all.dvi

Similar documents
all.dvi

all.dvi

all.dvi

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

meiji_resume_1.PDF

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

73

SO(2)

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

~nabe/lecture/index.html 2

TOP URL 1

TOP URL 1

第5章 偏微分方程式の境界値問題

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

OHP.dvi

1 n A a 11 a 1n A =.. a m1 a mn Ax = λx (1) x n λ (eigenvalue problem) x = 0 ( x 0 ) λ A ( ) λ Ax = λx x Ax = λx y T A = λy T x Ax = λx cx ( 1) 1.1 Th

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.


II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )


TOP URL 1

OHP.dvi

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

gr09.dvi

Gmech08.dvi

基礎数学I

構造と連続体の力学基礎

k m m d2 x i dt 2 = f i = kx i (i = 1, 2, 3 or x, y, z) f i σ ij x i e ij = 2.1 Hooke s law and elastic constants (a) x i (2.1) k m σ A σ σ σ σ f i x

Untitled

Note.tex 2008/09/19( )

I y = f(x) a I a x I x = a + x 1 f(x) f(a) x a = f(a + x) f(a) x (11.1) x a x 0 f(x) f(a) f(a + x) f(a) lim = lim x a x a x 0 x (11.2) f(x) x

量子力学 問題


: , 2.0, 3.0, 2.0, (%) ( 2.

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3


note1.dvi

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

TOP URL 1

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

φ s i = m j=1 f x j ξ j s i (1)? φ i = φ s i f j = f x j x ji = ξ j s i (1) φ 1 φ 2. φ n = m j=1 f jx j1 m j=1 f jx j2. m

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n


1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

Report98.dvi

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

Part () () Γ Part ,

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

Macdonald, ,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdona

201711grade1ouyou.pdf

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

y = x x R = 0. 9, R = σ $ = y x w = x y x x w = x y α ε = + β + x x x y α ε = + β + γ x + x x x x' = / x y' = y/ x y' =

untitled

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x


総研大恒星進化概要.dvi

u Θ u u u ( λ + ) v Θ v v v ( λ + ) (.) Θ ( λ + ) (.) u + + v (.),, S ( λ + ) uv,, S uv, SH (.8) (.8) S S (.9),

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+

K E N Z OU

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v

第1章 微分方程式と近似解法


x y x-y σ x + τ xy + X σ y B = + τ xy + Y B = S x = σ x l + τ xy m S y = σ y m + τ xy l σ x σ y τ xy X B Y B S x S y l m δu δv [ ( σx δu + τ )

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =


( ) ,

QMII_10.dvi

C : q i (t) C : q i (t) q i (t) q i(t) q i(t) q i (t)+δq i (t) (2) δq i (t) δq i (t) C, C δq i (t 0 )0, δq i (t 1 ) 0 (3) δs S[C ] S[C] t1 t 0 t1 t 0

kou05.dvi

4 Mindlin -Reissner 4 δ T T T εσdω= δ ubdω+ δ utd Γ Ω Ω Γ T εσ (1.1) ε σ u b t 3 σ ε. u T T T = = = { σx σ y σ z τxy τ yz τzx} { εx εy εz γ xy γ yz γ

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

2000年度『数学展望 I』講義録

A

( ) e + e ( ) ( ) e + e () ( ) e e Τ ( ) e e ( ) ( ) () () ( ) ( ) ( ) ( )

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x

Akito Tsuboi June 22, T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + (

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e


( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

keisoku01.dvi

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

1 1 u m (t) u m () exp [ (cπm + (πm κ)t (5). u m (), U(x, ) f(x) m,, (4) U(x, t) Re u k () u m () [ u k () exp(πkx), u k () exp(πkx). f(x) exp[ πmxdx

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4


Transcription:

72 9 Hooke,,,. Hooke. 9.1 Hooke 1 Hooke. 1, 1 Hooke. σ, ε, Young. σ ε (9.1), Young. τ γ G τ Gγ (9.2) X 1, X 2. Poisson, Poisson ν. ν ε 22 (9.) ε 11 F F X 2 X 1 9.1: Poisson

9.1. Hooke 7 Young Poisson G 2(1 + ν) (9.4) Hooke ( Hooke ) ε 11 σ 11 ν σ 22 + σ ε 22 σ 22 ν σ + σ 11 ε σ ν σ 11 + σ 22 γ 12 σ 12 G γ 2 σ 2 G γ 1 σ 1 G (9.5) ν σ 11 (1 + ν)(1 2ν) (ε 11 + ε 22 + ε )+ 1+ν ε 11 ν σ 22 (1 + ν)(1 2ν) (ε 11 + ε 22 + ε )+ 1+ν ε 22 ν σ (1 + ν)(1 2ν) (ε 11 + ε 22 + ε )+ 1+ν ε σ 12 1+ν ε 12 σ 21 σ 2 1+ν ε 2 σ 2 σ 1 1+ν ε 1 σ 1 (9.6) γ ij 2ε ij 9.1. 9.1 1 σ 11 σ 0 (9.5)

