量子重力理論と宇宙論 (上巻) 共形場理論と重力の量子論 浜田賢二 高エネルギー加速器研究機構 (KEK) 素粒子原子核研究所 量子重力の世界は霧に包まれた距離感のない幽玄の世界にたとえること ができる 深い霧が晴れて時空が

Size: px
Start display at page:

Download "量子重力理論と宇宙論 (上巻) 共形場理論と重力の量子論 浜田賢二 高エネルギー加速器研究機構 (KEK) 素粒子原子核研究所 量子重力の世界は霧に包まれた距離感のない幽玄の世界にたとえること ができる 深い霧が晴れて時空が"

Transcription

1 量子重力理論と宇宙論 (上巻) 共形場理論と重力の量子論 浜田賢二 高エネルギー加速器研究機構 (KEK) 素粒子原子核研究所 量子重力の世界は霧に包まれた距離感のない幽玄の世界にたとえること ができる 深い霧が晴れて時空が現れる 国宝松林図屏風 (長谷川等伯筆) 平成 0 年 11 月初版/平成 1 年 09 月改定/ 平成 5 年 09 月再改定 (上下巻に分離)

2 Planck Planck BRST Planck Λ QG Planck GeV Planck Λ QG Friedmann CMB

3 Minkowski Wightman Fourier Feynman Euclid Euclid (OPE) Conformal Blocks Casimir Conformal Blocks Conformal Bootstrap

4 4 4 R S R S Minkowski R S R S Wess-Zumino Riegert-Wess-Zumino Riegert BRST R S BRST

5 5 A 17 A A B 133 B.1 P µ1 µ l,ν 1 ν l C 135 C.1 Wightman Fourier D 137 D.1 M D. M E 143 E.1 S E. SU() SU()Clebsch-Gordan E.3 S E.4 Clebsch-Gordan WignerD F 151 F.1 (Fradkin-Palchik ) G 155 G.1 Weyl H 159

6

7 7 1 Planck Compton Planck Planck NASA Wilkinson (Wilkinson Microwave Anisotropies Probe, WMAP) (cosmic microwave background, CMB) 1 1 D. Spergel et al., Astrophys. J. Suppl. 148 (003) 175.

8 Planck WMAP CMB 1 WMAP GeV 1. Einstein Ricci Newton : 1. R. Utiyama and B. DeWitt, J. Math. Phys. 3 (196) B. DeWitt, in Relativity, Groups and Topology, eds. B. DeWitt and C. DeWitt (Gordon and Breach, New York, 1964); Phys. Rev. 160 (1967) 1113; Phys. Rev. 16 (1967) 1195, G. t Hooft and M. Veltman, Ann. Inst. Henri Poincare XX (1974) 69; M. Veltman, in Methods in Field Theory, Les Houches S. Weinberg, in General Relativity, an Einstein Centenary Survay, eds. S. Hawking and W. Israel (Cambridge Univ. Press, Cambridge, 1979). 5. S. Deser, Proceedings of the Coference on Gauge Theories and Modern Field Theories, edited by R. Arnowitt and P. Nath (MIT Press, Cambridge, 1975). 6. S. Weinberg, Proceedings of the XVIIth International Conference on High Energy Physics, edited by J. R. Smith (Rutherford Laboratory, Chilton, Didcot, 1974).

9 Einstein (conformal field theory, CFT) 3 : 1. K. Stelle, Phys. Rev. D16 (1977) 953; Gen. Rel. Grav. 9 (1978) E. Tomboulis, Phys. Lett. 70B (1977) 361; Phys. Lett. 97B (1980) E. Fradkin and A. Tseytlin, Nucl. Phys. B01 (198) 469; Phys. Lett. 104B (1981) E. Fradkin and A. Tseytlin, Phys. Rep. 119 (1985) 33 [Review]. 4 : 1. V. Knizhnik, A. Polyakov and A. Zamolodchikov, Mod. Phys. Lett. A 3 (1988) J. Distler and H. Kawai, Nucl. Phys. B31 (1989) F. David, Mod. Phys. Lett. A 3 (1988) N. Seiberg, Prog. Theor. Phys. Suppl. 10 (1990) 319 [Review]. 5. J. Teschner, Class. Quant. Grav. 18 (001) R153 [Review].

10 Weyl Einstein Planck (QCD) Planck 1.3 QCD Λ QCD Λ QG 5 Λ QG 5

11 Riemann Weyl Wheeler-DeWitt S Minkowski 6 (graviton) Planck Planck Planck Friedmann 6 S Einstein

12 1 1 de Sitter (inflaton) Friedmann

13 13 Minkowski (conformal field theory, CFT) Minkowski Minkowski Hamilton Hermite Euclid Euclid Minkowski ( ) Euclid Minkowski Euclid D 4.1 x µ x µ η µν dx µ dx ν η µν dx µ dx ν = Ω(x)η µν dx µ dx ν (.1.1) Ω Minkowski η µν = ( 1, 1,, 1)

