2 Planck Planck BRST Planck Λ QG Planck GeV Planck Λ QG Friedmann CMB

Similar documents
untitled

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1

TOP URL 1

重力と宇宙 新しい時空の量子論

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

TOP URL 1

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

Einstein ( ) YITP

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m

1.1 foliation M foliation M 0 t Σ t M M = t R Σ t (12) Σ t t Σ t x i Σ t A(t, x i ) Σ t n µ Σ t+ t B(t + t, x i ) AB () tα tαn µ Σ t+ t C(t + t,

[1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin Clifford Spin 10 A 12 B 17 1 Cliffo

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

A


TOP URL 1

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

2017 II 1 Schwinger Yang-Mills 5. Higgs 1

26 3 ( 29 5 ) D 3 1 (KEK) 1 Minkowski (conformal field theory, CFT) Minkowski Minkowski Hamilton Hermite Euclid

( ) (ver )

量子重力理論と宇宙論 (上巻) 共形場理論と重力の量子論 浜田賢二 高エネルギー加速器研究機構 (KEK) 素粒子原子核研究所 量子重力の世界は霧に包まれた距離感のない幽玄の世界にたとえること ができる 深い霧が晴れて時空が

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1)

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x

1 ( ) Einstein, Robertson-Walker metric, R µν R 2 g µν + Λg µν = 8πG c 4 T µν, (1) ( ds 2 = c 2 dt 2 + a(t) 2 dr 2 ) + 1 Kr 2 r2 dω 2, (2) (ȧ ) 2 H 2

量子力学A

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

中央大学セミナー.ppt

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.


gr09.dvi

2 1 ds 2 = a 2 (η) ( dη 2 + γ ij dx i dx j ) (1.2) ( dt ) conformal time η η = a(t) a(t) (scale factor) t =const (3) R ijkl = K a 2 (t) (γ ikγ jl γ il

TOP URL 1

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

(Maldacena) ads/cft

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.


2016 ǯ¥Î¡¼¥Ù¥ëʪÍý³Ø¾Þ²òÀ⥻¥ß¥Ê¡¼ Kosterlitz-Thouless ž°Ü¤È Haldane ͽÁÛ

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

0406_total.pdf

ʪ¼Á¤Î¥È¥Ý¥í¥¸¥«¥ë¸½¾Ý (2016ǯ¥Î¡¼¥Ù¥ë¾Þ¤Ë´ØÏ¢¤·¤Æ)

,,..,. 1

量子力学 問題

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

( )

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

液晶の物理1:連続体理論(弾性,粘性)

arxiv: v1(astro-ph.co)

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

四変数基本対称式の解放

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

Lagrange.dvi

Part () () Γ Part ,


IA

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat


 NMRの信号がはじめて観測されてから47年になる。その後、NMRは1960年前半までPhys. Rev.等の物理学誌上を賑わせた。1960年代後半、物理学者の間では”NMRはもう死んだ”とささやかれたということであるが(1)、しかし、これほど発展した構造、物性の

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

main.dvi

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1)

untitled

The Physics of Atmospheres CAPTER :

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

meiji_resume_1.PDF

構造と連続体の力学基礎

Z: Q: R: C: sin 6 5 ζ a, b

5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E


30

201711grade1ouyou.pdf


,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

0. Intro ( K CohFT etc CohFT 5.IKKT 6.

: , 2.0, 3.0, 2.0, (%) ( 2.

多体問題

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a

D.dvi

chap9.dvi

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re



1/2 ( ) 1 * 1 2/3 *2 up charm top -1/3 down strange bottom 6 (ν e, ν µ, ν τ ) -1 (e) (µ) (τ) 6 ( 2 ) 6 6 I II III u d ν e e c s ν µ µ t b ν τ τ (2a) (

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

基礎数学I

2 1 1 (1) 1 (2) (3) Lax : (4) Bäcklund : (5) (6) 1.1 d 2 q n dt 2 = e q n 1 q n e q n q n+1 (1.1) 1 m q n n ( ) r n = q n q n 1 r ϕ(r) ϕ (r)

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

inflation.key

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

『共形場理論』

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

DVIOUT-fujin

E1 (4/12)., ( )., 3,4 ( ). ( ) Allen Hatcher, Vector bundle and K-theory ( HP ) 1

YITP50.dvi

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

Transcription:

量子重力理論と宇宙論 (下巻) くりこみ理論と初期宇宙論 浜田賢二 高エネルギー加速器研究機構 (KEK) 素粒子原子核研究所 http://research.kek.jp/people/hamada/ 量子重力の世界は霧に包まれた距離感のない幽玄の世界にたとえること ができる 深い霧が晴れて時空が現れる 国宝松林図屏風 (長谷川等伯筆) 平成 20 年 11 月初版/平成 21 年 09 月改定/ 平成 25 年 08 月再改定 (上下巻に分離)

2 Planck Planck BRST Planck Λ QG Planck 10 17 GeV Planck Λ QG Friedmann CMB

3 8 5 8.1 D.............. 5 8.2................ 10 8.3..................... 12 8.4..................... 16 8.5................... 25 8.6....................... 29 9 33 9.1.................. 33 9.2............... 35 9.3.................... 41 10 47 10.1.......................... 47 10.2................... 51 10.3................ 55 11 CFT CMB 59 11.1 2.......... 59 11.2................... 61 11.3 CMB................... 67 A 71 A.1 ( )............... 71

4 A.2............... 74 B 77 B.1 G D D = 4............... 77 C 79 C.1................... 79 D 83 D.1................... 83 E 85 E.1.................... 85 F 87

5 8 4 Weyl t 4 DeWitt-Schwinger δ (4) (0) = x x x x 1 δ (D) (0) = d D k = 0 4 D 4 D 8.1 D n F (QED) D 1 D δ (4) (0) = x e td x t 0 ( t + D) x e td x = 0 (Heat Kernel)

6 8 Euclid Wick I = d D x { 1 g t 2 C2 µνλσ + be D + 1 4 F µνf µν + n F j=1 i ψ j D/ψ j M 2 P 2 R + Λ } (8.1.1) D Weyl Cµνλσ 2 = R µνλσ R µνλσ 4 D 2 R µνr µν 2 + (D 1)(D 2) R2 (8.1.2) E D Euler E 4 D E D = G D 4(D 3)2 (D 1)(D 2) 2 R (8.1.3) G D = G 4 + (D 3)2 (D 4) (D 1) 2 (D 2) R2 (8.1.4) G 4 = R 2 µνλσ 4R 2 µν + R 2 Euler G D D E D G D Dirac D/ = e µα γ α D µ e α µ 4 (vierbein field) D e α µ e να = g µν e µα e µ β = δ αβ Dirac {γ α, γ β } = 2δ αβ D µ = µ + 1 2 ω µαβσ αβ + iea µ 1 (connection 1-form) Lorentz ω µαβ = e ν α( µ e νβ Γ λ µνe λβ ) Σ αβ = 1 4 [γα, γ β ] A.2 g µν = e 2ϕ ḡ µν = e 2ϕ (ĝe th ) µν Riegert ϕ h µν ĝ µν Euclid δ µν A µ = Z 1/2 3 A r µ, ψ j = Z 1/2 2 ψ r j, h µν = Z 1/2 h hr µν

8.1. D 7 QED e = Z e e r, t = Z t t r Ward-Takahashi (Z 1 = Z 2 ) Z e = Z 1/2 3 Riegert ϕ Riegert Z ϕ = 1 (8.1.5) D 4 D 4 Laurent Z 3 = 1 + x 1 D 4 + x 2 (D 4) 2 + (8.1.6) Z x 1 x 2 e r t r Euler b Euler D 4 b = 1 (4π) 2 n=1 b n (D 4) n (8.1.7) b n e r t r 4 D D 2

8 8 Wess-Zumino [δ ω1, δ ω2 ]Γ = 0 D 4η 1 + Dη 2 + 4(D 1)η 3 + (D 4)η 4 = 0 (8.1.8) ( A.1 ) D Weyl 2 G 4 M D = 2 R D 4 4(D 1) R2 (8.1.9) M D 2 R D E D E D = G 4 + ηm D η 2 2 R 2 D R 2 d D x gr = S (2) n S n (2) (ϕ, ḡ) = (D 2) n S n (2) (ϕ, ḡ) n! n=0 d D x ḡ { ϕ n 2 ϕ + Rϕ n + o(ϕ n ) } o(ϕ n ) ϕ n S (2) 1 Liouville-Polyakov 4 E D 4 d D x (D 4) n ge D = S n (ϕ, ḡ) (8.1.10) n=0 n!

8.1. D 9 S n (ϕ, ḡ) = d D x ḡ { 2ϕ n 4 ϕ + Ē4ϕ n + o(ϕ n ) } S 1 5 ( ) Riegert-Wess-Zumino S RWS 4(D 3)2 η = (D 1)(D 2) B 4 2/3 E 4 (8.1.10) G D (8.1.4) Hathrell 2 3 (e 6 r) D Weyl bg 4 + ch 2 H = R/(D 1) bg D c = (D 3)2 (D 4) b (D 2) b Laurent (8.1.7) c b Laurent c 1 = (D 3)2 D 2 b 2 = 1 2 b 2 + o(d 4) Hathrell e 6 r QED 4 2 S. Hathrell, Ann. of Phys. 142 (1982) 34.

