70 5. (isolated system) ( ) E N (closed system) N T (open system) (homogeneous) (heterogeneous) (phase) (phase boundary) (grain) (grain boundary) 5. 1

Similar documents
September 25, ( ) pv = nrt (T = t( )) T: ( : (K)) : : ( ) e.g. ( ) ( ): 1

3.2 [ ]< 86, 87 > ( ) T = U V,N,, du = TdS PdV + µdn +, (3) P = U V S,N,, µ = U N. (4) S,V,, ( ) ds = 1 T du + P T dv µ dn +, (5) T 1 T = P U V,N,, T

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

untitled

// //( ) (Helmholtz, Hermann Ludwig Ferdinand von: ) [ ]< 35, 36 > δq =0 du

1.5.1 SI kg, m, s ,,

(A2) , 0,

6 6.1 B A: Γ d Q S(B) S(A) = S (6.1) T (e) Γ (6.2) : Γ B A R (reversible) 6-1

30

i 18 2H 2 + O 2 2H 2 + ( ) 3K

現代物理化学 2-1(9)16.ppt

Maxwell

Microsoft Word - ●ipho-text3目次

5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E

P F ext 1: F ext P F ext (Count Rumford, ) H 2 O H 2 O 2 F ext F ext N 2 O 2 2

0 (Preliminary) T S pv

master.dvi

meiji_resume_1.PDF

0 (Preliminary) F G T S pv (1)

2 p T, Q

m d2 x = kx αẋ α > 0 (3.5 dt2 ( de dt = d dt ( 1 2 mẋ kx2 = mẍẋ + kxẋ = (mẍ + kxẋ = αẋẋ = αẋ 2 < 0 (3.6 Joule Joule 1843 Joule ( A B (> A ( 3-2

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

lim lim lim lim 0 0 d lim 5. d 0 d d d d d d 0 0 lim lim 0 d

1 X X T T X (topology) T X (open set) (X, T ) (topological space) ( ) T1 T, X T T2 T T T3 T T ( ) ( ) T1 X T2 T3 1 X T = {, X} X (X, T ) indiscrete sp

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

all.dvi

KENZOU

Part () () Γ Part ,

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

1

4.6 (E i = ε, ε + ) T Z F Z = e βε + e β(ε+ ) = e βε (1 + e β ) F = kt log Z = kt log[e βε (1 + e β )] = ε kt ln(1 + e β ) (4.18) F (T ) S = T = k = k

応力とひずみ.ppt

main.dvi

Note.tex 2008/09/19( )

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

i Γ

untitled


Nosé Hoover 1.2 ( 1) (a) (b) 1:

縺 縺8 縺, [ 縺 チ : () () () 4 チ93799; () "64": ィャ 9997ィ

ρ(= kg m 3 ), g h P 0 C () [1] 1.3 SI Pa hpa h 100 ( : 100 ) 1m 2 1N 1Pa 1N 1kg 1m s 2 Pa hpa mb hpa 1mm 1mmHg hpa 1mmHg =

i

genron-3

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

2.1: n = N/V ( ) k F = ( 3π 2 N ) 1/3 = ( 3π 2 n ) 1/3 V (2.5) [ ] a = h2 2m k2 F h2 2ma (1 27 ) (1 8 ) erg, (2.6) /k B 1 11 / K

Chap11.dvi

iBookBob:Users:bob:Documents:CurrentData:flMŠÍ…e…L…X…g:Statistics.dvi

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n


1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

2016 B S option) call option) put option) Chicago Board Option Exchange;CBOE) F.Black M.Scholes Option Pricing Model;OPM) B S 1

flMŠÍ−w−î‚b

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

1 1.1 Excel Excel Excel log 1, log 2, log 3,, log 10 e = ln 10 log cm 1mm 1 10 =0.1mm = f(x) f(x) = n

Maxwell

i

Acrobat Distiller, Job 128

201711grade1ouyou.pdf

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

mugensho.dvi

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

Gmech08.dvi


B line of mgnetic induction AB MN ds df (7.1) (7.3) (8.1) df = µ 0 ds, df = ds B = B ds 2π A B P P O s s Q PQ R QP AB θ 0 <θ<π

