スライド 1

Similar documents
untitled

W Z Large Hadron Collider LHC ATLAS LHC ATLAS Higgs 1

LHC-ATLAS Hà WWà lνlν A A A A A A

LHC ATLAS W µν Z µµ

Hasegawa_JPS_v6

Microsoft PowerPoint - nakamuraJPS2005av2

Gauge Mediation at Early Stage LHC

J-PARC October 14-15, 2005 KEK

LHC ALICE (QGP) QGP QGP QGP QGP ω ϕ J/ψ ALICE s = ev + J/ψ

Supersymmetry after Higgs discovery

Electron Ion Collider と ILC-N 宮地義之 山形大学

TeV b,c,τ KEK/ ) ICEPP


Drift Chamber


Canvas-tr01(title).cv3

untitled

Slide 1

nenmatsu5c19_web.key

MEG μ + e + γ ( ) ( MEGA) = (BSM) MEG μ + e + γ ( : a few ) 180 γ μ + e +

Μ粒子電子転換事象探索実験による世界最高感度での 荷電LFV探索 第3回機構シンポジューム 2009年5月11日 素粒子原子核研究所 三原 智

Slide 1

LEPS

BESS Introduction Detector BESS (BESS-TeVspectrometer) Experimetns Data analysis (1) (2) Results Summary

untitled

talk.title-…„…C…—†[#1

Muon g-2 vs LHC (and ILC) in Supersymmetric Models

cm λ λ = h/p p ( ) λ = cm E pc [ev] 2.2 quark lepton u d c s t b e 1 3e electric charge e color charge red blue green qq

ATLAS実験におけるトップクォーク対系 質量を関数とした生成微分断面積の測定! 山田美帆 海野義信A 神前純一A! 総研大 KEKA! 2012年 9月12日! 日本物理学会 2012年秋季大会! 京都産業大学!

q quark L left-handed lepton. λ Gell-Mann SU(3), a = 8 σ Pauli, i =, 2, 3 U() T a T i 2 Ỹ = 60 traceless tr Ỹ 2 = 2 notation. 2 off-diagonal matrices

ATLAS実験における   レベル2ミューオントリガーの性能評価

ATLAS 2011/3/25-26

J-PARC E15 K K-pp Missing mass Invariant mass K - 3 He Formation K - pp cluster neutron Mode to decay charged particles p Λ π - Decay p Decay E15 dete

余剰次元のモデルとLHC

Δ Δ Δ 250

news

Slide 1

JPS_draft.pptx

main.dvi

Spacecraft Propulsion Using Solar Energy Spacecraft with Magnetic Field Light from the Sun Solar Wind Thrust Mirror Solar Sail Thrust production by li

CMB and DM (Cosmic Microwave Background and Dark Matter) ~ ~

Mott散乱によるParity対称性の破れを検証

ELECTRONIC IMAGING IN ASTRONOMY Detectors and Instrumentation 5 Instrumentation and detectors

W 1983 W ± Z cm 10 cm 50 MeV TAC - ADC ADC [ (µs)] = [] (2.08 ± 0.36) 10 6 s 3 χ µ + µ 8 = (1.20 ± 0.1) 10 5 (Ge

Microsoft PowerPoint - SM_yamazaki.ppt

COE

Diapositive 1

J-PARC

LHC・アトラス実験におけるヒッグス粒子探索の最新結果について

素粒子物理学2 素粒子物理学序論B 2010年度講義第10回

ATLAS

LHC ATLAS Large Hadron Collider 27km TeV ~48pb -1 ATLAS LHC Higgs Muon spectrometer MDT RPC,TGC