10 8 G D Z ϕ = 1(8.1.5) 8.2 Laurent D 4 (counterterm) Z 3 Laurent (8.1.6) 1 4 d D x gf µν F µν = 1 4 Z 3 d D xe (D 4)ϕ FµνF r λσḡ r µλ ḡ νσ = 1 {( d D x 1 + x 1 4 D 4 + x ) 2 (D 4) + 2 ( + D 4 + x 1 + x 2 D 4 + ) F r µνf r λσḡ µλ ḡ νσ ϕfµνf r λσḡ r µλ ḡ νσ + 1 ( ) (D 4) 2 + (D 4)x 1 + x 2 + ϕ 2 F r 2 µνfλσḡ r µλ ḡ νσ } + (8.2.1) F r µν = µ A r ν ν A r µ = µ A r ν ν A r µ Laurent (8.2.1)

8.2. 11 ϕf r2 µν Fµν r2 Riegert Wess-Zumino Riegert Weyl 3 D Riegert 1 t 2 d D x gc 2 µνλσ = 1 t 2 d D x ḡe (D 4)ϕ C2 µνλσ Laurent Wess- Zumino ϕ n C2 µνλσ Euler b Laurent (8.1.7) Euler (8.1.10) b d D x ge D = 1 (4π) 2 + 1 2 {( b1 d D x D 4 + b 2 (D 4) + 2 )Ḡ4 ( + b 1 + b )( 2 D 4 + 2ϕ 4 ϕ + Ē4ϕ + 1 18 R ) 2 ( (D 4)b1 + b 2 + )( 2ϕ 2 4 ϕ + Ē4ϕ 2 + ) } + (8.2.2) G 4 Riegert-Wess-Zumino S 1 5.2 ( ) S RWS Riegert 3 Duff, Nucl. Phys. B125 (1977) 334 Duff D 4 Weyl 1 ( R 2 )

12 8 Wess-Zumino S 2 b n b 1 b 1 (t r, e r ) = b 1 + b 1(t r, e r ) b 1 b 1 n 2 D ( A.2 ) Riegert Riegert d D xi ψ D/ψ { = d D x i ψγ µ µ ψ i t 4 ( ψγ µ ν ψ ν ψγµ ψ)h µν +i t2 16 ( ψγ µ ν ψ ν ψγµ ψ)h µλ h νλ + i t2 16 ψγ µνλ ψh µσ λ h νσ e ψγ µ ψa µ + et 2 ψγ µ ψa ν h µν et2 8 ψγ µ ψa ν h µλ h νλ } + o(t 3 ) γ µνλ = 1 (γ 3! µγ ν γ λ + anti-sym.) e t ψ Euclid δ µν 8.3 Riegert Wess- Zumino

8.3. 13 Weyl d D x gc 2 µνλσ/t 2 { D 3 ( ) } d D x hµν 4 h µν + 2χ µ 2 D 3 χ µ D 2 D 1 χ µ µ ν χ ν χ µ = λ h λµ Euclid 2 = λ λ BRST I GF+FP = { d D xδ B c µ N µν (χ ν ζ ) 2 B ν + c ( µ A µ α ) } 2 B c µ c B µ B N µν 2 N µν = ( 2(D 3) 2 2 δ µν + D 2 ) D 2 D 1 µ ν BRST ξ µ /t c µ U(1) c δ B h µν = µ c ν + ν c µ 2 D δ µν λ c λ + tc λ λ h µν + t 2 h µλ ( ν c λ λ c ν ) + t 2 h νλ ( µ c λ λ c µ ) +, δ B A µ = µ c + t (c λ λ A µ + A λ µ c λ ) BRST δ B c µ = tc λ λ c µ,

14 8 δ B c = tc λ λ c, δ B c µ = B µ, δ B B µ = 0, δ B c = B, δ B B = 0 Riegert BRST δ B ϕ = tc λ λ ϕ + t D λc λ BRST I GF+FP = { d D x B µ N µν χ ν ζ 2 B µn µν B ν c µ N µν λ (δ B h νλ ) +B µ A µ α } 2 B2 c µ (δ B A µ ) B B µ 4 I GF = d D x { 1 2ζ χ µn µν χ ν + 1 } 2α ( µa µ ) 2 α = 1 ζ = 1 Feynman α = Z 3 α r ζ = Z h ζ r Feynman h r µν 4 h r µν h r µν(k)h r λσ( k) = D 2 1 2(D 3) k 4 IH µν,λσ 4 B µ det 1/2 (N µν )

8.3. 15 I H µν,λσ = 1 2 (δ µλδ νσ + δ µσ δ νλ ) 1 D δ µνδ λσ I 2 H = I H Riegert Riegert Laurent (8.2.2) b 1 (4π) S 1(ϕ, ḡ) = b 1 2 (4π) 2 { d D x 2ϕ 4 ϕ + Ē4ϕ + 1 18 R } 2 ϕ(k)ϕ( k) = (4π)2 4b 1 1 k 4 b 1 t Riegert L 2 S 1 = b 1 { 2 (4π) 2 3 t 2 ϕ µ ν h µν + 1 } 18 t2 ( µ ν h µν ) 2, L 3 S 1 = 2b { 1 (4π) t 2 2 µ ϕ ν 2 ϕ + 4 3 µ λ ϕ ν λ ϕ 2 } 3 λϕ µ ν λ ϕ 2 µ ν ϕ 2 ϕ h µν, L 4 S 1 = 2b 1 (4π) 2 t2{ 2 ϕ µ ν ϕh µλ h νλ + µ ν ϕ λ σ ϕh µν h λσ } + h L 2 S 1 Ē4ϕ ( 2 R)ϕ R2 L 3 S 1 L 4 S 1 ϕ 4 ϕ

16 8 8.4 h Riegert Wess-Zumino 2 4 4 Weyl h z ϕ h µν 1/(k 2 + z 2 ) 2 log z 2 Einstein 4 t r Riegert Einstein Riegert M P D = 4 2ϵ, t r = t r µ ϵ, e r = ẽ r µ ϵ, b = bµ 2ϵ t r ẽ r µ Riegert D µ ϵ Riegert I Feynman 8.1 t 2 r Riegert 2

8.4. 17 t r (1) t r t 2 r (2) 8.1: Riegert t 2 r L 3 S 1 8.1(1) d D { k (2π) ϕ(k)ϕ( k) D b 1 t 2 r D 2 d D l 1 6 (4π) 2 2(D 3) (2π) D (l 2 + z 2 ) 2 {(l + k) 2 + z 2 } 2 [ 6(l 2 k 6 + l 6 k 2 ) + 24l 4 k 4 16(l k)(l 2 k 4 + l 4 k 2 ) 20(l k) 2 l 2 k 2 2(l k) 2 (l 4 + k 4 ) + 8(l k) 3 (l 2 + k 2 ) + 8(l k) 4 + 4 D ( 36l 4 k 4 + 24(l k)(l 2 k 4 + l 4 k 2 ) + 40(l k) 2 l 2 k 2 3D 4(l k) 2 (l 4 + k 4 ) 16(l k) 3 (l 2 + k 2 ) 16(l k) 4 )]}. D l z 1 { } [ 2b 1 (4π) 2 k4 3 t 2 r (4π) 2 ( 1 z2 log ϵ µ + 7 )], 2 6 1/ ϵ = 1/ϵ γ + log 4π log k 2 /µ 2 (tadpole) 8.1(2) L 4 S 1 h µν 2 [ 2b 1 (4π) 2 k4 3 t 2 r (4π) 2 ( 1 z2 log ϵ µ + 7 )]. 2 12

18 8 Feynman t 2 r Z ϕ = 1 2 3 ( 8.2) Weyl 2 3 b n Ḡ4 3 (1) (2) 8.2: 2 3 (background field method) t r ( nf Z t = 1 80 + 5 ) t 2 r 1 3 (4π) 2 ϵ 7n F ẽ 2 r t 2 r 1 288 (4π) 4 ϵ + o( t 4 r) (8.4.1) 1 Feynman t 2 r n F /80 U(1) 1/40 Riegert 1/60 199/120 t 2 re 2 r 2 Feynman ĝ µν = (e tĥ) µν Zĥ ĥ µν = Z 1/2 ĥ r ĥ µν Z tz 1/2 = 1 ĥ

8.4. 19 Z h Zĥ Zĥ Z t t r β t = µ d dµ t r µ 0 = µ d dµ t = µ d dµ (Z t t r µ ϵ ) µ dz t β t = ϵ t r t r Z t dµ µd t r /dµ = β t = ϵ t r + o( t 2 r) µdẽ r /dµ = ϵẽ r + (8.4.1) β t = ( nf 40 + 10 3 ) t 3 r (4π) 7n F 2 72 e 2 rt 3 r (4π) 4 + o(t5 r) Euler Ḡ4 b1 = 11n F 360 + 40 9, b 1 = n2 F ẽ 4 r 6 (4π) + o( t 2 r), 4 b2 = 2n3 F 9 ẽ 6 r (4π) 6 + o( t 4 r) (8.4.2) b 1 (11n F + 62)/360 Riegert 7/90 87/20 b 1 e 4 r b 2 e 6 r 2 3 Feynman

