2

Similar documents
E1 (4/12)., ( )., 3,4 ( ). ( ) Allen Hatcher, Vector bundle and K-theory ( HP ) 1

Dynkin Serre Weyl

プログラム

日本内科学会雑誌第98巻第4号

日本内科学会雑誌第97巻第7号

λ n numbering Num(λ) Young numbering T i j T ij Young T (content) cont T (row word) word T µ n S n µ C(µ) 0.2. Young λ, µ n Kostka K µλ K µλ def = #{T

x 3 a (mod p) ( ). a, b, m Z a b m a b (mod m) a b m 2.2 (Z/mZ). a = {x x a (mod m)} a Z m 0, 1... m 1 Z/mZ = {0, 1... m 1} a + b = a +

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

II Lie Lie Lie ( ) 1. Lie Lie Lie

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m

1 X X A, B X = A B A B A B X 1.1 R R I I a, b(a < b) I a x b = x I 1.2 R A 1.3 X : (1)X (2)X X (3)X A, B X = A B A B = 1.4 f : X Y X Y ( ) A Y A Y A f

第86回日本感染症学会総会学術集会後抄録(I)

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c

0. Intro ( K CohFT etc CohFT 5.IKKT 6.

TOP URL 1

1 Euclid Euclid Euclid

Ł\”ƒ-2005

Gauss Fuchs rigid rigid rigid Nicholas Katz Rigid local systems [6] Fuchs Katz Crawley- Boevey[1] [7] Katz rigid rigid Katz middle convolu

( ),.,,., C A (2008, ). 1,, (M, g) (Riemannian symmetric space), : p M, s p : M M :.,.,.,, (, ).,, (M, g) p M, s p : M M p, : (1) p s p, (

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

第90回日本感染症学会学術講演会抄録(I)

0 Intoduction 0.1 (localization fomula) T = U(1) M µ M T µ = M M T µ eff M T 2. M T M T Gauss µ µ eff (1) (2) Atiyah-Singe U(1) [At85]

SO(n) [8] SU(2)

x V x x V x, x V x = x + = x +(x+x )=(x +x)+x = +x = x x = x x = x =x =(+)x =x +x = x +x x = x ( )x = x =x =(+( ))x =x +( )x = x +( )x ( )x = x x x R

( 3) b 1 b : b b f : a b 1 b f = f (2.7) g : b c g 1 b = g (2.8) 1 b b (identity arrow) id b f a b g f 1 b b c g (2.9) 3 C C C a, b a b Hom C (a, b) h

b3e2003.dvi

日本内科学会雑誌第102巻第4号

(2) Fisher α (α) α Fisher α ( α) 0 Levi Civita (1) ( 1) e m (e) (m) ([1], [2], [13]) Poincaré e m Poincaré e m Kähler-like 2 Kähler-like

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±


,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

O1-1 O1-2 O1-3 O1-4 O1-5 O1-6

Twist knot orbifold Chern-Simons

放射線専門医認定試験(2009・20回)/HOHS‐05(基礎二次)

プログラム

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2.

Hitchin-Chatterjee T. (U, (g α0 α 1 )): U = {U α } α A, (M ) g αβ : U αβ T, (U αβ ) g αβ g βγ = g αγ. (U αβγ ) T T, T g αβ : U αβ T P αβ U αβ, Hitchin

main.dvi

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T


30

all.dvi

1 1, 2016 D B. 1.1,.,,. (1). (2). (3) Milnor., (1) (2)., (3). 1.2,.,, ( )..,.,,. 1.3, webpage,.,,.

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

[1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin Clifford Spin 10 A 12 B 17 1 Cliffo

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.


