E ijkl ε kl (1.13) E ijkl = λδ ij δ kl + µ(δ ik δ jl + δ il δ jk ) δ ij 2

2 u i ε ij ε ij = 1 2 (u i,j + u j,i ) (2.1) σ ij,j + f i = 0 (2.2) (2.2) u i (σ ij,j u i )d + (f i u i )d = 0 (2.3) (2.3) 1 Gauss (σ ij ε ij)d = (P i u i )d + (f i u i )d (2.4) ε ij = 1 2 (u i,j + u j,i) (2.5) P i = σ ij n j (2.6) n j (2.4) α i u αi u i Φ α u i (2.8) (2.5) (2.4) u αi (Φ α,j σ ij )d = u αi u i = Φ α u αi (2.7) u i = Φ α u αi (2.8) 2ε ij = Φ α,j u αi + Φ α,i u αj (2.9) (Φ α P i )d + u αi (Φ α f i )d (2.10) (2.10) (2.10) u αi (Φ α,j σ ij )d = Ω αi (2.11) Ω αi = (Φ α P i )d + 3 (Φ α f i )d (2.12)

(2.11) (2.11) Ω αi P i f i Φ α (2.2) (Φ α,j σ ij )d = Ω αi (2.13) Ω αi = (Φ α P i )d + (Φ α f i )d (2.14) 3 (2.11) (2.14) (2.11) (2.14) W σ ij = W ε ij (3.1) W W = 1 2 E ijklε ij ε kl (3.2) E ijkl 21 2 E ijkl = λδ ij δ kl + µ(δ ik δ jl + δ il δ jk ) (3.3) λ, µ E, ν λ = (3.2) (3.3) (3.5) (2.7) νe (1 2ν)(1 + ν) µ = E 2(1 + ν) (3.4) σ ij = E ijkl ε kl (3.5) σ ij = E ijkl 1 2 (Φ β,lu βk + Φ β,k u βl ) = E ijkl Φ β,l u βk (3.6) (2.11) Ω αi u βk K αiβk u βk = Ω αi (3.7) K αiβk = (Φ α,j E ijkl Φ βl )d (3.8) Ω αi = (Φ α P i )d + (Φ α f i )d 4

K αiβk (3.7) 4 σ ij ε ij ε ij ε ij. ε ij ε ij = ε ij + ε ij (4.1) f σ ij ε ij π f(σ ij, ε ij) = π (4.2) i ( ε ij = 0) f < π, π = 0 (4.3) ii (ε ij 0) ii ( ε ij = 0) f = π, π 0, f = π, π = 0, f σ ij σ ij > 0 (4.4) f σ ij σ ij 0 (4.5) (4.5) 3 (4.4) ε ij ε ij = Λ f σ ij (4.6) (3.5) (4.2) π ε ij f σ ij + f σ ij ε ij σ ij = E ijkl ε kl (4.7) ε ij = π ε ij ε ij (4.8) (4.1) (4.6) (4.7) (4.8) Λ (4.1) (4.6) (4.7) σ ij = C ijkl ε ij (4.9) C ijkl = E ijkl E ijpq ( f σ pq ) ( f σ rs ) Erskl ( f σ mn )( π ε ij 5 ) f f + E ε pqmn mn σ pq

(4.9) (4.4) i σ ij = D ijkl ε kl f < π, π = 0 D ijkl = E ijkl ii f = π, π 0, iii f = π, π = 0, f σ ij σ ij > 0 f σ ij σ ij 0 D ijkl = C ijkl D ijkl = C ijkl (4.10) (2.7) σ ij = D ijkl Φ β,l u βk (4.10) (2.13) K αiβk U βk = Ω αi (4.11) K αiβk = (Φ α,j D ijkl Φ β,l )d Ω αi = (Φ α P i )d + (Φ α f i )d D ijkl σ ij ε ij σ ij, ε ij 5 σ ij = t 0 G ijkl (t τ) ε kl τ G ijkl Maxwell dτ (5.1) G ijkl = G 0 δ ij δ kl + (δ ik δ jl + δ il δ jk ) N n=1 G n exp ( t τ τ n ) G n n τ n (2.7) ε ij τ = 1 ( U αi U ) αj Φα,j + Φ α,i 2 τ τ (5.2) (5.3) 6