20 8 Riegert II Riegert 2 t 2 r Hathrell e 6 r Z ϕ = 1 8.3: Riegert e 4 r QED Z 3 x 1 = 8n F 3 x 2 = 32n2 F 9 ẽ 2 r (4π) 2 + 4n F ẽ 4 r (4π) 4, ẽ 6 r (4π) 6 (8.4.3) Laurent (8.2.1) Wess-Zumino e 2 r Riegert 2 e 4 r Feynman 8.3 2lp 2 (subdiagram) e 4 r 2 b 2 e 6 r 2

8.4. 21 E D Laurent (8.2.2) e 6 r (5) 2 Riegert ϵ 4 (6) (7) (1) (4) e 6 r Hathrell Z ϕ = 1 e 6 r b 2 Riegert U(1) Z 3 t 2 r 8.4 Feynman (1) (2) 8.4: Z 3 t 2 r Riegert Feynman e 4 r 8.5 2 Feynman e 6 r 2 Feynman 8.6

22 8 8.5: Z 3 e 4 r Feynman 8.6: Z 3 e 6 r 2 Feynman QED (8.4.3) Z 3 Z 3 = 1 4n F 3 ( + ẽ 2 ( r 1 (4π) 2 ϵ + 8n2 F 9 + 8 81 QED 2n F + 8 n 2 ) F ẽ4 r 1 27 b1 (4π) 4 ϵ n 3 ) F ẽ6 r 1 b1 (4π) 6 ϵ + 2 o(ẽ2 r t 2 r, t 4 r) β e = µ dẽ r dµ (8.4.4) Ward-Takahashi Z 1 = Z 2 e r Z e = Z 1/2 3 β e = ϵẽ r + ẽr 2 µ dz 3 Z 3 dµ (8.4.5)

8.4. 23 Z 3 Z 3 = 1 + A 1 ϵ + A ( 2 ϵ + + 1 b1 B1 2 ϵ + B ) 2 ϵ + + 2 ẽ r A 1 = A 1,n ẽ 2n r, A 2 = A 2,n ẽ 2n r, n 1 n 3 B 1 = B 1,n ẽ 2n r, B 2 = B 2,n ẽ 2n r n 2 n 3 (8.4.4) (8.4.5) ϵ A 2,3 = 1 3 A 1,1A 1,2, B 2,3 = 1 4 A 1,1B 1,2 (8.4.6) µd b 1 /dµ = 2ϵ b 1 8.5 B 1,2 8.6 2 B 2,3 QED β e = 4n F 3 e 3 r (4n (4π) + 2 F 8 n 2 ) F e 5 r 9 b 1 (4π) + 4 o(e3 rt 2 r) b 1 n F 24 e 5 r Λ QG e r Landau Riegert ( ) ϕf r2 µν Z 3 Z ϕ = 1 Z 3 2 e 6 r Laurent (8.2.1) Wess-Zumino ϕf r2 µν

24 8 8.7: ϕfµν 2 e6 r I e 6 r Feynman QED Riegert Feynman 8.7 (1) (2) 2 n F e 2 rϕf r2 µν 2 (3) (4) 3 ϵϕf r2 µν 3 2 Riegert ϵ (5) Z 3 2 2 3 ϵϕfµν r2 Feynman 3

8.5. 25 Riegert ϵ { Γ ϕaa µν (0; k, k) I = 8 3 + 16 9 + 8 } n 2 e 6 r 1 ( ) F δµν k 2 k 9 (4π) 6 µ k ν = 0(8.4.7) ϵ Γ = d D k 1 (2π) D d D k 2 (2π) D ϕ( k 1 k 2 )A r µ(k 1 )A r ν(k 2 )Γ ϕaa µν ( k 1 k 2 ; k 1, k 2 ) (1) (2) (3) (4) (5) Riegert Feynman Feynman 8.8 2 3 Feynman Riegert ϕ 3 ϕ 2 F r2 µν b ge D Laurent (8.2.2) { Γ ϕaa µν (0; k, k) II = 8 81 + 16 81 8 } n 3 F 81 b 1 e 6 r 1 ( ) δµν k 2 k (4π) 6 µ k ν = 0 ϵ (1) (3) (10) (13) (14) Z 3 2 (4) (9) 8.5 Wess-Zumino

26 8 8.8: ϕfµν 2 e6 r II

8.5. 27 QED log(k 2 /µ 2 ) QED 2 β e /e r = y 1 /2 y 1 = 8n F 3 e 2 r (4π) 2 + 8n F e 4 r (4π) 4 y 1 e 4 r x 1(8.4.3) Riegert QED { Γ QED = 1 y ( ) 1 k 2 2 log e 4 } r 1 + x µ 2 1 ϕ + 4n F (4π) ϕ 4 4 3 x 1 Wess-Zumino 4 8.9 ϕ ϕ ( e 4 ) r 1 δ ϕ Γ QED = x 1 + 4n F gr F r2 (4π) 4 4 1 µν = y 1 4 F r2 µν gr F r2 µν 8.9: ϕfµν 2 e4 r 2 ϵ k 2 (= k µ k ν δ µν ) gµν r (= e 2ϕ δ µν ) p 2 = k 2 /e 2ϕ (8.5.1)

28 8 { Γ QED = 1 y ( )} 1 p 2 1 2 log gr F µ 2 µν r2 4 Wess-Zumino log n (k 2 /µ 2 ) ϕ n Fµν r2 Wess-Zumino Weyl log(k 2 /µ 2 ) Wess-Zumino ϕc 2 µνλσ β t = β 0 t 3 r (β 0 > 0) { ( )} 1 k 2 Γ W = 2β 0 ϕ + β 0 log = t 2 r 1 gr C t 2 µνλσ r2 r(p) µ 2 C r2 µνλσ { } t r (p) t 2 r(p) = 1 β 0 log(p 2 /Λ 2 QG) (8.5.2) p (8.5.1) Λ QG = µ exp{ 1/(2β 0 t 2 r)} log n (k 2 /µ 2 ) ϕ n C 2 µνλσ Euler Euler Ḡ4 b 1 Ḡ4 2 Feynman 3 8.2(2) W G (ḡ r ) = b { 1 1 d 4 x 8Ēr 1 (4π) 2 4 Ē r 4 r 1 } 4 18 R r 2

8.6. 29 R 2 W G 2 Ḡ4 Riegert-Wess-Zumino b 1 S 1 W G b 1 (4π) S 1(ϕ, ḡ 2 r ) + W G (ḡ r ) = b 1 8(4π) 2 d 4 x g r E r 4 1 r 4 E r 4 (8.5.3) R 2 Riegert-Wess-Zumino 2 Polyakov 4 Riegert-Wess-Zumino L S1 = b 1 /(4π) 2 {2ϕ r 4ϕ+ } t 2 r Γ R = ( 1 a 1 t 2 r(p) + ) L S1 (ϕ, ḡ r ) [ ( ) ]} k = {1 a 1 t 2 r + 2β 0 t 4 rϕ β 0 t 4 2 r log + L µ 2 S1 (ϕ, ḡ r ) ϕ 2 r 4 ϕ t 4 r (8.2.2) b 2 t 4 r ϕ n r 4 ϕ (n 2) 8.6

30 8 Riegert I Λ = Λ d D x g = Λ d D xe Dϕ Riegert Λ = Z Λ Λ r = Z Λ Λr µ 2ϵ Λ r Z Λ 4 Λ r Laurent I Λ = Λ r Z Λ = 1 + u 1 D 4 + u 2 (D 4) 2 + { ( d D x 1 + u 1 D 4 + u 2 (D 4) 2 + ) e 4ϕ ( + D 4 + u 1 + u ) 2 D 4 + ϕe 4ϕ + 1 ( (D 4) 2 + (D 4)u 1 + u 2 + ) ϕ 2 e 4ϕ 2 } + (8.6.1) b 1 N e 4ϕ = n(4ϕ) n /n! Z Λ = 1 2 b1 1 ϵ 2 b2 1 1 ϵ + 2 b2 1 1 ϵ 2 +. (8.6.2)

8.6. 31 1 n (a) n (b) n (c) 8.10: 1/b 1 1/b 2 1 1 u 1 n (a) n (b) n (c) 8.11: ϕe 4ϕ 1/b 2 1 Feynman 8.10 (a) (b) (c) u 1 = 4/ b 1 + 4/ b 2 1 u 2 = 8/ b 2 1 ϕe 4ϕ 8.11 1/b 2 1 (a) (b) Laurent (8.6.1) 2 2 u 2 (c) u 1 u 2 ϕe 4ϕ