74 9 Hooke ε 11 σ 11 ν σ 22 + σ ε 22 σ 22 ν σ + σ 11 ε σ ν σ 11 + σ 22 γ 12 σ 12 G 0 γ 2 σ 2 G 0 γ 1 σ 1 G 0 σ ν σ ν σ (9.6) ν σ 11 (1 + ν)(1 2ν) ( σ ν σ ν σ )+ σ 1+ν σ ν σ 22 (1 + ν)(1 2ν) ( σ ν σ ν σ ) 1+ν ν σ 0 ν σ (1 + ν)(1 2ν) ( σ ν σ ν σ ) 1+ν ν σ 0 σ 12 1+ν 00 σ 2 1+ν 00 σ 1 1+ν 00 9.2. (9.5) (9.6) ε 11,ε 22,ε ε 11 + ε 22 + ε 1 (σ 11 + σ 22 + σ ) 2ν (σ 11 + σ 22 + σ ) 1 2ν (σ 11 + σ 22 + σ ) (9.7) σ 22 + σ (9.5) ε 11 1 σ 11 ν { } 1 2ν (ε 11 + ε 22 + ε ) σ 11 (9.8) ε 11 1+ν σ 11 + ν 1 2ν (ε 11 + ε 22 + ε ) σ 11 { ε 11 + ν } 1+ν 1 2ν (ε 11 + ε 22 + ε ) ν (1 + ν)(1 2ν) (ε 11 + ε 22 + ε )+ 1+ν ε 11 (9.9)

9.2. Hooke 75 (9.6), Cauchy T ij, σ ij, 9..,,, Cauchy σ ij, σ ij ε ij Hooke. 9.. Hooke,, 4.,., Cauchy Green-Lagrange,. A F. cauchy T 11 F/A 0. θ.. Green-Lagrange, 4.6. 8.4. [ ] [ ][ ] T11 T 12 cos θ sin θ ][ T11 T12 cos θ sin θ (9.10) T 21 T 22 sin θ cos θ T 21 T22 sin θ cos θ, Cauchy Green-Lagrange,. T f() (9.11),. Green-Lagrange,., Cauchy Cauchy 2Piola-Kirchoff (??, ).. 9.2 Hooke 45 [ ] [ ] σ 0 0 σ (9.12) 0 σ σ 0 σ 22 σ σ 11 σ σ 11 0 σ 12 σ σ 21 σ σ 22 0 9.2:

76 9 Hooke Hooke ε 11 Hooke ε 11 σ 11 ν σ 22 + σ ε 22 σ 22 ν σ + σ 11 ε σ ν σ 11 + σ 22 γ 12 σ 12 G γ 2 σ 2 G γ 1 σ 1 G (9.1) ε 11 σ 11 ν σ 22 σ ν σ 1+ν σ (9.14) ε 22 σ 22 ν σ 11 σ + ν σ 1+ν σ (9.15) ε 12 ( 1 ) 2 γ 12 0 (9.16) ε 11 0 (9.17) ε 22 0 (9.18) ε 12 ( 1 ) 2 γ 12 σ 12 2G σ (9.19) 2G ε 12 1 2 (ε 11 ε 22 ) (9.20) 1 ( 1+ν 2 σ 1+ν ) σ (9.21) 1+ν σ (9.22) σ 2G 1+ν G σ (9.2) 2(1 + ν) (9.24)

9.. Hooke 77 9. Hooke,,, Hooke. (9.9),,.,,,.,.,,.,.,,,. a i σ ij a 1 ε ij + a 2 ε 2 ij + a ε ij + a 4 ε 4 ij + (9.25), a 0 δ ij ε ij 0 σ ij 0, σ ij a 0 δ ij. ε ij I 1 ε ii, I 2 1 2 {(ε ii) 2 ε ij ε ji }, I detε, Cayley-Hamilton ε ij I 1ε 2 ij I 2ve ij + I δ ij (9.26), 2,. σ ij φ 0 (I 1,I 2,I )δ ij + φ 1 (I 1,I 2,I )ε ij + φ 2 (I 1,I 2,I )ε 2 ij (9.27) δ ij, ε ij 0 φ 0 (I 1,I 2,I )0.,, φ 0,φ 1,φ 2 λ, μ φ 0 λi 1, φ 1 μ, φ 2 0. σ ij λi 1 δ ij + με ij (9.28). λ, μ Lamé., Hooke. (9.6),,.