14 14 Minkowski x µ x ν η µν x λ x σ = Ω(x)η λσ Ω = 1 Poincaré η µν η µν x µ x µ = x µ + ζ µ ζ µ µ ζ ν + ν ζ µ D η µν λ ζ λ = 0 Killing ζ λ Killing Ω = 1 + D λζ λ (.1.) Killing (η µν +(D ) µ ν ) λ ζ λ = 0 ζ µ (D +1)(D +)/ D (translation) D(D 1)/ Lorentz 1 dilatation D (special conformal transformation) ζ λ T,L,D,S (ζ λ T ) µ = δ λ µ, (ζ λ L) µν = x µ δ λ ν x ν δ λ µ, ζ λ D = x λ, (ζ λ S) µ = x δ λ µ x µ x λ (.1.3) Killing µ ζ ν + ν ζ µ = 0 Poincaré

15 .. 15 dilatation x µ x µ = λx µ, x µ x µ = x µ + a µ x 1 + a µ x µ + a x (conformal inversion) x µ x µ = xµ x x µ xµ x xµ x + aµ x µ x + a µ ( x µ x + a µ ) = x µ + a µ x 1 + a µ x µ + a x. Lorentz dilatation P µ M µν D K µ 1 (D + 1)(D + )/ SO(D, ) [P µ, P ν ] = 0, [M µν, P λ ] = i (η µλ P ν η νλ P µ ), [M µν, M λσ ] = i (η µλ M νσ + η νσ M µλ η µσ M νλ η νλ M µσ ), [D, P µ ] = ip µ, [D, M µν ] = 0, [D, K µ ] = ik µ, [M µν, K λ ] = i (η µλ K ν η νλ K µ ), [K µ, K ν ] = 0, [K µ, P ν ] = i (η µν D + M µν ) (..1) Lorentz SO(D 1, 1) Poincaré Hermite P µ = P µ, M µν = M µν, D = D, K µ = K µ 1 dilatation D

16 16 Minkowski SO(D, ) J ab [J ab, J cd ] = i (η ac J bd + η bd J ac η bc J ad η ad J bc ) Hermite J ab = J ab J ab = J ba η ab = ( 1, 1,, 1, 1) a, b = 0, 1,,, D, D+ 1 µ, ν = 0, 1,, D 1 M µν = J µν, D = J D+1D, P µ = J µd+1 J µd, K µ = J µd+1 + J µd Lorentz dilatation (..1) l O µ1 µ l Hermite O µ 1 µ l (x) = O µ1 µ l (x) O µ 1 µ l (x ) = Ω(x) l x ν 1 x xνl O µ 1 x µ ν1 ν l l (x) (..) SO(D 1, 1) D µν Jacobian xν x µ = Ω(x) 1/ D ν µ (x) O j (x) R[D] jk D = 4 Lorentz SO(3, 1) (j, j) j = j = l/ O µ 1 µ l = σ µ 1 α 1 α 1 σ µ l α l α l O α 1 α l α 1 α l σ µ α α σ µβdotb ε αβ ε α β j j (1/, 0) (1/, 0) (1, 1/) (1/, 1) Rarita-Schwinger (1, 0) (0, 1)

17 .. 17 O j(x ) = Ω(x) / R[D(x)] k j O k (x) 0 O 1 (x 1 ) O n (x n ) 0 = 0 O 1(x 1 ) O n(x n ) 0 (..3) 0 x j x µ x µ = x µ + ζ µ x O j O j δ ζo j (x) = O j (x) O j(x) ζ µ O j(x ) = O j(x)+ζ µ µ O j (x) D µ ν = δ µ ν ( ν ζ µ µ ζ ν )/ Ω (.1.) (..) δ ζ O µ1 µ l (x) = (ζ ν ν + ) D νζ ν O µ1 µ l (x) + 1 l ( ) µj ζ ν ν ζ µj Oµ1 µ j 1νµ j+1 µ l (x) j=1 δ ζ O µ1 µ l (x) = i [Q ζ, O µ1 µ l (x)] Q ζ Killing ζ µ (D + 1)(D + )/ Killing ζ λ T,L,D,S(.1.3) i [P µ, O λ1 λ l (x)] = µ O λ1 λ l (x), i [M µν, O λ1 λ l (x)] = (x µ ν x ν µ iσ µν ) O λ1 λ l (x), i [D, O λ1 λ l (x)] = (x µ µ + ) O λ1 λ l (x), i [K µ, O λ1 λ l (x)] = ( x µ x µ x ν ν x µ + ix ν Σ µν ) Oλ1 λ l (x) Σ µν O λ1 λ l = i l ( ) ηµλj δ σ ν η νλj δ σ µ Oλ1 λ i 1σλ i+1 λ l j=1 (..4)

18 18 Minkowski Σ µν O λ1 λ l = (Σ µν ) λ 1 λ l σ 1 σ l O σ1 σ l Lorentz M µν (Σ µν ) σ λ = i(η µλ δ σ ν (Σ µν ) η νλ δ σ µ ) l l σ 1 σ l λ 1 λ l = δ σ 1 λ 1 j=1 δ σ j 1 λ j 1 (Σ µν ) σ j λ j δ σ j+1 λ j+1 δ σ l λ l O 1/ Σ µν ψ = i 1 4 [γ µ, γ ν ]ψ {γ µ, γ ν } = η µν Killing Q ζ = d D 1 xζ λ T λ0 Killing T µ µ = µ T µν = 0 η Q ζ = 0 ζ λ ζ λ T,L,D,S(.1.3) P µ = d D 1 xt µ0, M µν = d D 1 x (x µ T ν0 x ν T µ0 ), D = d D 1 xx λ T λ0, K µ = d D 1 x ( ) x T µ0 x µ x λ T λ0 (..5) D.1 0 Q ζ (= Q ζ ) Q ζ 0 = 0 Q ζ = 0 n O j (j = 1,, n) 0 [Q ζ, O 1 (x 1 ) O n (x n )] 0 = 0