32 8 u n γ Λ = µ Λr d Λ r dµ µ γ Λ = 2ϵ + µ dz Λ Z Λ dµ = 4 + 8 + (8.6.3) b 1 b 2 1 Riegert δ ϕ L Λ = (4 + γ Λ )L Λ 4 Riegert e γ 0ϕ γ 0 = 4 + γ Λ γ Λ ) γ Λ = 2b 1 (1 1 4b1 4 = 4 b 1 + 8 b 2 1 + 20 b 3 1 + 2 (8.6.3)

33 9 Planck m pl 10 19 GeV Λ QG Planck Λ QG 10 17 GeV Friedmann 9.1 I = d 4 x { g 1 t 2 C2 µνλσ bg 4 + M P 2 } 2 R Λ + I M M P = 1/ 8πG Planck Riegert g µν = e 2ϕ ḡ µν ḡ µν t ḡ µν = η µν + h µν + (9.1.1)

34 9 th µν h µν η µν = ( 1, 1, 1, 1) x µ = (η, x i ) η (conformal time) x i (comoving coordinate) Z = [dϕdhdadx]η Vol(diff.) exp {is(ϕ, ḡ) + ii(a, X, g)} S Wess-Zumino (Jacobian) Riegert- Wess-Zumino S(ϕ, ḡ) = b 1 (4π) 2 d 4 x { ḡ 2ϕ 4 ϕ + (Ḡ4 2 3 ) 2 R ϕ + 1 18 R } 2 b 1 Weyl N X N W N A b 1 = 1 (N X + 11 ) 360 2 N W + 62N A + 769 180 R 2 Λ QG (β t = β 0 t 3 r, β 0 > 0) t 2 r(p) = 1 β 0 log(p 2 /Λ 2 QG) p η µν k p = k/e ϕ ( 8.5 )

9.2. 35 9.2 Planck Planck Einstein m pl Λ QG Planck m x 1/m Schwarzschild r g = 2Gm x r g m Planck m pl Planck Planck l pl (= 1/m pl ) Schwarzschild 2l pl Planck Λ QG ξ Λ = 1/Λ QG ξ l pl Riegert ˆϕ(η) b 1 4π 2 4 η ˆϕ + 6M 2 Pe 2 ˆϕ ( 2 η ˆϕ + η ˆϕ η ˆϕ) = 0

36 9 a Hubble H a = e ˆϕ, H = ηa a 2 = ȧ a (, proper time)τ dτ = adη Hubble b 1 8π 2 (... H +7HḦ + 4Ḣ2 + 18H 2 Ḣ + 6H 4) 3M 2 P (Ḣ + 2H 2 ) = 0 (de Sitter ) H = H D, H D = 8π 2 b 1 M P = a e H Dτ π b 1 m pl (9.2.1) Planck b 1 GUT 10 H D Planck M P = 2.4 10 18 GeV Planck

9.2. 37 m pl = 1.2 10 19 GeV H D Planck Planck τ P = 1/H D (9.2.2) δ H = H D (1 + δ) o(δ 2 )... δ +7H D δ + 15H 2 D δ + 12H 3 D δ = 0 δ = e υτ υ 4H D, ( 3 2 ± i 3 2 ( ) (power-law) ) H D Planck Λ QG 1/Λ QG Λ QG (QCD) QCD Λ QCD

38 9 Weyl (1/t 2 r)cµνλσ 2 Riegert Wess-Zumino b 1 ( b 1 b 1 1 a1 t 2 r + ) = b 1 B 0 (t r ) B 0 (t r ) = 1 (1 + a 1 κ t 2 r) κ κ 0 < κ 1 Riegert b 1 4π 2 B 0 4 η ˆϕ + M 2 Pe 2 ˆϕ { 6 2 η ˆϕ + 6 η ˆϕ η ˆϕ} = 0 (9.2.3) (0, 0) b 1 8π B { 2 0 2 3 η ˆϕ η ˆϕ 2 2 η ˆϕ η ˆϕ} 3M 2 P e 2 ˆϕ η ˆϕ η ˆϕ + e 4 ˆϕρ = 0 (9.2.4) ρ τ d dτ t r = β( t r ) = β 0 t 3 r

9.2. 39 t 2 r(τ) = τ Λ = 1/Λ QG 1 β 0 log(1/τ 2 Λ 2 QG) p 1/τ (τ > 0) t r t r (τ) B 0 Hubble b 1 8π 2 B 0(τ) (... H +7HḦ + 4Ḣ2 + 18H 2 Ḣ + 6H 4) 3M 2 P (Ḣ + 2H 2 ) = 0 (9.2.5) b 1 8π 2 B 0(τ) ( 2HḦ Ḣ2 + 6H 2 Ḣ + 3H 4) 3M 2 PH 2 + ρ = 0 (9.2.6) H H D ρ 0 H = H D B 0 Hubble H 0 < κ < 1 3 κ = 1 2 B 0 Ḧ (9.2.6)

40 9 ρ(τ Λ ) = 3M 2 PH 2 (τ Λ ) ρ + 4Hρ = b 1 8π 2 Ḃ0(τ) ( 2HḦ Ḣ2 + 6H 2 Ḣ + 3H 4) B 0 Planck τ P (= 1/H D ) τ Λ (= 1/Λ QG ) (e-foldings) N e = log a(τ Λ) a(τ P ) a e H Dτ N e H D Λ QG β 0 a 1 κ t r 9.1 9.2 H D /Λ QG = 60 β 0 /b 1 = 0.06 a 1 /b 1 = 0.01 κ = 0.5 H D = 1 τ Λ = 60 N e = 65.0 (τ > τ Λ ) Planck M P = 2.4 10 18 GeV b 1 = 10 H D = 6.7 10 18 GeV Λ QG = 1.1 10 17 GeV (9.2.7)

9.3. 41 9 CMB 10 log 10 [a(τ)/a(τλ)] 0-10 -20-30 -40-50 -60 τ Λ -70-2 -1 0 1 2 3 log 10 (τ/τ P ) 9.1: a(τ) Planck τ P τ Λ (= 60τ P ) Friedmann 9.3 Λ QG Einstein QCD QCD Λ QCD Λ QG Riegert Λ QG Riegert Einstein Friedmann

42 9 2.5 2 ρ H Friedman H, ρ 1.5 1 0.5 0 0 20 40 60 80 100 120 proper time,τ 9.2: Hubble H ρ H D = 1 Friedmann I low = d 4 x g {L 2 + L 4 + } Einstein L 2 = M 2 P 2 R + L M L M Einstein 1 Planck M P 4πF π Planck M P Λ QG 4 L 4 R 2, R 2 µν, R 2 µνλσ, 1 M 2 P R µν T µν M, 1 M 4 P T µν M T M µν

9.3. 43 5 T M µν Einstein Einstein M 2 P R µν = T M µν Einstein R = 0 L 4 Euler Riemann L 4 = α (4π) 2 Rµν R µν α α E c (< Λ QG ) Einstein α α(e c ) = α(λ QG ) + ζ log(e 2 c /Λ 2 QG) (9.3.1) N X Weyl N W N A Feynman ζ = (N X + 3N W + 12N A )/120 Ricci µ R µν (= µ Tµν) M = 0 ζ Λ QG α(λ QG ) ζ (9.3.1) α(e c ) 4 Λ QG Planck

44 9 M 2 P (Ḣ + 2H 2 ) + α 4π 2 (... H +7HḦ + 4Ḣ2 + 12H 2 Ḣ ) = 0 (9.3.2) 3M 2 PH 2 + ρ + α 4π 2 ( 6H Ḧ + 3Ḣ2 18H 2 Ḣ ) = 0 (9.3.3) E c = 1/τ ( ) 1 α(τ) = α 0 + ζ log τ 2 Λ 2 QG α 0 1 + ζ α 0 log(τ 2 Λ 2 QG) α 0 = α(λ QG ) QCD τ = τ Λ H Ḣ ρ (9.3.2) Ḧ (9.3.3) 9.2 9.1 α 0 = 1 ζ = 1 (9.3.2) (9.3.3) Ḣ + 2H2 = 0 3M 2 PH 2 = ρ Friedmann H Friedmann 9.2 Friedmann R 0 Friedmann

9.3. 45 R = 0 R = 6Ḣ + 12H2 (9.3.2) (9.3.3) R + 3HṘ + 4π2 α M PR 2 = 0, ρ = 3MPH 2 2 + α (HṘ 4π + 2 H2 R 1 ) 12 R2 Planck m rsp = 8π 2 /2αM P = π/2αm pl R 0 1/m rsp Planck Friedmann R = 0 9.3: Planck ξ Λ = 1/Λ QG ( l pl ) 10 59 Hubble 1/H 0 ( 5000Mpc) 1/H 0 10 59 ξ Λ

47 10 E m pl ( ) (cosmological perturbation theory) 10.1 ( ) E δr R E2 12H 2 D (10.1.1) 1 H = H D (9.2.1) H D Planck Planck E H D Λ QG δr/r τp 0.1 δr Λ2 QG 10 5 R τλ 12HD 2 CMB 1