ActivitiesAtUTokyo

反D中間子と核子のエキゾチックな 束縛状態と散乱状態の解析

京都 ATLAS meeting 田代 Thursday, July 11, 13 1

500 6 LHC ALICE ( 25 ) µsec MeV QGP

Solar Flare neutrino for Super Novae Conference

km_atami09.ppt

Search for other Higgs’s

updata

Microsoft PowerPoint - 島田美帆.ppt

Microsoft PowerPoint - hiei_MasterThesis

inflation.key

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

FPWS2018講義千代

LHC 実 験 の 始 まり 去 年 1 年 でtopも 含 むほとんどの 既 知 の 粒 子 を 再 発 見 Excited quark, W, SUSYなどのlimitを 更 新 Highest mass di jet μ + μ - p T jet1=670 GeV, p T jet2=610

T2K実験とは T2K実験 東海-神岡295km 長基線ニュートリノ振動実験 T2K実験の目的 1. νe appearanceの探索 T2K俯瞰図 νe SK 295km J-PARC θ13 の測定 (感度 sin 2θ13>0.006) P(νμ νe) = s223sin22θ13sin2(

Study on Application of the cos a Method to Neutron Stress Measurement Toshihiko SASAKI*3 and Yukio HIROSE Department of Materials Science and Enginee

Kaluza-Klein(KK) SO(11) KK 1 2 1

T05_Nd-Fe-B磁石.indd


Developement of Plastic Collocation Method Extension of Plastic Node Method by Yukio Ueda, Member Masahiko Fujikubo, Member Masahiro Miura, Member Sum

スペースプラズマ研究会-赤星.ppt

ELECTRONIC IMAGING IN ASTRONOMY Detectors and Instrumentation 4 The discovery power of modern astronomoical instruments 5 Instrumentation and dete

Introduction MPPC is new semiconductor photon sensor Technology is very similar to SiPM. Under development by Hamamatsu Photonics (HPK) MPPC have not

The Evaluation on Impact Strength of Structural Elements by Means of Drop Weight Test Elastic Response and Elastic Limit by Hiroshi Maenaka, Member Sh


素粒子物理学2 素粒子物理学序論B 2010年度講義第11回

PowerPoint プレゼンテーション

ヒッグスの発見 2012年ヒッグス粒子 だと思われる 新粒子が LHC 実験によって 発見されました LHC 加速器の周の長さ 27km! 山手線は 35km 陽子と陽子を反対方向に加速してぶつけて新粒子を探す 陽子 陽子 衝突際のエネルギーはそれぞれの陽子を 1.5V の乾電池を約 2,500,0

1

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a

アトラスバレルSCT用量産モジュールの品質保証のシステム

Table 1: Basic parameter set. Aperture values indicate the radius. δ is relative momentum deviation. Parameter Value Unit Initial emittance 10 mm.mrad

0810_UIT250_soto

main.dvi


okazaki_ICEPP

Evidence for jet structure in hadron product by e+e-

Transcription:

ATLAS 検出器と物理入門 ( その 5) アトラス検出器のまとめ ( にかえて ) ***** M1 向けの話 ***** 21.May.2005 T. Kobayashi 1) そもそもの設計思想は? 目指す物理は? ATLAS LoI (1992) 2) 実際の choice と期待される performance ATLAS Physics TDR (1999) 3) アトラス検出器の key point( いくつかの例 ) H llll, γγ, ττ(vbf) SUSY (SUGRA, GMSB, )

今日の話の結論 アトラス検出器の性能をよく知り その特徴を活かした解析を目指し てください

Physics Goals of ATLAS (as of 1992, LoI) sensitivity to the largest possible Higgs mass range detailed studies of top quark mass and decays Standard Model studies (gauge boson couplings) SUSY searches sensitivity to large compositeness scales search for unexpected new physics 当時は top 未発見, m H < 1TeV, SUSY or DSB(techni-color), gauge unification(*), SUGRA (*) Ugo Amaldi, Wim de Boer, Fuerstenau (1991) その後 top 発見 Higgs mass range, GMSB, VBF(**), ED, little Higgs, (**) Rainwater, Zeppenfeld, 萩原 (1998)