(5.1) σ ij = t 0 G ijkl (t τ) U βl τ dτ Φ β,k (5.4) 0 t U i (τ) = t2 τ 2 t 2 U i (0) + τ 2 U i (t) τ = t2 2τ t 2 t 2 U i(t) + τ(t τ) t U i (0) + 2τ t U i(t) + t 2τ 2 t U i (0) (5.5) U i (0) (5.6) (5.4) σ ij = H ijkl Φ β,l U βk σ ij (5.7) H ijkl = σ ij = + t 0 t 0 t (5.9) (2.11) 0 2G ijkl (t τ) τ 2 t 2 dτ G ijkl (t τ) t2 2τ t 2 dτ Φ β,k U βl (0) G ijkl (t τ) t 2τ t dτ Φ β,k U βl (0) K αiβk U βk = Ω αi + Ω αi (5.8) K αiβk = (Φ α,j H ijkl Φ β,l )d Ω αi = (Φ α,j σij)d 0 t (5.1) Q α ij = A αβ ijkl qβ kl + Bαβ ijkl + ġβ kl (5.9) i, j, k, l = 1, 2, 3 α, β = 1, 2, L Q 1 ij = σ ij, q 1 kl = ε kl Q α ij = 0(α 1), q β kl = hβ kl (β 1) L h β kl (β 1) A αβ ijkl, Bαβ ijkl 7

t t ε ij q ij α = qα ij qij(0) α (5.10) t (5.10) (5.9) σ ij = K (1) ijkl ε kl + K (2)α ijkl h α kl + H (1) ijkl ε kl(0) + H (2)α ijkl h α kl(0) (5.11) K (2)α ijkl ε ij + K (3)αβ ijkl h β ij + H (2)α ijkl K (1) ijkl = A (1) ijkl + 1 t B(1) ijkl, ε ij (0) + H (3)αβ ijkl h β ij(0) = 0 (5.12) H ijkl = 1 t B(1) ijkl, K (2)α ijkl = A (2)α ijkl + 1 t B(2)α ijkl, Hα ijkl = 1 t B(2)α ijkl, K (3)αβ ijkl = A (3) ijkl + 1 t B(3)αβ ijkl, H αβ ijkl = 1 β t B(3)α ijkl, (5.12) (5.11) h β ij σ ij = D ijkl ε kl σ ij (5.13) h β ij = (1) β ε ij (2) β ε ij (0) (3) αβ hβ ij(0) (1) β = K 1(3)αβ ijkl K (2)αβ ijkl, (2) β = K 1(3)αβ ijkl H (2)α ijkl, (3) αβ = K 1(3)αγ ijkl H (3)γα ijkl, D ijkl = K (1) ijkl + K(2)γ ijkl K 1(3)γδ ijkl K (2)δ ijkl, σ ij = ( H (1) ijkl K(2)γ ) ijkl γ (3) εkl (0) ) h γ kl (0), + ( H (2)γ ijkl K (2)δ ijkl (3) δγ (5.13) D ijkl t σij t (5.12) ε ij h α ij (5.13) (2.11) K αi = Ω αi = K αiβk U βk = Ω αi + Ω αi (5.14) (Φ α,j D ijkl Φ β,k )d (Ω α,j σ ij)d (5.14) (5.8) 8

6 Praqer ij e ij ij = σ ij σ kk 3 δ ij (6.1) e ij = ε ij ε kk 3 δ ij (6.2) f(σ ij, e ij = π (6.3) e ij e ij e ij e ij ε σ e ij = e ij + e ij (6.4) σ = σ kk 3 ε = ε kk 3 (6.5) (6.6) σ = 3K ε (6.7) ij = 2G e ij (6.8) K G (6.8) Ṡ ij = 2G(ė ij ė ij) = 2G(ė ij ε ij) (6.9) ε ij ε ij (6.9) ε ij = ε ij + ε ij (6.10) ε ii = 0 (6.11) Praqer ε ij ε ij = 1 2η 1 2 (1 kj2 ) ij (6.12) 9

J 2 J 2 = 1 2 ij ij (6.13) 2 η k (6.7) (6.9) σ ij = {µ(δ ik δ jl + δ li δ kj ) + λδ ij δ kl } ε kl λ = 1 3 (3K 2G) = νe (1 + ν)(1 2ν) E µ = G = 2(1 + ν) µ(δ ik δ lj + δ li δ kj ) ε kl (6.14) (6.14), (6.12), (6.13) (6.3) (6.11) (6.13) σ ij = E ijkl ε kl σ ij (6.15) σij = 2µ ε ij ε ij = 1 1 2 (1 kj2 ) ij, 2η J 2 = 1 2 ij ij E ijkl = µ(δ ik δ jl + δ il δ jk ) + λδ ij δ kl (2.7) (6.15) (2.11) K αiβk U βk = Ω αi + Ω αi (6.16) k αiβk = (Φ α,j E ijkl Φ β,l )d Ω αi = (Φ α,j σij)d (6.16) (6.16) K αiβk Ω αi 7 (2.1) (2.2) ζ i θ ζ i = θ,i (7.1) 10