48 10 1/Λ QG Planck Planck Riegert φ ϕ(η, x) = ˆϕ(η) + φ(η, x) ˆϕ(η) (9.2.3) δ ξ φ = ξ 0 η ˆϕ + 1 4 λξ λ, δ ξ h µν = µ ξ ν + ν ξ µ 1 2 η µν λ ξ λ h 00 = h, h 0i = h T i + i h, h ij = h TT ij + (i h T j) + 1 3 δ ijh + ( i j 1 ) 2 3 δ ij h

10.1. 49 i j 3 2 = i i h T i h T i h TT ij ξ i = ξ T i + i ξ S δ ξ φ = ξ 0 η ˆϕ + 1 4 ηξ 0 + 1 4 2 ξ S, δ ξ h = 3 2 ηξ 0 + 1 2 2 ξ S, δ ξ h = ξ 0 + η ξ S, δ ξ h = 2 2 ξ S, δ ξ h T i = η ξ T i, δ ξ h T i = 2ξ T i, δ ξ h TT ij = 0 Bardeen Φ = φ + 1 6 h 1 6 h + σ η ˆϕ, σ Ψ = φ 1 2 h + σ η ˆϕ + η σ (10.1.2) σ = h 1 η h 2 2 δ ξ σ = ξ 0 (10.1.2) h = h = 0 (conformal Newtonian gauge)[ (longitudinal gauge) ] Φ = φ + h/6 Ψ = φ h/2 ds 2 = a 2 [ (1 + 2Ψ) dη 2 + (1 + 2Φ) dx 2]

50 10 Ψ Φ Υ i = h T i 1 2 ηh T i, h TT ij h = h = 0 h T i = 0 T Mλ λ = 0 T M0 0 = (ρ + δρ), T Mi 0 = 4 3 ρv i, T M0 i = 4 3 ρ (v i + h 0i ), T Mi j = 1 3 (ρ + δρ)δi j (10.1.3) ρ(η) (9.2.4) δρ v i δ ξ T Mµ ν = ν ξ λ T Mµ λ λξ µ T Mλ ν + ξ λ λ T Mµ ν v i = vi T + i v vi T v δ ξ (δρ) = ξ 0 η ρ, δ ξ v = η ξ S, δ ξ vi T = η ξi T

10.2. 51 D = δρ ρ + ηρ ρ σ 4 η ˆϕV, V = v + 1 2 η h 2, V i = v T i + 1 2 ηh T i, Ω i = v T i + h T i Υ i V i Ω i Υ i + V i = Ω i 10.2 Riegert Einstein δγ = 1 2 = = d 4 x gt µν δg µν d 4 x { ḡ T λ λδϕ + 1 2 T } µν δḡ µν { d 4 x T λ λδϕ + 1 } 2 Tµ νδh ν µ T µν T µν T µν g µν = e 2ϕ ḡ µν δg µν = 2e 2ϕ ḡ µν δϕ + e 2ϕ δḡ µν T µν (g) g µν T µν (ϕ, ḡ) Riegert ḡ µν

52 10 T µν (ϕ, h) Minkowski η µν Riegert T µν = e 6ϕ T µν = e 6 ˆϕ(1 6φ) T µν, T µ ν = e 4ϕ µ T ν = e 4 ˆϕ(1 4φ) T µ ν h µ ν T µν = η λ(µ T λ ν) = T µν h λ (µ ˆT ν)λ T µν ˆT µν T λ λ(= η µν T µν ) = T λ λ T µν = T R µν + T W µν + T EH µν + T M µν = 0 R W EH M Riegert-Wess-Zumino Weyl Einstein δ ξ B = ξ λ λ B = ξ 0 η B σ B = B 0 σ η B 0 Riegert-Wess-Zumino b 1 b 1 B σ = 0

10.2. 53 T λ λ = 0, (10.2.1) ( 1 T i 2 i 3 i j ) T 2 ij = 0 (10.2.2) (10.2.1) { ( b 1 8π B 0(τ) 2 ηφ 4 3 2 2 η ˆϕ η Φ + 8 η 2 ˆϕ + 10 ) 3 2 ηφ 2 + ( 12 3η ˆϕ + 10 3 ˆϕ ) ( 16 η 2 η Φ + 3 2 ˆϕ η 4 ) 3 2 2 Φ 3 +2 η ˆϕ η Ψ + (8 2η ˆϕ + 2 ) 3 2 ηψ 2 + (12 3η ˆϕ 10 3 ˆϕ ) η 2 η Ψ + ( 16 3 2η ˆϕ 2 ) } 3 2 2 Ψ +M 2 Pe 2 ˆϕ { 6 2 ηφ + 18 η ˆϕ η Φ 4 2 Φ 6 η ˆϕ η Ψ + ( 12 2 η ˆϕ + 12 η ˆϕ η ˆϕ 2 2 ) Ψ } = 0 (10.2.3) (9.2.3) 4 η ˆϕ η B 0 (10.2.2) 2 { 2 t 2 r(τ) + b 1 8π 2 B 0(τ) 4 ηφ 2 4 3 2 Φ 4 ηψ 2 + 4 } 3 2 Ψ { 4 3 2 ηφ + 4 η ˆϕ η Φ + 4 3 η ˆϕ η Ψ + ( 28 3 2 η ˆϕ 8 3 η ˆϕ η ˆϕ 8 ( 4 3 2 η ˆϕ + 8 3 η ˆϕ η ˆϕ 4 9 2 ) 9 2 Φ ) } Ψ +M 2 Pe 2 ˆϕ { 2Φ 2Ψ} = 0 (10.2.4) Einstein t r 0 Riegert Φ = Ψ (= φ)

54 10 Einstein Einstein Φ = Ψ Φ = Ψ = φ (10.2.3) Riegert φ T µ µ tr 0 = b 1 4π 2 ( 4 η φ 2 2 η 2 φ + 4 φ ) +M 2 Pe 2 ˆϕ { 6 2 ηφ 6 2 φ + 12 η ˆϕ η φ +12 ( 2 η ˆϕ + η ˆϕ η ˆϕ) φ } j 2 T ij = 0 2 { } 3 t 2 η Υ i η 2 Υ i r(τ) b {( 1 1 8π B 0(τ) 2 3 2 ˆϕ η + 4 3 ˆϕ ) ( 1 η η ˆϕ η Υ i + 3 3 ˆϕ η + 8 3 2 ˆϕ ) } η η ˆϕ Υ i { } +MPe 2 2 ˆϕ 1 2 ηυ i + η ˆϕΥi = 0 (10.2.5) T ij = 0 2 { 4 t 2 η h TT ij r(τ) + b 1 8π 2 B 0(τ) 2 2 2 ηh TT ij } + 4 h TT ij {( 1 3 2 ˆϕ η + 4 3 ˆϕ ) η η ˆϕ ηh 2 TT ( + 7 3 2 ˆϕ η + 2 3 ˆϕ ) η η ˆϕ { +MPe 2 2 ˆϕ 1 2 2 ηh TT ij η ˆϕ η h TT ij ij + 2 h TT ij } + 1 2 2 h TT ij ( 1 3 3 ˆϕ η + 8 3 2 ˆϕ ) η η ˆϕ } = 0 η h TT ij

10.3. 55 dτ = a(τ)dη τ a(τ) = e ˆϕ(τ) Hubble H(τ) = ȧ(τ)/a(τ) 2 = a 2 ( η = a τ, ) k2 a 2 2 η = a 2 ( 2 τ + H τ ),, η 3 = a { 3 τ 3 + 3H τ 2 + ( Ḣ + 2H 2) } τ, η 4 = a { 4 τ 4 + 6H τ 3 + ( 4Ḣ + 11H2) τ 2 + ( Ḧ + 7HḢ + } 6H3) τ η ˆϕ = ah, 2 η ˆϕ = a 2 ( Ḣ + H 2), 3 η ˆϕ = a 3 ( Ḧ + 4HḢ + 2H3), 4 η ˆϕ = a 4 (... H +7HḦ + 4Ḣ2 + 18H 2 Ḣ + 6H 4) 10.3 (10.1.3) T Mλ λ = 0, T M 00 = e 4ϕ (ρ + δρ + 4ρφ), T M 0i = 4 ( 3 e4ϕ ρ v i + 1 ) 2 h 0i, T M ij = 1 3 e4ϕ (ρ + δρ + 4ρφ) δ ij (10.3.1)