II 1 II 2012 II Gauss-Bonnet II

本文/目次(裏白)

( ) (, ) ( )

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T

9 Feb 2008 NOGUCHI (UT) HDVT 9 Feb / 33

CVMに基づくNi-Al合金の

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d )

等質空間の幾何学入門

16 B

Z: Q: R: C: 3. Green Cauchy

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

非可換Lubin-Tate理論の一般化に向けて

wiles05.dvi

LLG-R8.Nisus.pdf

1 M = (M, g) m Riemann N = (N, h) n Riemann M N C f : M N f df : T M T N M T M f N T N M f 1 T N T M f 1 T N C X, Y Γ(T M) M C T M f 1 T N M Levi-Civi

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

『共形場理論』

量子力学 問題

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

6 6.1 L r p hl = r p (6.1) 1, 2, 3 r =(x, y, z )=(r 1,r 2,r 3 ), p =(p x,p y,p z )=(p 1,p 2,p 3 ) (6.2) hl i = jk ɛ ijk r j p k (6.3) ɛ ijk Levi Civit

液晶の物理1:連続体理論(弾性,粘性)

0. I II I II (1) linear type: GL( ), Sp( ), O( ), (2) loop type: loop current Kac-Moody affine, hyperbolic (3) diffeo t

, CH n. CH n, CP n,,,., CH n,,. RH n ( Cartan )., CH n., RH n CH n,,., RH n, CH n., RH n ( ), CH n ( 1.1 (v), (vi) )., RH n,, CH n,., CH n,. 1.2, CH n

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R M End R M) M R ut R M) M R R G R[G] R G Sets 1 Λ Noether Λ k Λ m Λ k C Λ

2017 II 1 Schwinger Yang-Mills 5. Higgs 1

K g g g g; (x, y) [x, y] g Lie algebra [, ] bracket (i) [, ] (ii) x g [x, x] = 0 (iii) ( Jacobi identity) [x, [y, z]] + [y, [z, x]] +

量子力学A

あさひ indd


LCR e ix LC AM m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x (k > 0) k x = x(t)

topology.dvi

1 Part I (warming up lecture). (,,...) 1.1 ( ) M = G/K :. M,. : : R-space. R-space..

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2


No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

Euler, Yang-Mills Clebsch variable Helicity ( Tosiaki Kori ) School of Sciences and Technology, Waseda Uiversity (i) Yang-Mills 3 A T (T A) Poisson Ha

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

L(A) l(a)

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

OCAMI

Îã³°·¿¤Î¥·¥å¡¼¥Ù¥ë¥È¥«¥êto=1=¡á=1=¥ë¥�¥å¥é¥¹

2019_Boston_HP

nsg04-28/ky208684356100043077

2 1 1 α = a + bi(a, b R) α (conjugate) α = a bi α (absolute value) α = a 2 + b 2 α (norm) N(α) = a 2 + b 2 = αα = α 2 α (spure) (trace) 1 1. a R aα =

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

TOP URL 1

1 G K C 1.1. G K V ρ : G GL(V ) (ρ, V ) G V 1.2. G 2 (ρ, V ), (τ, W ) 2 V, W T : V W τ g T = T ρ g ( g G) V ρ g T W τ g V T W 1.3. G (ρ, V ) V W ρ g W

koji07-01.dvi

Transcription:

III ( Dirac ) ( ) ( ) 2001. 9.22

2

1 2 1.1... 3 1.2... 3 1.3 G P... 5 2 5 2.1... 6 2.2... 6 2.3 G P... 7 2.4... 7 3 8 3.1... 8 3.2... 9 3.3... 10 3.4... 11 3.5... 12 4 Dirac 13 4.1 Spin... 13 4.2 Spin Dirac... 14 4.3 Dirac... 15 1

1 1 G Lie GL n (R),GL n (C),O(n),U(n) g Lie V G R n, C n ρ : G GL(V ) G X X G P G X ρ P E = P G V P, E G X {U α } U α P P = α U α G P g αβ : U αβ G U αβ := U α U β P S = {s α } s α : U α G g αβ s β = s α on U αβ 1 2

P P E = α U α V E g V αβ : U αβ GL(V ) 1.1 1.1. G A = {A α } A α : U α Ω 1 (U α, End(V )) A β = g 1 αβ A αg αβ + g 1 αβ dg αβ (1.1) 1.2. A = {A v α} A V α : U α Ω 1 (U α, End(V )) A V β = gv αβ 1 A V α gv αβ + gv αβ 1 dg V αβ G = O(n), U(n) A V α ( ) 1.3. (1.1) g 1 αβ (d + A α)g αβ = d + A β 1.4 (A ). C P := α U α g A β g 1 αβ A αg αβ + g 1 αβ dg αβ C P / X C P / G P C P / 1.2 1.5. E X :Γ(E) Γ(T X E) f C (X),s Γ(X, E) (fs)=df s + f s 3