Examples of physics signatures Higgs searches: H γγ from pp H+X or tth, WH, ZH with e or μ tags H ZZ * eeee or eeμμ or μμμμ H ZZ as above, llνν, ll jet+jet (l=e,μ) H WW l + νl - ν or lν jet+jet with forward jet tag A ττ H ± τν Top quark physics: tt WbWb lν + jets plus b-tag tt H ± bwb τν + lν plus b-tag Supersymmetry: Main signatures for squark and gluinos are missing E T plus jet topologies (direct decays) plus W or Z (cascade decays) Compositeness: Deviations in the jet cross section from the QCD expectation for very high p T jets Sensitivity to a variety of final state signatures is needed

Detector goals Primary goal: Balanced approach to electron, gamma, muon, jet and missing transverse energy measurements at high luminosity Additional goals: During initial lower luminosity, and to as high a luminosity as practicable, more complex signatures including tau detection and heavy flavour tags Large acceptance in rapidity and transverse momentum thresholds Homogeneous detector layout with only the essential components Design within realistic cost constraints Detector performance goal (see Table)

Global detector concept Powerful inner detector in a 2T central solenoid for accurate momentum measurement of isolated leptons over a large rapidity span (-2.5 < η < 2.5) and electron identification High quality EM sampling calorimetry combined with fine granularity preshower detection for electron and gamma detection Hermetic hadron calorimetry for jet and missing transverse energy measurements (-5 < η < 5) Air-core toroid muon spectrometer with large acceptance (-3 < η < 3) and stand-alone momentum measurement capability High precision vertex detector for (initial) lower luminosity operation Modular and flexible trigger, DAQ and analysis architecture

Detector component choice Inner detector precision tracking: - silicon micro strip and pixel detectors electron identification and continuous tracking: - straw tube with transition radiation detection (TRT) Calorimetry electromagnetic with Pb absorber: - liquid Argon accordion hadronic with Fe absorber: - scintillator tiles and liquid Argon(with Cu) very forward calorimetry (3 < η < 5): - liquid Argon in tube/rod with Cu/W Muon measurements momentum measurements: - MDT and CSC triggering and 2-nd coordinate measurements: -RPC and TGC

ATLAS Detector Toroid Magnets (air-core) Hadron Calorimeter (sci. tile, LAr) EM Calorimeter (LAr) Muon Spectrometer (MDT, CSC, RPC, TGC) 23m (Weight = 7000 ton) Inner Detector (pixel, SCT, TRT) 42m Solenoid Magnet (2T)

Compact Muon Solenoid (CMS) SUPERCONDUCTING COIL CALORIMETERS ECAL Scintillating PbWO 4 crystals HCAL Solenoid の内側 Plastic scintillator/brass sandwich IRON YOKE TRACKER Silicon Microstrips Pixels Total weight : 12,500 t Overall diameter : 15 m Overall length : 21.6 m Magnetic field : 4 Tesla MUON BARREL Drift Tube Resistive Plate Chambers ( DT) Chambers ( RPC) MUON ENDCAPS Cathode Strip Chambers ( CSC) Resistive Plate Chambers ( RPC)

ATLAS Inner Detector Physics TDR (1999) R=4cm 50μ(Rφ) 300μ(Z) R=11, 20cm 80μ pitch, 40mrad stereo R=30, 37,45,52cm R=56~107cm 4mmφ straw ( ~30μ, continuous tracking, electron-id)

ATLAS Inner Detector Solenoid Magnet (2T field) Pixel Detectors (1.4 10 8 channels) Strip Detectors (6 10 6 channels) Transition Radiation Tracker (4 10 5 channels) σ(p T )/p T ~ 0.4 p T (p T in TeV)

B = 2T B = 4T σ(p T )/p T ~ 0.36 p T + 0.013 (p T in TeV) ~ 0.15 p T + 0.005 (ATLAS は K S -id も可 ) Tracking??