56 10 T 00 + 3 η ˆϕ i T 2 i0 = 0, i T 2 i0 = 0 D {( b 1 8π B 0(τ) 2 2 ˆϕ ) 2 2 η + 2 η ˆϕ η ˆϕ 3 2 ηφ 2 + ( 2 η 3 ˆϕ 4 η 2 ˆϕ η ˆϕ) η Φ ( + η ˆϕ 2 2 η ˆϕ + 2 η ˆϕ η ˆϕ ) ( 2 2 η Φ + 20 3 ˆϕ ) 4 η η ˆϕ + 9 2 2 Φ ( + η ˆϕ 2 η 2 ˆϕ ) 2 2 η ˆϕ η ˆϕ + 3 2 η Ψ + ( 2 η 3 ˆϕ η ˆϕ + 4 2 2 η ˆϕ η ˆϕ) Ψ ( + 2 η 2 ˆϕ + 2 3 ˆϕ ) } 2 η η ˆϕ + 9 2 2 Ψ + 2 { 4 t 2 r(τ) 3 4 Φ 4 η ˆϕ 2 η Φ + 4 } 3 4 Ψ + 4 η ˆϕ 2 η Ψ +M 2 Pe 2 ˆϕ2 2 Φ + e 4 ˆϕρD = 0 2 (10.2.3) (10.2.4) Φ Ψ D V { b 1 8π B 0(τ) 2 2 3 3 ηφ + + 2 t 2 r(τ) + 2 3 η ˆϕ 2 ηψ + ( 10 3 2 η ˆϕ + 2 3 η ˆϕ η ˆϕ + 4 ( 2 2 η ˆϕ 2 3 η ˆϕ η ˆϕ + 2 { 4 3 2 η Φ + 4 3 2 η Ψ +M 2 Pe 2 ˆϕ { 2 η Φ 2 η ˆϕΨ } 4 3 e4 ˆϕρV = 0 } ) 9 2 η Φ 4 3 ˆϕ η 2 Φ ) 9 2 η Ψ + (2 3η ˆϕ 2 3 η ˆϕ 2 ) Ψ 3 (10.2.3) (10.2.4) V }

10.3. 57 T 0i = 0 Ω i 2 { } ( 2 t 2 η 2 Υ i 4 b 1 1 Υ i r(τ) 8π B 0(τ) 2 3 2 ˆϕ η + 4 3 ˆϕ ) η η ˆϕ + 1 2 M 2 Pe 2 ˆϕ 2 Υ i 4 3 e4 ˆϕρΩ i = 0 2 Υ i Υ i 2 (10.2.5) Ω i

59 11 CFT CMB Λ QG 10 17 GeV 10 29 (= 10 17 GeV/3 o K) ( 9.3 ) 10 30 Planck Planck 10 59 (Mpc) CMB Planck Planck CMB 11.1 2 τ i = 1/E i (E i H D ) Φ = Ψ Riegert φ 4 Riegert-

60 11 CFT CMB Wess-Zumino φ(τ i, x)φ(τ i, x ) = 1 4b 1 log ( m 2 x x 2) (11.1.1) b 1 Riegert-Wess-Zumino m τ i Planck m = a(τ i )H D (11.1.2) τ i r r = a(τ i ) x x (11.1.1) Planck L P = 1/H D 3 Fourier φ(x) Fourier φ(x) = φ(k) 2 d 3 k (2π) 3 φ(k)eik x φ(k) φ(k ) = φ(k) 2 (2π) 3 δ 3 (k + k ) (11.1.3) Fourier log ( m 2 x 2) = k>ϵ d 3 k 4π 2 ( ) m eik x 2 log (2π) 3 k 3 ϵ 2 e 2γ 2 k = k ϵ( 1) γ Euler Fourier δ 3 (k) (11.1.1) φ(k) 2 = π2 b 1 1 k 3

11.2. 61 φ(x) P φ φ 2 (x) = dk k P φ(k) (11.1.3) φ 2 (x) = = d 3 k d 3 k (2π) 3 (2π) φ(k) 3 φ(k ) e i(k+k ) x dk k 3 k 2π 2 φ(k) 2 P φ (τ i, k) = k3 2π 2 φ(τ i, k) 2 = 1 2b 1 (11.1.4) Harrison-Zel dovich-peebles k n s 1 n s = 1 1 Υ i h ij TT 2 h ij TT 4 Weyl 2 P h (τ i, k) = k3 2π 2 h TT(τ i, k) 2 = A t A t 2 A t k n t n t = 0 11.2 τ = τ Λ 1 n s 1

62 11 CFT CMB τ i Ψ = Φ = φ Φ(τ i, k) = Ψ(τ i, k) Ψ = Φ (10.2.4) Φ(τ Λ, k) + Ψ(τ Λ, k) = 0 (11.2.1) (10.2.3) (10.2.4) τ Φ Ψ 2 Φ Φ(τ Λ, k) = T Φ (τ Λ, τ i ) Φ(τ i, k) P Φ (τ Λ, k) = TΦ 2 (τ Λ, τ i )P φ (τ i, k) k a(τ) H D 2 2 k 2 /m 2 a(τ) 2 a(τ i ) = 1 Planck H D m a(τ) β 0 a 1 κ 2 τ t = H D τ

11.2. 63 0.25 Φ and Ψ 0.15 0.0008 0.0004 0.05 0-0.0004 1.74 1.76 1.78-0.05-3 -2-1 0 1 log 10 (τ/τ P ) τ Λ 11.1: Bardeen Φ( ) Ψ( ) Φ = Ψ(= φ) 1/ 20 k = 0.01Mpc 1 m = 0.0156 (= 60λ)Mpc 1 Bardeen τ Λ Φ = Ψ b 1 = 10 Planck m = 0.0156Mpc 1 (e-foldings) H D /Λ QG H D /Λ QG = 60 β 0 /b 1 = 0.06 a 1 /b 1 = 0.01 κ = 0.5 N e = 65.0 1/ 2b 1 = P φ 11.1 11.2 A t = 10 5 11.3 Friedmann

64 11 CFT CMB Bardeen Potential Φ(b 1 =10, m=0.0156) 0.20 0.10 0.00 0.20 0.10 0.00 5 10-4 3 10-4 1 10-4 -2-1 0 proper time, log 10 (τ/τ p ) 1 10-3 k [Mpc -1 ] 10-2 58.0 58.5 59.0 proper time τ 59.5 60.0 10-3 k [Mpc -1 ] 10-2 11.2: Bardeen Φ τ = 60 Tensor Perturbation (b 1 =10, m=0.0156) 2 10-5 +1 10-5 1 10-5 -2 5 10-6 10-3 k [Mpc -1 ] 10-2 -1 0 1 proper time, log 10 (τ/τ p ) 11.3: Riegert τ φ = 2 τ φ = 0 δ R = δr 12m 2 = 1 2m 2 e2φ ( 2 φ i φ i φ )

11.2. 65 Fourier δ R (k) = k2 2m 2 φ NL(k) (11.2.2) Riegert φ 2 d 3 ( ) q 3 φ NL (k) = φ(k) + φ (k/2 q) φ (k/2 + q) (2π) 3 4 + q2 (11.2.3) k 2 φ NL (x) = φ(x) + f NL φ 2 (x) f NL 1 n s > 1 f NK 1 1/2b 1 A s ( 10 10 ) Harrison-Zel dovich-peebles (n s 1) ξ Λ ξ Λ = 1/Λ QG ( L P ) Planck ξ Λ 2 t r t 2 r(k) = 1/β 0 log(k 2 /λ 2 ) ) v/ log(k 2 /λ 2 ) ( k P s (k) = A s (11.2.4) m v λ λ = a(τ i )Λ QG (11.2.5) Planck m/λ = H D /Λ QG k = λ

66 11 CFT CMB 9.3 k k < λ (11.2.4) P t (k) = A t ( k m ) v/ log(k 2 /λ 2 ) (11.2.6) 11.3 A t r = A t A s CMB Fourier H 2 D D(τ Λ, k) = 2 k2 e 3 H(τ Λ ) 2e 2N m Φ(τ Λ, k) 2 ρ(τ Λ ) = 3MPH 2 2 (τ Λ ) N e

11.3. CMB 67 11.3 CMB P s (11.2.4) P t (11.2.6) Friedmann CMB CMBFAST WMAP 6000 4000 wmap 5yrs acbar2008 l(l + 1)Cl/2π 2000 0 1 10 100 500 1500 Multipole, l 11.4: CMB (TT ) WMAP5 ACBAR2008 r = 0.06 λ = 0.00026 (= m/60)mpc 1 v = 0.00002 EE ( ) τ e = 0.08 Ω b = 0.043 Ω c = 0.20 Ω vac = 0.757 H 0 = 73.1 T cmb = 2.726 Y He = 0.24 [χ 2 /dof = 1.10 (2 l 1000)] λ l k l kd dec

68 11 CFT CMB 200 100 l(l + 1)Cl/2π 0-100 -200-300 -400 20 10 0-10 -20 1 10 100 1 10 100 500 700 900 Multipole, l 11.5: CMB TE WMAP5 11.4 [χ 2 /dof = 0.977 (2 l 1000)] d dec 14000Mpc l = 2, 3 0.0002Mpc 1 λ = 0.00026Mpc 1 (11.2.5) λ Λ QG 1.1 10 17 GeV(9.2.7) 1 a(τ i ) = 0.00026Mpc 1 1.1 10 17 GeV 1.5 10 59 1/λ 4000Mpc ξ Λ = 1/Λ QG 2 10 31 cm N e Planck

11.3. CMB 69 10 30 Λ QG 3 o K 10 29 10 59 (l < 100) r = 0.06 EE ( ) τ e = 0.08 TT WMAP 5 (WMAP5) ACBAR(Arcminute Cosmology Bolometer Array Receiver) 11.4 TE WMAP5 11.5