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat

0 = m 2p 1 p = 1/2 p y = 1 m = 1 2 d ( + 1)2 d ( + 1) 2 = d d ( + 1)2 = = 2( + 1) 2 g() 2 f() f() = [g()] 2 = g()g() f f () = [g()g()]

Untitled

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

A

Gmech08.dvi

D v D F v/d F v D F η v D (3.2) (a) F=0 (b) v=const. D F v Newtonian fluid σ ė σ = ηė (2.2) ė kl σ ij = D ijkl ė kl D ijkl (2.14) ė ij (3.3) µ η visco

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 -

現代物理化学 1-1(4)16.ppt

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

untitled

δf = δn I [ ( FI (N I ) N I ) T,V δn I [ ( FI N I ( ) F N T,V ( ) FII (N N I ) + N I ) ( ) FII T,V N II T,V T,V ] ] = 0 = 0 (8.2) = µ (8.3) G


gr09.dvi

main.dvi

Radiation from moving charges#1 Liénard-Wiechert potential Yuji Chinone 1 Maxwell Maxwell MKS E (x, t) + B (x, t) t = 0 (1) B (x, t) = 0 (2) B (x, t)


A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

2,200 WEB * Ξ ( ) η ( ) DC 1.5 i

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

II Brown Brown

body.dvi

A


II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

IA September 25, 2017 ( ) I = [a, b], f (x) I = (a 0 = a < a 1 < < a m = b) I ( ) (partition) S (, f (x)) = w (I k ) I k a k a k 1 S (, f (x)) = I k 2

( ) ,

Transcription:

5 0 1 2 3 (Carnot) (Clausius) 2 5. 1 ( ) ( ) ( ) ( ) 5. 1. 1 (system) 1)

70 5. (isolated system) ( ) E N (closed system) N T (open system) (homogeneous) (heterogeneous) (phase) (phase boundary) (grain) (grain boundary) 5. 1. 2 (state quantity) x = (x, y) z = f(x, y) dz = df = f(x, y) x dx + y f(x, y) y dy (5.1) x

5. 1 71 f f dx df(x) = f(x) dx (5.2) 5.1 f(x) dx = C 1 f(x) dx = f(x 1 ) f(x 0 ) C 2 (5.3) C 2 f(x) dx + C 1 f(x) dx = C 2 f(x) dx = 0 (5.4) 0 x 1 x 0 5.1 (state variable) (state function)

72 5. 3 T, N 3 ( N ) (extensive(additive) variable) E S (intensive variable) P T 5. 1. 3 (irreversible) (reversible)

5. 2 0 73 ( ) 5. 2 0 1 0 θ (empirical temperature) 2 ds = δq/t (thermodynamical absolute temperature) (ideal-gas temperature) 5. 3 1 1 de δq δw de = δq δw (5.5) 1 ( de)

74 5. ( δq) (δw ) δ δw rev = P d δq rev = C dt 1 de = 0 (5.6) de 5. 4 2 5. 4. 1 3 3 2 D D P = NkT = 2 D E (5.7) C v = E T = D Nk (5.8) v 2

5. 4 2 75 1 δq = 0 δw rev = P d de = δw rev = P d (5.9) d (d < 0) de = C v dt C v dt = P d (5.10) P (, T ) C v dt = NkT d (5.11) T (T 0, 0 ) (T, ) T T 0 C v dt Nk T = 0 d C v Nk ln T T 0 = ln 0 (5.12) C v = D/2 Nk ( ) D/2 T = 0 T 0 (5.13) T P P T ( ) (D+2)/2 T = P T 0 P 0 (5.14) ( ) (D+2)/D = P P 0 (5.15) 0 1) 1)

76 5. 5. 4. 2 (Carnot) 2 1, 2) 2 Carnot 5.2 (1 2, 3 4) (2 3, 4 1) 1 P=2/ P 2 P=2/ 2 4 3 5.2 T H T L D P = NkT = (2/D)E ( Q) ( W ) ( E) 5.1 5.1 step E/Nk Q/Nk W/Nk 1 2 0 +T H ln( 2/ 1) +T H ln( 2/ 1) 2 3 D 2 (TH TL) 0 + D 2 (TH TL) 3 4 0 T L ln( 3/ 4) T L ln( 3/ 4) 4 1 + D 2 (TH TL) 0 D 2 (TH TL) total 0 (T H T L) ln( 2/ 1) (T H T L) ln( 2/ 1) E = D/2 NkT de = D/2 NkdT E = D/2 P de = D/2 (P d + dp ) de = P d