アトラス実験 Liq.Ar and Tile Calorimeters ID や Liq.Ar の読み出しケーブルやサービスなどのため物質量が非常に多い (η 1.5) Tile barrel Tile extended barrel LAr hadronic end-cap (HEC) LAr EM end-cap (EMEC) LAr EM barrel LAr forward calorimeter (FCAL)

ATLAS EM Calorimeter 4 X 0 - preshower detector for particle id.(γ/π 0, e/π) - precise η position measurement 16 X 0 2~12 X 0 for energy loss correction

Barrel EM calorimeter back section middle section strip section

物質量が非常に多い 3 samplings for precision physics 内部飛跡検出器 EndCap カロリメーター (FCAL は 3.2<η<4.9)

EM Calorimeter Performance 物理のベンチマーク プロセス H γγ 4e ± 検出器 4 元運動量 (E,p) or (t,x) を測定するのが良い 例 :Kamiokande ATLAS Liquid Argon カロリメーターは これが出来る! エネルギー分解能 σ/e=10%/ E 200(400)MeV/E 0.7% σ x,y (IP) ~ 15μ 角度分解能 4-6 mrad/ E (ϕ 方向 Middle Layer( 第 2 層 )) 50 mrad/ E (η 方向 Strip+Middle Layer Z vertexの測定 ) 時間分解能 100 ps (1ns at 1GeV) 粒子識別 e ± /jets, γ/π 0 > 3 at E T =50GeV Linearity < 0.1% σ z (IP) ~ 5.6cm Dynamic range 20MeV(MIP 粒子 μ も検出可能 ) -2TeV( 余剰次元などの信号 ) ATLAS Liquid Argon カロリメーター 鉛 / 液体アルゴンのサンプリング カロリメーター ( アコーディオン型 ) Azimuthal 角 =2π( クラック無し ) 擬ラピディティー η<3.2 (FCAL <4.9) をカバー Liquid Argon は intrinsic に rad-hard アコーディオン ジオメトリー

CMS ECAL PbWO 4 σ E E = 2.7% E 155(210)MeV E 61200 barrel crystals 0.55% 14648 endcap crystals σ E E = 10% E 200(400)MeV E 0.7% ATLAS

ATLAS Hadron Calorimeter >11λ in front of Muon system reduction of punch-through ~10λ active calorimeter(incl. 1.2λ of EM) good E-res. for HE jets LAr, rod + tube geometry

TileCal PMT WLS fiber ~10k channels

FCAL (~9.5λ) LAr gap = 250μ, 375μ Cu W W

FCAL 4 rod are ganged for readout 4k channels

The ATLAS Muon Spectrometer ATLAS: A Toroidal LHC ApparatuS Muon Spectrometer: toroidal magnetic field: <B> = 4 Tm high p t -resolution independent of the polar angle size defined by large lever arm to allow high stand-alone precision air-core coils to minimise the multiple scattering 3 detector stations - cylindrical in barrel - wheels in end caps coverage: η < 2.7 Trackers: fast trigger chambers: TGC, RPC high resolution tracking detectors: MDT,CSC

Muon Detection and Magnet System ATLAS A Toroidal LHC ApparatuS CMS Compact Muon Solenoid η < 2.7 air-core η < 2.4 Fe µ µ

Muon Detector MDT RPC MDT CSC TGC Precision chambers (p-meas.) Trigger chambers (trigger, 2-nd coord.) Monitored Drift Tubes ( η < 2) with a single wire resolution of 80 μm Cathode Strip Chambers (2 < η < 2.7) at higher particle fluxes Resistive Plate Chambers ( η < 1.05) with a good time resolution of 1 ns Thin Gap Chambers (1.05 < η < 2.4) at higher particle fluxes

sagitta measurement MDT RPC MDT CSC TGC point-angle measurement (1.4 < η < 2.7)