71 A A.1 ( ) Christoffel Riemann Γ λ µν = 1 2 gλσ ( µ g νσ + ν g µσ σ g µν ), R λ µσν = σ Γ λ µν ν Γ λ µσ + Γ λ ρσγ ρ µν Γ λ ρνγ ρ µσ, Ricci R µν = R λ µλν Ricci R = Rµ µ Christoffel µ A σ 1 σ m λ 1 λ n = µ A σ 1 σ m λ 1 λ n n j=1 Γ ν j µλ j A σ 1 σ m λ 1 ν j λ n + m j=1 Γ σ j µν j A σ 1 ν j σ m λ 1 λ n [ µ, ν ] A λ1 λ n = n Rµνλ j j=1 σ j A λ1 σ j λ n A D Riemann R µ νλσ + Rµ λσν + Rµ σνλ = 0, ρ R µ νλσ + λr µ νσρ + σ R µ νρλ = 0 Bianchi µ R µ λνσ = ν R λσ σ R λν µ R µ ν = ν R/2

72 A δg µν = g µλ g νσ δg λσ, δ g = 1 2 gg µν δg µν, δγ λ µν = 1 2 gλσ ( µ δg νσ + ν δg µσ σ δg µν ), δr λ µσν = σ δγ λ µν ν δγ λ µσ = 1 2 gλρ{ σ µ δg νρ + σ ν δg µρ σ ρ δg µν ν µ δg σρ ν σ δg µρ + ν ρ δg µσ }, δr µν = δr λ µλν = 1 { ( )} µ λ δg λν + ν λ δg λµ 2 δg µν µ ν g λσ δg λσ 2 R λ µ σ νδg λσ + 1 ( ) R λ 2 µ δg λν + Rν λ δg λµ, δr = δg µν R µν + g µν δr µν = R µν δg µν + µ ν δg µν 2 (g µν δg µν ) δ( µ A) = µ δa, δ( µ ν A) = µ ν δa 1 2 λ A ( µ δg νλ + ν δg µλ λ δg µν ), δ( 2 A) = 2 δa δg µν µ ν A µ A ν δg µν + 1 2 λ A λ (g µν δg µν ) A Weyl Weyl δ ω g µν = 2ωg µν δ ω gr = (D 2)ω gr 2(D 1) g 2 ω 2 δ ω gr µνλσ R µνλσ = (D 4)ω gr µνλσ R µνλσ 8 gr µν µ ν ω, δ ω gr µν R µν = (D 4)ω gr µν R µν 2 gr 2 ω

A.1. ( ) 73 2(D 2) gr µν µ ν ω, δ ω gr 2 = (D 4)ω gr 2 4(D 1) gr 2 ω, δ ω g 2 R = (D 4)ω g 2 R + (D 6) g λ R λ ω 2 gr 2 ω 2(D 1) g 4 ω, δ ω gfµν F µν = (D 4)ω gf µν F µν D (8.1.8) [δ ω1, δ ω2 ]Γ = 2{4η 1 + Dη 2 + 4(D 1)η 3 + (D 4)η 4 } d D x grω [1 2 ω 2] Euler D = 2 Euler R µν = 1 2 g µνr D = 4 Euler R µλσρ R λσρ ν 2R µλνσ R λσ 2R µλ R λ ν + R µν R = 1 4 g µνg 4 g µν = e 2ϕ ḡ µν Riegert Γ λ µν = Γ λ µν + ḡ λ µ ν ϕ + ḡ λ ν µ ϕ ḡ µν λ ϕ, R λ µσν = R λ µσν + ḡ λ ν µσ ḡ λ σ µν + ḡ µσ λ ν ḡ µν λ σ +(ḡ λ νḡ µσ ḡ λ σḡ µν ) ρ ϕ ρ ϕ, R µν = R µν (D 2) { µν ḡ 2 µν ϕ + (D 2) λ ϕ λ ϕ }, R = e { 2ϕ R 2(D 1) 2 ϕ (D 1)(D 2) λ ϕ λ ϕ }

74 A µν = µ ν ϕ µ ϕ ν ϕ ḡ µν = (ĝe h ) µν h µν Γ λ µν = ˆΓ λ µν + ˆ (µ h λ ν) 1 2 ˆ λ h µν + 1 2 ˆ (µ (h 2 ) λ ν) 1 4 ˆ λ (h 2 ) µν h λ ˆ σ (µ h σ ν) + 1 2 hλ ˆ σ σ h µν + o(h 3 ), R = ˆR ˆR µν h µν + ˆ µ ˆ ν h µν 1 4 ˆ λ h µ ˆ ν λ h ν µ + 1 2 ˆR σ µλνh λ σh µν + 1 2 ˆ ν h ν ˆ µ λ h λµ ˆ µ (h µ ˆ ν λ h ν λ) + o(h 3 ), R µν = ˆR µν ˆR σ µλνh λ σ + ˆR λ (µh ν)λ + ˆ (µ ˆ λ h ν)λ 1 2 ˆ 2 h µν 1 2 hλ (µ ˆ 2 h ν)λ 1 2 ˆ λ h σ µ ˆ σ h νλ 1 4 ˆ µ h λ σ ˆ ν h σ λ 1 2 ˆ λ (h λ σ ˆ (µ h σ ν)) + 1 2 ˆ λ (h σ (µ ˆ ν) h λ σ) + 1 2 ˆ λ (h λ σ ˆ σ h µν ) + o(h 3 ) a (µ b ν) = (a µ b ν + a ν b µ )/2 R = ḡ µν Rµν ḡ µν = ĝ µν h µν + [ ˆ λ, ˆ ν ]h λ µ = h λ σ ˆR σ µνλ + h µσ ˆRσ ν R µν R A.2 g µν = e α µe να D α β γ δ Lorentz µ ν λ σ Einstein Lorentz {γ α, γ β } = 2η αβ Einstein e µ αγ α ψ Dirac (adjoint) Lorentz ψ = ψ γ 0 D µ = µ + 1 2 ω µαβσ αβ

A.2. 75 (connection 1-form)ω µ dx µ ( ) ω µαβ = e ν α µ e νβ = e ν α µ e νβ Γ λ µνe λβ Lorentz ω µαβ = ω µβα Σ αβ Lorentz [ Σ αβ, Σ γδ] = η βγ Σ αδ η αγ Σ βδ + η βδ Σ γα η δα Σ γβ [D µ, D ν ] = 1 2 ( µω ναβ ν ω µαβ + [ω µ, ω ν ] αβ ) Σ αβ = 1 2 R µναβσ αβ Lorentz Σ αβ = 0 Einstein Σ µν = e µ αe ν βσ αβ (Σ µν ) λσ = g µ λ gν σ g µ σg ν λ D µ = ν Σ αβ = 1 [ γ α, γ β] 4 Weyl Weyl δ ω g µν = 2ωg µν δ ω e µ α = ωe µ α, δ ω e µα = ωe µα, δ ω ψ = 1 D 1 D ωψ, δ ω ψ = ω 2 2 ψ δ ω ω µαβ = ( e µα e λ β e µβ e λ α) λ ω, δ ω (e µ αγ α D µ ψ) = D + 1 ωe µ 2 αγ α D µ ψ γ α Σ αβ = 1(D 2 1)γβ ( δ ω g µ ψe α γ α D µ ψ ) ( = Dω + 1 D ω D + 1 ) g µ ω ψe 2 2 αγ α D µ ψ = 0 D Weyl

76 A Riegert Riegert ē µα = (e 1 2 h ) µα = η µα + 1 2 h µα + 1 8 (h2 ) µα +, ē µ α = (e 1 2 h ) µ α = δ α µ 1 2 hµ α + 1 8 (h2 ) µ α + ē α µē να = ḡ µν ē µ αē µβ = η αβ Lorentz ω µαβ = ( ē ν a µ ē νβ Γ ) λ µνē λβ = 1 2 ( αh µβ β h µα ) 1 ( ) h λ 8 α µ h λβ h λ β µ h λα 1 ( hµλ α h λ β h µλ β h λ 1 ( ) α) + h λ 4 4 α λ h µβ h λ β λ h µα +o(h 3 )

77 B B.1 G D D = 4 D 4 Euler G 4 D = 4 d D x gg 4 = (D 4) n n=0 n! { d D x ĝ ϕ n Ḡ 4 + 4(D 3)ϕ n Rµν µ ν ϕ 2(D 3)ϕ n R 2 ϕ 2(D 2)(D 3)(D 4)ϕ n 2 ϕ λ ϕ λ ϕ (D 2)(D 3) 2 (D 4)ϕ n ( λ ϕ λ ϕ) 2 } (B.1.1) D M D (8.1.9) d D x gm D = D 4 d D x gr 2 4(D 1) 1 (D 4) n { = d D x ĝ (D 4)ϕ n R2 4(D 1) n! n=0 2(D 1)(D 6)ϕ n R 2 ϕ + 2(D 1)(D 2)ϕ n λ R λ ϕ +4(D 1) 2 ϕ n 4 ϕ + 8(D 1) 2 (D 4)ϕ n 2 ϕ λ ϕ λ ϕ +(D 1) 2 (D 2) 2 (D 4)ϕ n ( λ ϕ λ ϕ) 2 } (B.1.2) E D (8.1.3) (B.1.2) (D 4) n o(ϕ n+2 ) o(ϕ n+3 ) (B.1.1) E D (8.1.10) o(ϕ n+1 ) o(ϕ n+2 ) o(ϕ n+3 )