ε ρ ε = σ ij ε ij + q i,i + ρh (7.2) ρ q i h η Clasius-Duhem T ρr η q i,i ρh + 1 T q it,i 0 (7.3) φ σ (7.4), (7.5) (7.2) φ = ε ηt (7.4) σ = σ ij ε ρ( φ + ηt ) (7.5) ρ φ = σ ij ε ij ρη T σ (7.6) ρt η = q i,i + ρh + σ (7.7) (7.6) (7.7) (7.7) θ 3 (θ ρt 0 η)d + (θ,iq i )d = (θ q i η i )d + (θ ρh)d (7.8) T T 0 (2.7) θ θ α Φ α θ = Φ α θ α (7.9) (7.9) (7.8) α θα (2.11) (Φ α ρt 0 η)d + (Φ α q i n i )d = Γ α (7.10) Γ α = (Φ α q i n i )d + (Φ α ρh)d (7.11) φ φ = 1 2 E ijklε ij ε kl B ij ε ij θ ρc 2T 0 (7.12) σ ij = φ ε ij = E ijkl ε kl B ij θ (7.13) ρη = φ θ = B ijε ij + ρc T 0 θ (7.14) 11

E ijkl = λδ ij δ kl + µ(δ ik δ jl + δ il δ jk ) B ij = b δ ij b = E 1 2ν α λ µ α C q i q i = κζ i (7.15) κ (7.13), (7.14), (7.15) (2.7), (7.9) σ ij = E ijkl Φ β,l U βk B ij Φ β θ β (7.16) ρη = B ij Φ β,i U βj + ρc Φ β θ β T 0 (7.17) q i = κφ β,i θ β (7.18) (7.16) (2.11) K αiβk = T αiβ = K αiβk U βk T αiβ θ = Ω αi (7.19) Ω αi = (Φ α,j E ijkl Φ β,l )d (Φ α,j B ij Φ β )d (Φ α ρ i )d + (Φ α f i )d (7.17) (7.18) (7.10) (7.20) M αβ θβ + N αiβ U αi + J αβ θ β = Γ α (7.20) M αβ = N αiβ = J αβ = Γ α = (Φ α ρcφ β )d (Φ α T B ij Φ β,j )d (Φ α,i κ Φ β,i )d (Φ α ρh)d + (Φ α q i n i )d (7.19) (7.20) (7.20) U αi J αβ θ = Γ α (7.21) 12

8 x i x i, z i U i U i = z i x i (8.1) F ij F ij z i,j = δ ij + U i,j (8.2) Green ε ij U i (8.3) ε ij = 1 2 (U i,j + U j,i + U m,j U m,j ) (8.3) Kirchhoff ij ρ f i (F ij jk ),k + ρf i = 0 (8.4) (8.4) U i 0 0 0 { (Fij jk ),k U i } d 0 (ρ 0 f i U i )d = 0 (8.5) (8.5) 1 Green-Gauss 0 ( ij ε ij)d = Ω (8.6) ε ij = 1 2 (U i,j + Uj,i + Um,iU m,j + U m,i Um,j) (8.7) [ ] Ω = ij n j (δ ki + U k,i )Uk d + (ρ 0 f i Ui )d 0 0 n j A 0 ij = E ijkl ε kl (8.8) α i U αi U i Φ α (8.9) (8.3) (8.7) U i = Φ α U αi (8.9) 2 ε ij = Φ α,i U αj + Φ α,j U αi + Φ α,i Φ β,j U αm U βm (8.10) 2ε ij = Φ α,i U αj + Φ α,j U αi + Φ α,i Φ β,j U αmu βm + Φ α,i Φ β,j U αm U βm (8.11) (8.8) (8.6) 0 (E ijkl ε kl ε ij)d = Ω (8.12) 13

(8.10) (8.11) K αiβj U βj = Ω αi (8.13) [ K αiβj = Φα,k (δ li + Φ δ,l U δi )E klmn (δ mj + 1 0 2 Φ ] γ,mu γj )Φ β,n d0 Ω αi = (ρ i Φ α )d + (ρ 0 f i Φ α )d 0 0 P k = ij (δ ki + Φ β,i U βk )n j (8.13) Newton-Raphson 14