5. 4 2 77 5. 4. 3 (isothermal) f NkT E = 0 = Q W = Q i d = Q NkT ln f (5.16) i (adiabatic) Q E = D Nk T = Q W = W (5.17) 2 T (5.13) 1 4 3 2 = 1 4 = ( ) D/2 TH T L ( ) D/2 TL T H 1 3 = 2 4 (5.18) 5. 4. 4 2 W 12 + W 23 + W 34 + W 41 Q 12 = T H T L T H (5.19) ( ) 2

78 5. 5.1 Q 12 T H + Q 34 T L = 0 (5.20) δq/t δq T = 0 (5.21) P δq/t T δq δq/t (entropy)s ds = δq rev T 1 δq rev S 1 S 0 = T 0 (5.22) δq irr δq rev δq irr < δq rev = T ds (5.23)! δq rev ) 2 5. 4. 5 P T S 1

5. 5 : 79 de = δq rev + δw rev = T ds P d (5.24) (T, P ) (S, ) 1 5.3 P T S 1 W = P d = T ds (5.25) P T S Q = Q H Q L = T H S T L S (5.26) 1 1 T H (d) (b) P 2 T 4 3 T L (c) S (a) 5.3 P T S 5. 5 : 5. 5. 1 1 de = T ds P d

80 5. ( ) E S ( ) E S = T = P E(S, ) T, de = E T dt + E d T dt, d S P a. d(t S) = T (ds) + S(dT ) d(e T S) = SdT P d S, T, E T S F (Helmholts) P d(e + P ) = T ds + dp. E + P H d(e T S + P ) = SdT + dp. E T S + P G (Gibbs) F, H, G E 1

5. 5 : 81 b. µdn µ 1 µdn E de = T ds P d + µdn (5.27) E N = µ. (5.28) S, 5. 5. 2 - T, P, µ E, S,, N d(e T S + P µn) = SdT + dp Ndµ (5.29) E(S,, N) n n ne(s,, N) = E(nS, n, nn) E (S,, N) = T (ns) n P (n ) + µ (nn) n n E T = E (ns, n, nn) (ns) n,nn E = T S P + µn (5.30) (5.29) SdT + dp Ndµ = 0

82 5. T, P, µ - (Gibbs Duhem) 1, p.59) (5.30) T S P G = E T S + P = µn 5. 5. 3 Maxwell E(S,, N) de (S,, N) = 0 (5.31) de (S,, N) E 2 E S = 2 E S 2 ( ) E = ( ) E S S ( ) ( ) S ( P ) = (T ) S (5.32) F, G, H ( ) ( ) ( ) ( ) ( ) ( ) S P S T =, =, = T T P T T P S P P S (5.33) S (Maxwell) dsdt = dp d 1 N S N

5. 5 : 83 5. 5. 4 4) 1 de = T ds P d T d Maxwell ( ) ( ) ( ) E S P = T P = T P (5.34) T T T N T θ ( E/ ) θ,n ( ) ( ) P P dθ(t ) = T,N θ,n dt (5.35) ( ) ( E P = T θ,n θ ) d ln T dθ = ( P θ ),N dθ(t ) dt P /{ ( E ),N θ,n + P }. (5.36) T 0, θ 0 { } θ ( P / θ),n T = T 0 exp ( E/ ) θ,n + P (θ,, N) θ 0 (5.37) T = f(θ) P 0 θ P lim ( = const.) (5.38) θ 0 P 0 0 P 0 θ

84 5. P = Nkθ (5.39) k (Boltzmann constant) k = 1.3803 10 23 J/K θ E/N = f(θ) (5.40) (5.37) (5.40) ( E/ ) θ,n = 0 (5.39) ( P / θ),n = (N/ ) k = P /θ T = T 0 exp ( θ θ 0 ) ) dθ = T 0 exp (ln θθ0 = T 0 θ. θ θ 0 θ θ 0 = 273.16K T = θ 1) W. L. H. ( 1999) 2) Wm. G. Hoover ( 1999) 3) ( 1993) 4) ( 1981)