78 B E D = G 4 + ηm D η η = 4(D 3) 2 /(D 1)(D 2) E D G D (8.1.4) E D d D x ge D = d D x gg D G D d D x gg D = (D 4) n n=0 n! d D x ĝ {ϕ n Ē D + 4(D 3)2 D 2 ϕn 4 ϕ +4(D 3)ϕ n Rµν µ ν ϕ 4(D 3)(D2 6D + 10) ϕ n R (D 1)(D 2) 2 ϕ 2(D 3)2 (D 6) 2(D 3)(D 4)3 (D 1)(D 2) ϕn λ R λ ϕ ϕ n D 2 2 ϕ λ ϕ } λ ϕ ( = d D x ĝ{ḡ4 + (D 4) 2ϕ 4 ϕ + Ē4ϕ + 1 18 R ) 2 + 1 (2ϕ 2 (D 4)2 2 4 ϕ + Ē4ϕ 2 + 6ϕ 4 ϕ + 8ϕ R µν µ ν ϕ 28 9 ϕ R 2 ϕ + 8 9 ϕ λ R λ ϕ 14 9 R 2 ϕ + 1 9 R 2 ϕ + 5 54 R ) 2 + 1 3! (D 4)3( 2ϕ 3 4 ϕ + Ē4ϕ 3 6 2 ϕ λ ϕ λ ϕ + 9ϕ 2 4 ϕ + ) } +o((d 4) 4 ) 1 1 D Ricci D = 2 d D x (D 2) n gr = n! n=0 d D x ĝ { (D 1)ϕ n 2 ϕ + Rϕ n} n = 1 Liouville-Polyakov

79 C C.1 D Euclid d D p = dω D = D Euclid p D 1 dp dω D, (p 2 = p µ p µ ) D 1 sin D 1 l θ l dθ l = 2πD/2 l=1 Γ ( ) D 2 d D p (2π) D p 2 p 2n (p 2 + L) = 1 Γ α (4π) D/2 ( n + D 2 p µ ) ( ) Γ α n D 2 ) L D/2+n α Γ(α) Γ ( D 2 d D p (2π) p µp D ν f(p 2 ) = 1 D δ µν d D p (2π) p µp D ν p λ p σ f(p 2 1 ) = d D p (2π) D p2 f(p 2 ), D(D + 2) (δ µνδ λσ + δ µλ δ νσ + δ µσ δ νλ ) d D p (2π) D p4 f(p 2 ) p µ

80 C Feynman Feynmann 1 Γ(α + β) 1 = A α Bβ Γ(α)Γ(β) 0 dx (1 x)α 1 x β 1 [(1 x)a + xb] α+β A = p 2 +z 2 B = (p + q) 2 + z 2 z 2 d D p f(p µ, q ν ) (2π) D (p 2 + z 2 ) α ((p + q) 2 + z 2 ) β = Γ(α + β) Γ(α)Γ(β) 1 0 dx(1 x) α 1 x β 1 d D p f(p µ xq µ, q ν ) (2π) D [p 2 + z 2 + x(1 x)q 2 ] α+β D = 4 2ϵ ϵ Γ(ϵ) = 1 ϵ γ + ϵ 2 ( γ 2 + π2 6 a ϵ = e ϵ ln a = 1 + ϵ ln a + o(ϵ 2 ) ) + o(ϵ 2 ), a p 2 z 2 D Euclid {γ µ, γ ν } = 2δ µν γ λ γ λ = D, γ λ γ µ γ λ = (D 2)γ µ, γ λ γ µ γ ν γ λ = (D 4)γ µ γ ν + 4δ µν, γ λ γ µν = γ λµν δ λµ γ ν + δ λν γ µ

C.1. 81 δ µν γ µν = 1 2 [γ µ, γ ν ], γ λµν = 1 3! (γ λγ µ γ ν + γ µ γ ν γ λ + γ ν γ λ γ µ γ λ γ ν γ µ γ ν γ µ γ λ γ µ γ λ γ ν )

83 D D.1 (10.2.3) (10.2.4) t r Hubble H = H D / B 0 = 1 T = b 1 B 0 t 2 r/8π 2 ( 1) k 2 /a 2 a 2... Φ 14... Φ 36 Φ 48 Φ + 2... Ψ +14 Ψ + 36 Ψ + 48Ψ +6 ( Φ + 4 Φ Ψ 4Ψ ) = 0 (D.1.1) 4 3 Φ + 16 3 Φ + 20 3 Φ 4 3 Ψ + 4 3 Ψ + 8 T 2(Φ + Ψ) = 0 ( Φ + Φ Ψ Ψ) (D.1.2) f = Ψ Φ... f +7 f + 15f + 12f = 0, (... Φ 1 + 7 ) 12 T 7 Φ 12 T Φ = f ( 1 + 1 ) 6 T f 1 12 T f

84 D ( ) ( ) f = c 1 e 4τ + c 2 e 3 3 2 τ sin 2 τ + c 3 e 3 3 2 τ cos 2 τ ( Φ = (a 1 + c 1 )e τ + (a 2 + c 2 ) +c 1 360 7T 1800 + 5c 2 3c 3 e 3 2 τ sin 14 1 7 ) 12 T τ e 4τ 3c2 + 5c 3 + e 3 2 τ cos 14 ( ) 3 2 τ ( + (a 3 + c 3 ) ) ( 3 2 τ T 1 + 7 12 T τ ) e τ (D.1.3) T = 0 (D.1.1) Φ = Ψ = ω... ω +6 ω... +8 ω 3 ω 12ω = 0 (D.1.2) 9.2 ˆϕ e τ e 4τ e 3τ/2 sin( 3τ/2) e 3τ/2 cos( 3τ/2) T = 0 (D.1.3) Φ T 1 Φ 1 7 12 T τ 11.1 11.2

85 E E.1 Planck h = 1.055 10 27 cm 2 g s 1 (speed of light) c = 2.998 10 10 cm s 1 Newton G = 6.672 10 8 cm 3 g 1 s 2 Planck m pl = 2.177 10 5 g = 1.221 10 19 GeV/c 2 Planck M P = 2.436 10 18 GeV/c 2 Planck l pl = 1.616 10 33 cm Planck t pl = 5.390 10 44 s Boltzmann k B = 1.381 10 16 erg K 1 (Megaparsec) 1Mpc = 3.086 10 24 cm Hubble H 0 = 100h km s 1 Mpc 1 Hubble c/h 0 = 2998h 1 Mpc ( h 0.7 ) (c = h = k B = 1) 1 cm = 5.068 10 13 h/gev 1 s = 1.519 10 24 h/gev/c 1 g = 5.608 10 23 GeV/c 2 1 erg = 6.242 10 2 GeV 1 K = 8.618 10 14 GeV/k B

87 F J. Collins, Renormalization (Cambridge University Press, 1984). T. Muta, Foundations of Quantum Chromodynamics (World Scientific, 1987). S. Hathrell, Trace Anomalies and λϕ 4 Theory in Curved Space, Ann. of Phys. 139 (1982) 136. S. Hathrell, Trace Anomalies and QED in Curved Space, Ann. of Phys. 142 (1982) 34. K. Hamada and F. Sugino, Background-metric Independent Formulation of 4D Quantum Gravity, Nucl. Phys. B553 (1999) 283. K. Hamada, Resummation and Higher Order Renormalization in 4D Quantum Gravity, Prog. Theor. Phys. 108 (2002) 399. K. Hamada, Renormalizable 4D Quantum Gravity as a Perturbed Theory from CFT, Found. Phys. 39 (2009) 1356.

88 F E. Kolb and M. Turner, The Early Univrse (Westview Press,1990). A. Liddle and D. Lyth, Cosmological Inflation and Large-Scale Structure (Cambridge University Press, 2000). S. Weinberg, Cosmology (Oxford University Press, 2008) CMB R. Durrer, The Theory of CMB Anisotropies, J. Phys. Stud. 5 (2001) 177., (http://research.kek.jp/people/hamada/). K. Hamada and T. Yukawa, CMB Anisotropies Reveal Quantized Gravity, Mod. Phys. Lett. A20 (2005) 509. K. Hamada, S. Horata and T. Yukawa, Space-time Evolution and CMB Anisotropies from Quantum Gravity, Phys. Rev. D74 (2006) 123502. K. Hamada, S. Horata and T. Yukawa, From Conformal Field Theory Spectra to CMB Multipoles in Quantum Gravity Cosmology, Phys. Rev. D81 (2010) 083533. K. Hamada, S. Horata and T. Yukawa, Focus on Quantum Gravity Research (Nova Science Publisher, NY, 2006), Chap. 1 entitled by Background Free Quantum Gravity and Cosmology.