19 .3. Wightman 19 n δ ζ 0 O 1 (x 1 ) O n (x n ) 0 = i 0 O 1 (x 1 ) [Q ζ, O j (x j )] O n (x n ) 0 = 0 j=1 (..3) O j j Q ζ D K µ (..4) ( ) n x µ j j=1 x µ + j 0 O 1 (x 1 ) O n (x n ) 0 = 0, j ( ) n x j j=1 x µ x jµ x ν j j x ν j x jµ 0 O 1 (x 1 ) O n (x n ) 0 = 0 j.3 Wightman l Wightman W µ1 µ l,ν 1 ν l (x y) = 0 O µ1 µ l (x)o ν1 ν l (y) 0 (.3.1) 1 W µ1 µ l,ν 1 ν l (x) = cp µ1 µ l,ν 1 ν l (x) (x ) x 0 x 0 iϵ ϵ UV P µ1 µ l,ν 1 ν l [ B ] Wightman O(x)O(0) 0 = c (x ) = c x 0 x 0 iϵ (x + iϵx 0 ) x 0 0 ϵ 1

20 0 Minkowski Wightman 1 0 O µ (x)o ν (0) 0 = ci µν (x ) x 0 x 0 iϵ 0 O µν (x)o λσ (0) 0 = c 1 ( I µλ I νσ + I µσ I νλ ) 1 D η µνη λσ (x ) x µ I µν I µν = η µν xµ x ν x x 0 x 0 iϵ I λ µ I λν = η µν I µ µ = D l P µ1 µ l,ν 1 ν l = 1 l! (I µ 1 ν 1 I µl ν l + perms) traces perms traces c ( ) c > 0 c = 1 Wightman (.3.1) f 1, (x) : (f 1, f ) = d D xd D yf µ 1 µ l 1 (x)w µ1 µ l,ν 1 ν l (x y)f ν 1 ν l (y). Wightman Fourier W µ1 µ l,ν 1 ν l (k) = d D xw µ1 µ l,ν 1 ν l (x)e ik µx µ (f 1, f ) = d D k (π) D f µ 1 µ l 1 (k)f ν 1 ν l (k)w µ1 µ l,ν 1 ν l (k) f 1, (k) Fourier k (f, f) > 0

21 .4. Fourier 1 Wightman s D 1 for s = 0, D + s for s 0 (.3.) (unitarity bound).4 Fourier D = 4 Wightman W (x) Fourier [ C ] π( 1) W (k) = (π) 4 1 Γ( ) θ(k0 )θ( k )( k ) (f, f) = d 4 k f(k) W (k)/(π) 4 1 = 1 lim 1 ( 1)θ( k ) = δ( k ) 1 (π) lim (f, f) = 1 d 4 k (π) 4 f(k) πθ( k 0 )δ( k ) = d 3 k 1 (π) 3 k f(k) A µ 0 A µ (x)a ν (0) 0 ( = η µν α x ) µx ν 1 x (x ) x 0 x 0 iϵ = 1 { α ( 1)( ) η µν α } 1 µ ν 1 (x ) 1 x 0 x 0 iϵ

22 Minkowski Fourier Fourier W (α) µν W µν (α) (k) = (π) π( 1) 4 1 Γ( )Γ( + 1) θ(k0 )θ( k )( k ) { ( α)η µν α( ) k } µk ν k O µ α = 1 W (1) µν = W µν α = A µ O µ O O = 1 Wightman f µ f µ (k)f ν (k)w (α) µν (k) k µ = (K, 0, 0, 0) f µ f ν W (α) µν = Cθ(K)θ(K ) { [( 3)α ] f 0 + ( α) f j } K ( ) C = 4(π) 3 ( 1)/4 Γ( )Γ( + 1) ( 3)α 0 α 0 α 3 α 1 α = = 3 µ O µ = 0 µ W µν (x) = 0 (x 0) 3 1 F µν ( )

23 O P µ µ ν O O (descendant) O D = 4 O µ O O 0 O(x) O(0) 0 = 16 1 ( + 1)( 1) (x ) + x 0 x 0 iϵ O > 1 = 1 O = 0 { 0 µ O(x) ν O(0) 0 = η µν ( + 1) x } µx ν 1 x (x ) +1 x 0 x 0 iϵ Wightman 1 O µ µ O µ 0 µ O µ (x) ν 1 O ν (0) 0 = 4( 1)( 3) (x ) +1 x 0 x 0 iϵ > 3 = 3 O µ µ O µ = 0