78 9 Hooke 9.4 I 1 ε 11 + ε 22 + ε. l 0. ε 11 0 0 0 ε 22 0 (9.29) 0 0 ε, v,,, v {l 0 (1 + ε 11 )}{l 0 (1 + ε 22 )}{l 0 (1 + ε )} (9.0) l0{1+(ε 11 + ε 22 + ε )+(ε 11 ε 22 + ε 22 ε + ε ε 11 )+ε 11 ε 22 ε } (9.1) l0 {1+(ε 11 + ε 22 + ε )} (9.2), J V l 0 J v V l 0 {1+(ε 11 + ε 22 + ε )} l o ε 11 + ε 22 + ε (9.), J I 1. ε kk. ε ij. ε ij 1 ε kkδ ij + (ε ij 1 ) ε iiδ ij (9.4) ε ε 11 ε 12 ε kk 1 ε 11 ε kk ε 12 ε 1 ε ε 21 ε 22 ε 2 kk + ε 21 ε 22 ε kk ε 2 (9.5) ε ε 1 ε 2 ε kk ε 1 ε 2 ε ε kk 2 0,. Hooke, (9.28). σ ij λε kk δ ij +2με ij (9.6) ( λε kk δ ij +2μ ε ij + 1 ) ε kk (9.7) (λ + 2 ) μ ε kk δ ij +2με ij (9.8) κε kk δ ij +2με ij (9.9) κ λ + 2 μ, μ G.

9.4. 79 Young, Poisson ν κ, G., σ 11 0 σ ij 0 ε 11 σ 11. σ 11 Young κ, G. 9Gκ κ + G ε 11 (9.40) 9Gκ κ + G (9.41) 9.4., (9.9). (9.9), ε ii σ ii., σ ii κε ii δ ii +2G (ε ii 1 ) ε iiδ ii (9.42) κε ii (9.4) ε ii 1 κ σ ii (9.44), (9.9), σ ij 1 σ iiδ ij +2G ( ε ij 1 ) 9κ σ iiδ ij (9.45), ε ij 1 9κ σ iiδ ij + 1 (σ ij 1 ) 2G σ iiδ ij (9.46) σ 11 0 σ ij 0.,. ε 11 σ 11. ε 11 1 9κ σ 11 + 1 ( σ 11 1 ) 2G σ 11 (9.47) ( 1 G + 1 ) σ 11 κ + G 9κ 9Gκ σ 11 (9.48) σ 11 9Gκ κ + G ε 11 (9.49) ν,, ε 22 σ 11, Poisson ν ε 22 /ε 11,. ν κ 2G 2(κ + G) (9.50)

80 9 Hooke 9.5. ε 22, σ 11. ε 22 1 ( 0 1 ) 2G σ 11 ( 1 6G + 1 9κ Poisson ν ε 22 /ε 11, ν ε 22 κ 2G ε 11 18Gκ κ 2G 2(κ + G) + 1 9κ σ 11 (9.51) ) κ +2G σ 11 18Gκ σ 11 (9.52) 9Gκ κ + G (9.5) (9.54) (9.41) (9.50) κ, ν,ν.. κ (1 2ν), G 2(1 + ν) 9.6. G, κ,ν. κ, ν κ 2 G κ (9.55) (κ + G) 9Gκ (9.56) ( 9G)κ G (9.57) κ G (9G ) (9.58) 2(κ + G)ν κ 2G (9.59) (6ν )κ 2G(1 + ν) (9.60) κ 2G(1 + ν) (1 2ν) G 2G(1 + ν) (9G ) (1 2ν) 2(1 + ν) (9G ) (1 2ν) (1 2ν) G 2(1 + ν) G 1 ( ) (1 2ν) 2(1 + ν) + 2(1 + ν) (9.61) (9.62) (9.6) (9.64) (9.65) (9.66)

9.5. 81 κ 2G(1+ν) (1 2ν) G 2(1+ν) κ,ν. 2(1 + ν) κ (1 2ν) 2(1 + ν) (9.67) (1 2ν) Hooke,ν. (9.9) σ ij (κ 2 ) G ε ii δ ij +2Gε ij (9.68) ( (1 2ν) 2 ) ε ii δ ij + 2 2(1 + ν) 2(1 + ν) ε ij (9.69) ν (1 2ν)(1 + ν) ε iiδ ij + (1 + ν) ε ij (9.70), (9.6). 9.5,,., X 2 0 X 2 0., ε ij 9 ε 22, ε 12, ε 21, ε 2, ε 2 0 δε ij δε 22 δε 12 δε 21 δε 2 δε 2 0 X X 2 X 1