G = U(n), O(n) d(s 0,s 1 )=( s 0,s 1 )+(s 0, s 1 ) E Uα = U α V, s Uα : U α V s 1.6. : s Uα = ds + A V α s d :Ω k (E) Ω k+1 (E) Ω k (E) = Γ(Λ k T X E) k =0 d = d (ω s) =d ω s +( 1) deg ω ω d s ω Ω l (E), s Ω k (E) d :Ω k (End (E)) Ω k+1 (End (E)) d (α s) =(d α) s +( 1) deg ω ω d s tr : End (C n ) C tr : End (E) C Ω k (End (E)) d Ω k+1 (End (E)) tr Ω l d tr Ω l+1 4

1.3 G P G π : P X G 0 T fiber P TP π TX G G A P T fiber P G P g (trivial) A P : TP g A P Ω 1 (P, g) A P Ω 1 (P, g) G P Lie G g Ω 1 (G, g) canonical Mauer-Cartan g 1 dg A P : TP g A P Mauer-Cartan {A α } A P = g 1 A α g + g 1 dg (1.2) s α s αa P = A α E s Γ(E) π : P V s π s P X v P ṽ π v, s = ṽ, dπ s 2 G P E 5

2.1 G A = {A α },A α Ω 1 (U α, g) A F (A) :={F (A α )} F (A α ):=da α + 1 2 [A α A α ] F (A V α ):=da V α + A V α A V α 2.1 (F (A) ). F (A β )=g 1 αβ F (A)g αβ g P = U α g F (A β )=g 1 αβ F (A)g αβ g P X F (A) 2.2 d d :Ω k (E) Ω k+2 (E) d d :Γ(E) Ω 2 (E) 2.2. F ( ) Ω 2 (End(E)) d 2 s = F ( ) s F ( ) 6

G ρ ρ :Ω 2 (g P ) Ω 2 (End(V )) F (A) F ( ) F (A) F ( ) G = U(n),O(n) End(E) u(e), o(e) 2.3 (Bianci ).. E s d F ( ) =0 0=d 3 s d 3 s = d F ( )s F ( )(d s) =(d F ( ))s 2.3 G P G P A P Ω 1 (P, g) G canonical A P F (A P ) da P () ()- v 0,v 1 X ṽ 0, ṽ 1 P π F (A P )(v 0,v 1 )=da P (ṽ 0, ṽ 1 ) 2.4 1. 2 p, q p 7

p p p q 2. 3 R Chern Chern 3.1 X CW E X C n E Chern c k (E) H 2k (X, Z) Chern ch k (E) H 2k (X, Q) c k (E) H 2k (X, Z) ch k (E) H 2k (X, Q) : f : X X c k (f E)=f c k (E) ch k (f E)=f ch k (E) c := c 0 + c 1 + c 2 + ch := ch 0 + ch 1 + ch 2 8

c(e 0 E 1 )=c(e 0 )c(e 1 ) ch(e 0 E 1 )=ch(e 0 )+ch(e 1 ) ch(e 0 E 1 )=ch(e 0 )ch(e 1 ) c 0 =1 ch 0 (E) = rank E c 1 = ch 1 L X ch(l) =e c 1(L) normalization E Chern Chern Normalization P 2 (C) P 1 (C) : ξ X H 2 (P 1 (C)) = Zα c 1 (ξ) =α normalize normalization c n (E) =e(e) n = rank E e(e) Euler Thom Euler 3.2 X (Chern-Weil ) 9

n E X A E F A Ω 2 (End(E)) exp:ω 2 (End(E)) k Ω 2k (End(E)) Taylor ch(a) :=tr ( 1 ) e 2π F A ch(a) = k ch k(a) 3.1. ch k (A). Bianki d F A =0 0=trd F A = d(trf A ) 1 trf A e 2π F A det : End (E) C det:(ω 0 Ω 2 )(End(E)) k Ω 2k (End(E)) k ( ) 1 c k λ k := det λid E + 2π F A c k (A) ch k (A) c k (E) :=[c k (A)] A 3.3 Grassmann : BU n = Gr(n) ={V C ; dim V = n} C n : ξ n Gr(n) C := lim(c C 2 C 3 ) 10