24 4 Minkowski µ O µν 0 µ O µν (x) λ O λσ (0) 0 = ( 4)(4 7) { η νσ } x ν x σ x 1 (x ) +1 x 0 x 0 iϵ µ ν O µν 0 µ ν O µν (x) λ σ O λσ (0) 0 1 = 4 ( 1)( 3)( 4) (x ) + x 0 x 0 iϵ 4 Wightman = 4 O µν µ O µν = 0.6 Feynman Feynman Wightman 0 T [O µ1 µ l (x)o ν1 ν l (0)] 0 = θ(x 0 ) 0 O µ1 µ l (x)o ν1 ν l (0) 0 + θ( x 0 ) 0 O ν1 ν l (0)O µ1 µ l (x) 0 Fourier 0 T [O µ1 µ l (x)o ν1 ν l (0)] 0 = d 4 k µxµ eik D (π) 4 µ1 µ l,ν 1 ν l (k) 0 T [O(x)O(0)] 0 = θ(x 0 1 ) (x + iϵx 0 ) + 1 θ( x0 ) (x iϵx 0 ) = 1 (x + iϵ)

25 .6. Feynman 5 ϵ x 0 ϵ Fourier Γ( ) D(k) = i(π) 4 1 Γ( ) (k iϵ) 0 T [O µ (x)o ν (0)] 0 = 1 { 1 ( ) η µν 1 1 µ ν } 1 (x + iϵ) 1 Fourier D µ,ν (k) = i (π) Γ( ) 4 1 Γ( + 1) { ( 1)ηµν k ( )k µ k ν } (k iϵ) 3 O f I int = g d 4 x (fo + H.c.) S S = 1 + it f f i f T f = g = g d 4 xf (x) d 4 k (π) 4 f (k)f(k)d(k) d 4 yf(y) 0 T [O(x)O(y)] 0 S S = 1 Im(T ) = T 0 Im f T f = g d 4 k (π) 4 f(k) Im {id(k)} 0 (x+iϵ) λ (x iϵ) λ = i sin(πλ)θ( x)( x) λ sin(πλ) = π/γ(λ)γ(1 λ) π( 1) Im {id(k)} = (π) 4 1 Γ( ) θ( k )( k ) Wightman Fourier [θ(k 0 ) 1/ ] 1

26

27 7 3 Euclid Euclid Minkowski Euclid 3.1 Ising D D Euclid 1 Euclid T T c T T c O(x)O(0) e x /ξ ξ T = T c ξ O(x)O(0) = 1 x S CFT 1 D Minkowski D 1

28 8 3 Euclid < D relevant O t = (T T c )/T c ( 1) S CFT S CFT + ta D d D xo(x) a ξ D ta D ξ at 1/(D ) O = ε relevant ε ν ξ at ν ν = 1/(D ε ) 3. Euclid Euclid R D SO(D + 1, 1) η µν δ µν M D (..1) (..4) P µ D Hermite P µ = K µ, D = D SO(D, ) J ab η ab = ( 1, 1,, 1, 1) D +

29 3.. Euclid 9 a, b = 0, 1,, D, D + 1 D Euclid µ, ν = 1,, D SO(D + 1, 1) 0 M µν = J µν, D = ij D+10, P µ = J µd+1 ij µ0, K µ = J µd+1 + ij µ0 J ab (..) Hermite Euclid Hermite l O µ1 µ l (x)o ν1 ν l (y) = cp µ1 µ l,ν 1 ν l 1 (x ) P µ1 µ l,ν 1 ν l x M D Euclid I µν I µν = δ µν x µx ν x P µ1 µ l,ν 1 ν l = 1 l! (I µ 1 ν 1 I µl ν l + perms) traces c c = 1 Hermite x µ Rx µ = x µ x O µ 1 µ l (x) = 1 (x ) I µ 1 ν 1 (x) I µl ν l (x)o ν1 ν l (Rx) (3..1) Hermite Hermite i[p µ, O(x)] = µ O(x)

30 30 3 Euclid Hermite i[p µ, O (x)] = µ O (x) Hermite y µ = x µ /x O (x) = (y ) O(y) Hermite P µ = K µ i(y ) [K µ, O(y)] = y ν { (y ) O(y) } x µ y ν = (y ) ( y µ y µ y ν ν y µ ) O(y) (y ) O i[d, O(x)] = (x µ µ + )O(x) Hermite Hermite D = D I µν (x) = I µν (y) i[p µ, O ν (x)] = µ O ν (x) Hermite i(y ) I νλ [K µ, O λ (y)] = y ν { (y ) I νλ O λ (y) } x µ y ν ( ) = (y ) {I νλ y µ y µ y σ σ y µ Oλ (y) ( + δ µν y λ δ µλ y ν + 4 y ) } µy ν y λ O y λ (y) I µλ I λν = δ µν i[k µ, O λ (y)] = (y µ y µ y σ σ y µ +iy σ Σ µσ )O λ (y) iσ µσ O λ = δ µλ O σ + δ λσ O µ O µ1 µ l O µ 1 µ l Rx = 1/x O (x)o(0) = 1 (x ) O(Rx)O(0) = 1 x (c = 1 ) I µλ I λν = δ µν O µ(x)o ν (0) = δ µν, O µν(x)o λσ (0) = 1 (δ µλ δ νσ + δ µσ δ νλ ) D δ µνδ λσ