Momentum measurement ID ATLAS 2.5 %@100GeV 3.8 % muon stand alone inner detector CMS 8 % @ 100GeV 1.6 %

4 Muon final state H μμμμ (1.5 %) Γ H

Discovery Potential of SM Higgs

ATLAS H γγ better uniformity and angular resolution σ E E = 10% E 200(400)MeV E 0.7% CMS σ M M = 1 σ E1 σ E 2 σ θ 2 E 1 E 2 tan θ /2 better energy resolution σ E E = 2.7% E 155(210)MeV E ( ) 0.55% σ θ = 50mrad E

Combined H γγ+0j and H γγ+1j Analysis H γγ+1j H γγ+0j B.Mellado (University of Wisconsin) @Higgs WG meeting 30/03/05

Vertex Correction c Z: Beam Axis O: (0,0,0) of Atlas coord. system O : Event Interaction Point C: shower center in calorimeter R C : radius of shower center O θ O θ R c Z We use the shower depth parameterization to calculate shower center t = X X 0 material t max = E 0 ln 1 E c 560 MeV E c Z depth of the shower

Application of vertex correction (correction of photon angles using position of vertex) improves Higgs mass resolution by 27% MC@NLO M H =130GeV DC1/7.0.2 Before Vertex Correction After Vertex Correction σ/m=1.42% σ/m=1.04%

Gauge mediated SUSY breaking models (SUSY breaking scale of messenger sector ) 2 /M m Messenger mass M(gravitino) < 1 GeV NLSP gravitino + short lifetime long lifetime NLSP

GMSB G2b point NLSP = and are also long-lived χ 1 stable heavy charged leptons χ 2 Velocity of ~ l R χ 4 η <1 Reconstructed slepton mass σ M / M ~ 4% ATLAS MDT σ t ~ 1ns トリガーは大丈夫か?

A Possible Gauge Mediation Signal cτ ~ O(1m) t γ (arrival time) L Gravitino の方向が決まる

EM Calorimeter Performance 物理のベンチマーク プロセス H γγ 4e ± 検出器 4 元運動量 (E,p) or (t,x) を測定するのが良い 例 :Kamiokande ATLAS Liquid Argon カロリメーターは これが出来る! エネルギー分解能 σ/e=10%/ E 200(400)MeV/E 0.7% φ 方向は? 角度分解能 4-6 mrad/ E (ϕ 方向 Middle Layer( 第 2 層 )) 50 mrad/ E (η 方向 Strip+Middle Layer Z vertexの測定 ) 時間分解能 100 ps (1ns at 1GeV) 粒子識別 e ± /jets, γ/π 0 > 3 at E T =50GeV Linearity < 0.1% 本当か? Dynamic range 20MeV(MIP 粒子 μ も検出可能 ) -2TeV( 余剰次元などの信号 ) ATLAS Liquid Argon カロリメーター 鉛 / 液体アルゴンのサンプリング カロリメーター ( アコーディオン型 ) Azimuthal 角 =2π( クラック無し ) 擬ラピディティー η<3.2 (FCAL <4.9) をカバー Liquid Argon は intrinsic に rad-hard アコーディオン ジオメトリー

(ps) Time resolution 4th ATLAS Physics Workshop (Athens, May 2003) LAr EM Calorimeter: Results from Beam Tests F. Djama - CPPM Marseille φ (19,11) (18, 10) (19,10) (20,10) (19, 9) η Resolution: ~70 ps @70GeV

A Possible Gauge Mediation Signal cτ ~ O(1m) PRD69(2004)035003 a missing-e T 不要 ~100 lγ events σ M /M (slepton, neutralino) ~ 3% b

今日の話の結論 アトラス検出器の性能をよく知り その特徴を活かした解析を目指し てください (CMS との比較で ATLAS のほうが優れているものは?) Motivation を持って 自分で調べてください ( 必要なら検出器の改良へ ) いきなり MC simulation に頼らずに まず手で当たりをつける習慣を!