3.2. X C n E X f : X BU n E = f ξ n f up to homotopy 3.3. H (BU n, Z) =Z[c 1,c 2, c n ] H (BU n, Q) =Z[ch 1,ch 2, ch n ] c 1,c 2, c n ch 1,ch 2, ch n C n : n i=1 π i ξ 1 CP CP }{{} n CP = BU(1) π i i f : CP CP BU(n) H (BU(n)) H (CP CP )= n H (CP )=Z[x 1,...,x n ] H (CP )=Z[x i ] x i H 2 (CP ) H (CP ) Z x 1,...,x n k c k Q n k=1 xk i /k! ch k C n E X f : X BU(n) c k (E) :=f c k ch k (E) :=f ch k 3.4 X n E X Chern c n (E) E c n (E) H 2n (X, π 2n 1 (S(C n ))) 11

S(C n ) 2n 1 i <2n 1 π 2n 1 (S(C n )) = Z π i (S(C n ))=0 Euler E s 1,s 2 c n 1 (E) c n 1 (E) H 2n 2 (X, π 2n 3 (V 2 (C n ))) V 2 (C n ):={C n } π 2n 3 (V 2 (C n )) = Z i <2n 3 π i (V 2 (C n )) = 0 3.5 Grothendieck Grothandieck Chern L c 1 (L) n E X ξ E C P(E) X x := c 1 (ξ E ) H 2 (P(E)) X 3.4. H (P(E)) = H (x) H (X) x H (X) x n 1 Chen c k (E) x n k 12

Milnor-Stasheff n E X c n (E) =e(e) π k : V k (E) X πk = C } C {{} E n k k rank E n k = n k : H 2(n k) (X) H 2(n k) (V k (E)) c n k (E) Euler c n k (E n k ) 4 Dirac 4.1 Spin SO(2m) Spin(2m) SO(2m) maximal torus: S0(2) SO(2) }{{} m T SO(2) = U(1) z SO(2m) z i U(1) z =(z 1,z 2,...z m ) z lift z 4.1. Spin(2m) : 1. trace ( z + )= 2m trace ( z )= 2m 2m = + 2m 2m 1/2 1/2 z ± 1 2 1 z ± 1 2 2...z ± 1 2 m z ± 1 2 1 z ± 1 2 2...z ± 1 2 m z, zn 1/2 (z 1,...,z m z 1 = = z m =1 z =1,z ±1/2 k =1 13

2. Clifford c : R 2m End( ) c : R 2m Hom ( +, ) Hom (, + ) c(v) 2 = v 2 v 0 v 1 = c(v 0 )c(v 1 )+c(v 1 )c(v 0 )=0 4.2 Spin Dirac 2m Riemann X X Spin TX SO(2m) Spin(2m) P Spin X X Spin : S ± := P Spin Spin(2m) ± X S ± Levi-Civita S ± Γ(S ± ) S ± Γ(T X S ± ) c Γ(S ± ) c S ± Dirac TX Dirac E X E S ± E := 1 S ± + E 1 Γ(S ± E) Γ(T X S ± E) c Γ(S ± E) Dirac c E Dirac 14

4.3 Dirac Λ k R 2m Γ(S S) = Ω k E = S = S + S Dirac d, d E = S = S + S Dirac D :Γ(S + S) Γ(S S) singnature X = dim(ker D) dim(coker D) D :Γ(S + S + ) Γ(S S + ) d + d :Ω even Ω odd χ(x) = dim(ker(d + d )) dim(coker (d + d )) 15

[1] J.W.Milnor, J.D.Stasheff, Characteristic classes, Princeton University Press, 1974 [2] J.W.,, 1998 [3],,, 1997 [4],,, 1998 16