31 3.. Euclid 31 Euclid M µν {µ 1 µ l }, = (Σ µν ) ν1 ν l,µ 1 µ l {ν 1 ν l },, id {µ 1 µ l }, = {µ 1 µ l },, K µ {µ 1 µ l }, = 0 {µ 1 µ l }, = O µ1 µ l (0) 0 (3..) (state-operator correspondence) 0 P µ Hermite y µ = Rx µ I µν (x) = I µν (y) Hermite O µ 1 µ l (0) = lim x 0 (x ) I µ1 ν 1 I µl ν l O ν1 ν l (Rx) = lim y (y ) I µ1 ν 1 I µl ν l O ν1 ν l (y) (3..) {µ 1 µ l }, = 0 O µ 1 µ l (0) = lim x (x ) I µ1 ν 1 I µl ν l 0 O ν1 ν l (x) f µ1 µ l (f, f) = f µ 1 µ l f ν1 ν l {µ 1 µ l }, {ν 1 ν l }, = f µ1 µ l > 0 Minkowski = O(0) 0 M D O (x) = O(x) = 0 O (0)O(0) 0 = 0 O(0)O(0) 0

32 3 3 Euclid 3.3 Hermite R D O(x) = e ip µx µ O(0)e ip µx µ Hermite P µ = K µ O (x) = e ik µx µ O( )e ik µx µ O( ) = O (0) = lim x (x ) O(x) Hermite (3..1) O(x)O(x ) = 1 (x ) O (Rx)O(x ) = 1 (x ) e ik µ(rx) µ e ip νx ν = O(0) 0 = 0 O( ) K µ P ν O(x)O(x ) = 1 ( x C (x ) n (x, x ) x n=0 C n ) n/ C n = 1 (n!) x µ1 x µn x ν 1 x ν n (x x ) n/ K µ1 K µn P ν1 P νn Gegenbauer nc n = ( + n 1)zC n 1 ( + n )C n z = x x / x x C n z Gegenbauer ( = 1/ Legendre ) 1 (1 zt + t ) = C n (z)t n n=0

33 3.4. (OPE) 33 z t = x /x O(x)O(x ) = 1/(x x ) 3.4 (OPE) ϕ (operator product expansion, OPE) ϕ ϕ I + T µν + l=0,,4, O µ1 µ l I T µν ( D ) O µ1 µ l l OPE ( ) ϕ l d ϕ(x 1 )ϕ(x ) = O µ1 µ l (x 1 )O ν1 ν l (x ) = 1 x 1, d [ ] 1 1 x 1 l! (I µ1ν1 I + perms) traces µlνl (x 1 ) µ = x 1µ x µ I µν = I µν (x 1 ) f,l ϕ(x 1 )ϕ(x )O µ1 µ l (x 3 ) = Z µ = (x 13) µ x 13 f,l x 1 d +l x 13 l x 3 l (Z µ 1 Z µl traces), (x 3) µ x 3 f,l OPE ϕ OPE ϕ(x)ϕ(y) = = 1 x y d + l=n 1 x y d + l=n f,l [ (x y)µ1 (x y) µl x y d +l O µ1 µ l (y) + f,l x y d C,l(x y, y )O,l (y) (3.4.1) ]

34 34 3 Euclid l O,l (y) C,l (x y, y ) l = 0 C,0 OPE O = O,0 ϕ(x)ϕ(y)o(z) = f,0 x y d C,0(x y, y ) O(y)O(z) 1 C,0 (x y, y ) y z = 1 x z y z Feynmann Γ( ) 1 [t(1 t)] 1 Γ( )Γ( ) dt 0 [t(x z) + (1 t)(y z) ] = 1 1 B(, ) dt[t(1 t)] 1 0 n=0 ( ) n n! [ t(1 t)(x y) ] n ([y z + t(x y)] ) +n (a) n = Γ(a + n)/γ(a) Pochhammer ( ) n 1 (x ) = 1 4n ( ) n ( + 1 D/) n (x ), +n 1 [(y + tx) ] = 1 etx y (y ) 1/ y z y C,0 (x y, y ) = 1 1 B(, ) dt[t(1 t)] 1 0 ( 1) n [t(1 t)a ] n ( 4 n n! ( + 1 D/) y) n e ta y n n=0 a=x y C,0 (x y, y ) = (x y) µ µ y + + 8( + 1) (x y) µ(x y) ν µ y ν y 16( + 1)( + 1 D/) (x y) y +

35 3.5. Conformal Blocks 35 (3.4.1) l Conformal Blocks j ϕ j ϕ 1 (x 1 )ϕ (x )ϕ 3 (x 3 )ϕ 4 (x 4 ) = ( ) 1 ( ) 34 x4 x14 G(u, v) x 14 x 13 x 1 1+ x ij = i j u v u = x 1x 34, v = x 14x 3 x 13x 4 x 13x 4 ϕ 1 ϕ OPE ϕ 1 ϕ 4 OPE (x, ) (x 4, 4 ) (x, ) (x 3, 3 ) (crossing symmetry) G(u, v) G(v, u) G(1/u, v/u) 1 = = 3 = 4 OPE G(u, v) = 1 +,l f,lg,l (u, v) d ϕ d ϕ d (x 1 )ϕ d (x )ϕ d (x 3 )ϕ d (x 4 ) = 1 [ 1 + f x 1 d x 34,lg d,l (u, v) ],l