82 9 Hooke x 0 ε 1 ( u + u ) 0 2 x x ε 1 1 ( u1 + u ) 0, ε 1 1 ( u + u ) 1 0 2 x x 1 2 x 1 x ε 2 1 ( u2 + u ) 0, ε 2 1 ( u + u ) 2 0 (9.71) 2 x x 2 2 x 2 x 0 ν σ 11 (1 + ν)(1 2ν) (ε 11 + ε 22 )+ 1+ν ε 11 ν σ 22 (1 + ν)(1 2ν) (ε 11 + ε 22 )+ 1+ν ε 22 ν σ (1 + ν)(1 2ν) (ε 11 + ε 22 ) σ 12 1+ν ε 12 σ 21 σ 2 σ 2 0 σ 1 σ 1 0 (9.72) ε 0 σ 0 σ,,., X 2 e 2 t 2 0 t 2 σ 21 e 1 + σ 22 e 2 + σ 2 e (9.7) σ 21,σ 22,σ 2 0 Cauchy σ 12,σ 2 0 X X 2 X 1

9.5. 8 x σ 22 σ 12 σ 21 σ 2 σ 2 0 Hooke 0 σ 0 σ 11 σ 22 σ σ 12 σ 2 σ 1 ν (1 + ν)(1 2ν) (ε 11 + ε 22 + ε )+ 1+ν ε 11 ν (1 + ν)(1 2ν) (ε 11 + ε 22 + ε )+ 1+ν ε 22 ν (1 + ν)(1 2ν) (ε 11 + ε 22 + ε )+ 1+ν ε 0 1+ν ε 12 σ 21 1+ν ε 2 σ 2 0 ε 2 ε 2 0 1+ν ε 1 σ 1 0 ε 1 ε 1 0 (9.74) ν (1 + ν)(1 2ν) (ε 11 + ε 22 + ε )+ 1+ν ε 0 ε ν 1 ν (ε 11 + ε 22 ) (9.75) Hooke σ 11 1 ν ε 2 11 + ν 1 ν ε 2 22 σ 22 ν 1 ν ε 2 11 + 1 ν ε 2 22 σ 12 1+ν ε 12 (9.76)

85 11, Cauchy 1,.. 11.1 Hooke Young σ 11 0 σ ij 0,, Cauchy., f. F F X 2 X 1,,,, 0.,,.. Cauchy ( ) : σ 11 + σ 12 + σ 1 0 (11.1) X 1 X 2 X σ 21 + σ 22 + σ 2 0 X 1 X 2 X (11.2) σ 1 + σ 2 + σ 0 X 1 X 2 X (11.) u 1 u 2 u 0 at(0, 0, 0) (11.4)

86 11 t n σ T n, X 1 L, n (1, 0, 0) f (f,0, 0) X 1 L, n ( 1, 0, 0) f ( f,0, 0), (Hooke ) σ ij σ 1f atx 1 L (11.5) σ ( 1) f atx 1 L (11.6) ν (1 2ν)(1 + ν) ε iiδ ij + (1 + ν) ε ij (11.7) ε ij 1 ( ui + u ) j (11.8) 2 X j X i,,, ε ij 0 (i j)., Hooke, σ ij 0 (i j). 0, Cauchy σ 11 X 1 0, σ 22 X 2 0, σ X 0 (11.9)., C 1,C 2,C,. (9.46), σ 11 C 1, σ 22 C 2, σ C (11.10) σ 11 f, σ 22 0, σ 0 (11.11) σ 11 ε 11 (11.12) u 1 X 1 (11.1), f u 1 X 1 u 1 X 1 f (11.14) u 1 f X 1 + C (11.15)

11.1. 87 X 1 0 u 1 0, ε 22 ε νε 11 u 2 νf X 2, u 1 f X 1 (11.16) u νf X (11.17) σ 11 ε 11 u 1 X 1 Cauchy 2 2 u 1 X 2 1 0 (11.18) u 1 X 1 f at X 1 L, u 1 0 at X 1 0 (11.19).. 0 X X 1 u 0(X 0) L f ε ij 0(i j), σ ij 0(i j) Cauchy X σ 11 σ 22 σ 0, 0, + b 0 (11.20) X 1 X 2 X b, ρ, g, (ρ, g > 0 ) b ρg (11.21)

88 11, σ X ρg 0 (11.22), X L σ f, σ ɛ σ 11 0, σ 22 0, σ C + ρgx (11.2) f C ρgl, C f + ρgl (11.24) u X f + ρg (X L) (11.25) u f X + ρg 2 X2 ρglx + c (11.26) X 0 u 0 c 0 u f X + ρg ( ) X 2 2 2LX (11.27). 2 u a (11.28) X 2 du, dx u. d 2 u f(x) (11.29) dx2,.,,. 11.2. [B] u. d2 u dx u(0) u 0, u(a) u a or 2 f(x) (0 <x<a) (11.0) du (a) d (11.1) dx