36 36 3 Euclid g,l (u, v) conformal block x x 4 v d G(u, v) = u d G(v, u) conformal block u d v d =,l f,l [ v d g,l (u, v) u d g,l (v, u) ] (3.5.1) Conformal block g,l OPE (l = 0) OPE g,0 (u, v) = x 1 x 34 1 C,0 (x 1, )C,0 (x 34, 4 ) x 4 1 C,0 (x 1, )C,0 (x 34, 4 ) x 4 = 1 B(, dtds[t(1 t)s(1 s)] 1 ) 0 ( 1) n+m ( ) n+m ( ) n+m [t(1 t)x 1] n [s(1 s)x 34] m n!m! ( ) n ( ) m [(x 4 + tx 1 sx 34 ) ] +n+m n,m=0 = + 1 D/ A = t(1 t)x 1 B = s(1 s)x 34 (x 4 + tx 1 sx 34 ) = Λ A B, Λ = tsx 13 + t(1 s)x 14 + s(1 t)x 3 + (1 t)(1 s)x 4 1 B(, ) dtds [t(1 t)s(1 s)] 1 (Λ A B ) F 4(, ;, ; X, Y ) X = A /(Λ A B ) Y = B /(Λ A B ) F 4 Appell (double series) F 4 (a, b;, c, d; x, y) = n,m=0 1 n!m! (a) n+m (b) n+m x n y m (c) n (d) m

37 3.5. Conformal Blocks 37 Gauss F 1 ( a F 4 (a, b; c, d; x, y) = (1 x y) a F 1, a + 1 ) ; b; 4xy (1 x y) 1 B(, ) 1 0 dtds [t(1 t)s(1 s)] 1 ( a F (Λ ) 1, a + 1 ; b; 4A B ) Λ t s t a 1 (1 t) b 1 dt [tα + (1 t)β] = 1 B(a, b), a+b α a βb s a 1 (1 s) b 1 ds (1 sα) c (1 sβ) = B(a, b)f 1(a, c, d; a + b; α, β) d F 1 F 1 (a, b, c; d; x, y) = n,m=0 1 n!m! (a) n+m (b) n (c) m x n y m (d) n+m Gauss ( F 1 (a, b, c, b + c; x, y) = (1 y) a F 1 a, b; b + c; x y ) 1 y 1 x 13 x 4 v n=0 u n n! ( ) 4 n ( ) n ( ) n F 1 ( + n, + n; + n; 1 v ) u = u/v v = 1/v ( ) n 4 n ( ) n( +1 ) n = ( ) n G(a, b, c, d; x, y) = n,m=0 (d a) n (d b) n n! (c) n (a) n+m (b) n+m m! (d) n+m x n y m g,0 ( + n) m = ( ) n+m/( ) n ( + n) m = ( ) n+m /( ) n x 3 x 4

38 38 3 Euclid g,l (u, v) = g,l (u, v ) g,0 u v u v ( g,0 (u, v) = u G,, + 1 D ), ; u, 1 v conformal block g,l Gauss u = z z, v = (1 z)(1 z) G(a, b, c 1, c; u, 1 v) = 1 [ z F 1 (a, b; c; z) F 1 (a 1, b 1; c ; z) z z z F 1 (a, b; c; z) F 1 (a 1, b 1; c ; z) ] Gauss k β (x) = x β F 1 ( β, β, β; x ) (3.5.) D = 4 g,0 (u, v) D=4 = z z z z [k (z)k ( z) (z z)] l 1 OPE l conformal blocks l D = 4 g,l (u, v) D=4 = ( 1)l l z z z z [k +l(z)k l ( z) (z z)] (3.5.3) g,l (u, v) D= = ( 1)l l [k +l (z)k l ( z) + (z z)] (3.5.4) D = 3 l z = z

39 3.6. Casimir Conformal Blocks Casimir Conformal Blocks conformal block Casimir SO(D + 1, 1) J ab Casimir C = 1 J ab J ab C = 1 M µνm µν D 1 (K µp µ + P µ K µ ) l C, l = C,l, l, C,l = ( D) + l(l + D ) ϕ 1 (x 1 )ϕ (x )ϕ 3 (x 3 )ϕ 4 (x 4 ) =,l 0 ϕ 1 (x 1 )ϕ (x ), l, l ϕ 3 (x 3 )ϕ 4 (x 4 ) [ J ab, [ J ab, ϕ 1 (x 1 )ϕ (x ) ]], l = 0 ϕ 1 (x 1 )ϕ (x )C, l = C,l 0 ϕ 1 (x 1 )ϕ (x ), l { (x 1 1 µ µ (x 1 ) µ (x 1 ) ν 1 µ ν 1 (x 1 ) µ µ + (x 1 ) µ 1 µ + ( 1 + ) ( 1 + D) } 0 ϕ 1 (x 1 )ϕ (x ), l O,l conformal block g,l 0 ϕ 1 (x 1 )ϕ (x ), l, l ϕ 3 (x 3 )ϕ 4 (x 4 ) 0 ( ) x 1 / ( = 4 x ) 34 / 14 f,lg,l (u, v) (x 1) ( 1+ )/ (x 34) ( 3+ 4 )/ x 14 x 13

40 40 3 Euclid conformal block Dg,l (u, v) = 1 C,lg,l (u, v), D = (1 u + v)u ( u ) + [ (1 v) u(1 + v) ] ( v ) u u v v (1 + u v)uv u v Du u + 1 [ ( ( 1 34 ) (1 + u v) u u + v ) (1 u v) ] v v (1 + u v) z z D = z (1 z) z + z (1 z) z + 1 ( ( 1 34 ) z z + ) z z (z + z) + (D ) z z ( (1 z) z z z (1 z) ) z D = 4, (3.5.3) (3.5.4) (3.5.) ( k β (x) = x β β F 1 1, β + ) 34 ; β; x 3.7 (.3.) D = 4 µ,, µ ν, = δ δ µν

41 µ; ν, = P µ ν, µ; λ, ν; σ, = λ, [K µ, P ν ] σ, = λ, i (Dδ µν + M µν ) σ, = δ ( δ µν δ λσ δ µλ δ νσ + δ νλ δ µσ ) Hermite P µ = K µ K µ ν, = ν, P µ = 0 λ, M µν σ, = (Σ µν ) λσ a = (µ, λ) b = (ν, σ) a b 3 ( 3) ( 1) ( + 1) 3 SO(4) {r} {r}, M µν {r}, = (Σ µν ) {r },{r} {r },, id {r}, = {r},, K µ {r}, = 0 SO(4) SU() SU() SU() j 1, j {r} (j 1, j ) (j 1 + 1)(j + 1) l O µ1 µ l j 1 = j = l/ P µ n n µ 1 µ n ; {r}, = P µ1 P µn {r}, {r }, {r}, = δ {r }{r}δ

42 4 3 Euclid µ; {r}, = P µ {r}, ( µ; {r }, ν; {r}, = δ δ{r }{r} + {r }, im µν {r}, ) (3.7.1) Lorentz im µν = i 1 (δ µαδ νβ δ µβ δ να ) M αβ = 1 (Σ αβ) µν M αβ Σ αβ µ µ M {v} αβ ν = (Σ αβ) µν {r }, im µν {r}, = µ {r }, M {v} αβ M {r} αβ {r}, ν (3.7.) M {R} αβ M {v} αβ = M {v} αβ + M {r} αβ M {r} αβ = 1 M {R} αβ M {R} αβ 1 M {v} αβ M {v} αβ 1 M {r} αβ M {r} αβ = c ({R}) c ({v}) c ({r}) c SO(4) Casimir {r} SU() SU() (j 1, j ) {v} (1/, 1/) {R} (J 1, J ) J 1, j 1, ± 1/ (3.7.) Casimir J 1 (J 1 + 1) + J (J + 1) 3 j 1 (j 1 + 1) j (j + 1) (3.7.1) (3.7.1) j 1, j 0 (3.7.1) J 1 = j 1 1/, J = j 1/ (j 1 + j + ) j 1 + j + for j 1, j 0

43 3.8. Conformal Bootstrap 43 j 1 = j = l/ l l + j 1 = 0, j 0 J 1 = 1/, J = j 1/ (j + 1) j + 1 for j 1 = 0, j 0 j 1 j j 1 = j = 0 0 P µ P µ K µ K µ P ν P ν = 3 ( 1)δ 1 for j 1 = j = Conformal Bootstrap 3.5 (3.5.1) conformal block g,l p,l F d,,l (z, z) = 1,,l F d,,l (z, z) = vd g,l (u, v) u d g,l (v, u) u d v d (3.8.1) p,l = f,l (d = 1) l p,l = δ,l+ δ l,n l+1 (l!) /(l)!

44 44 3 Euclid OPE f,l p,l 0 OPE D = 4 d OPEϕ d ϕ d 1 + O (d 1) 1/ +.1(d 1) (d 1) 3/ + o((d 1) )(3.8.) D = Ising ϕ d σ O ε d = σ = 1/8 = ε = 1 d = 1/8 OPE 1 = 1 D = 3 Ising z = 1/ + X + iy X Y N Λ[F ] = m,n=even m+n N λ m,n m X n Y F X=Y =0

45 3.8. Conformal Bootstrap 45 X = Y = 0 (z = z = 1/) (3.8.1) p,l Λ [F d,,l ] = 0 (3.8.3),l l Λ[F d,,l ] 0 p,l 0 OPE ϕ d ϕ d 1 + f O + l>0 l=even O,l D +l O f l > 0 d f f (l = 0) D + l (l > 0) Λ[F d,,l ] 0 λ m,n p,l 0,l p,l Λ [F d,,l ] 0 (3.8.3) d f d f d f f c (d) D/ 1 f c (d) l l (linear programing method) λ m,n (3.8.) OPE O

46 46 3 Euclid f ( f c ) = f c Ising σ = 0.518(3) ε = 1.413(1) OPE ( ) 3.9 Wilson-Fisher 3 D = 4 ϵ 4 S = [ ] 1 d D x ( ϕ) + λϕ 4 β λ = ϵλ + 9λ π ϵ 0 λ = ϵπ /9 ϕ : ϕ : γ = 3λ /16π 4 δ = 3λ/π ϕ = D + 3λ (1 16π = ϵ ) + ϵ ϕ = D + 3λ π = ( ϵ) + ϵ 3 Ising OPEσ σ ε ϕ ϕ ϕ σ = ϕ ε = ϕ Press. 3 J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, Oxford Univ.

47 Ising ϵ 1 σ = 0.51 ε = o(ϵ 5 ) σ = ε = 1.410

48

49 49 4 R S 3 R S 3 R S 3 Euclid Minkowski 4.1 R S 3 R 4 R S 3 R 4 x µ r x µ x µ = r S 3 X µ X µ = 1 X µ = x µ /r R 4 ds R = dx 4 µ dx µ ds R = 4 dr + r dx µ dx µ = e ( ) τ dτ + dx µ dx µ = e τ ds R S 3 τ = log r R 4 R S 3 ds R S 3 R 4 R S 3 x µ (r, X µ ) O(x) = O(r, X) (r, X µ ) (τ, X µ ) O(x) = e τ O(τ, X) i [P µ, O(τ, X)] = e τ i [P µ, O(x)] = e τ µ O(x)

50 50 4 R S 3 ( τ = e τ x µ τ + X ) ν e τ O(τ, X) x µ X ν = e τ {X µ τ + (δ µν X µ X ν ) / X ν X µ } O(τ, X) i [K µ, O(τ, X)] = e τ ( x µ x µ x ν ν x µ ) O(x) (4.1.1) = e τ { X µ τ + (δ µν X µ X ν ) / X ν X µ } O(τ, X) Dilatation Lorentz (4.1.) i [D, O(τ, X)] = τ O(τ, X), ( ) i [M µν, O(τ, X)] = X µ X ν O(τ, X) (4.1.3) X ν X µ R S 3 Dilatation r = e τ τ = 0 O(0, X) O (0, X) = O(0, X) Hermite Minkowski τ O(τ, X) = e iτd O(0, X)e iτd D = D Hermite O (τ, X) = e iτd O(0, X)e iτd = O( τ, X) S 3 Euler ˆx j = (α, β, γ) [0, π], [0, π], [0, 4π] S 3 dx µ dx µ = ˆγ ij dˆx i dˆx j = 1 4 X µ Euler ( dα + dβ + dγ + cos βdαdγ ) X 0 = cos β cos 1 (α + γ), X 1 = sin β sin 1 (α γ), X = sin β cos 1 (α γ), X 3 = cos β sin 1 (α + γ)

51 4.1. R S 3 51 S 3 ( ) ˆγ ij X µ ˆγ ij = X µ ˆx i X ν ˆx j δ µν (4.1.4) R S 3 S 3 Y JM 3 = ˆ j ˆ j S 3 Laplace 3 Y JM = J(J + )Y JM S 3 SO(4) = SU() SU() (J, J) M = (m, m ) m, m = J, J 1, J Wigner D Y JM = J + 1 V 3 D J mm dω 3 Y J 1 M 1 Y J M = δ J1 J δ M1 M dω 3 = ˆγd 3ˆx = sin βdαdβdγ/8 S 3 V 3 = dω 3 = π Y JM ϵ M = ( 1) m m Y JM = ϵ M Y J M M δ MN = δ mm δ nn J = 1/ Wigner D J = 1/ X µ D 1 mm = X0 + ix 3 X + ix 1 X + ix 1 X 0 ix 3 = (T µ ) M X µ T µ (T µ) M = ϵ M (T µ ) M (T µ) M (T µ ) N = δ MN, (Tµ) M (T ν ) M = δ µν M

52 5 4 R S 3 1 J = 1/ V3 Y 1 M = (T µ) M X µ : V 3 Y 1 4 MY 1 M = 1, V 3 ˆ i Y M 4 ˆ 1 M j Y 1 M = ˆγ ij, M V 3 4 ˆ i Y ˆ 1 M j Y 1 N = δ MN V 3 4 Y 1 MY 1 N. (4.1.5) M Y 1/M ˆ j Y 1/M = 0 X µ X µ = 1 (4.1.4) ˆγ ij X µ ˆx i X ν ˆx j = δ µν X µ X ν (4.1.6) X µ dx µ = 0 T µ T ν (4.1.5) (4.1.6) ˆγ ij X µ ˆx j = (δ µν X µ X ν ) ˆxi X ν (4.1.7) V3 ˆγij ˆx j Y 1 M = (T µ) M (δ µν X µ X ν ) ˆxi X ν (T µ ) M H = id, R MN = i(t µ) M (T ν ) N M µν, Q M = i(t µ) M K µ, Q M = i(t µ ) M P µ 1 T µ I Pauli σ i (T 0 ) M = 1 (I) M (T j ) M = i (σ j ) M Tµ Hermite M = (m, m )

53 4.1. R S 3 53 H Hermite Q M Q M Hermite S 3 R MN = R NM R MN = ϵ M ϵ N R N M [ QM, Q ] N = δ MN H + R MN, [H, Q M ] = Q M, [H, R MN ] = 0, [Q M, Q N ] = 0, [Q M, R NL ] = δ ML Q N ϵ N ϵ L δ M N Q L, [R MN, R LK ] = δ MK R LN ϵ M ϵ N δ NK R L M δ NL R MK + ϵ M ϵ N δ ML R NK (4.1.8) R MN Hamilton H Q M 1( 1) SU() SU() 4 M = {( 1, 1), ( 1, 1), ( 1, 1), ( 1, 1)} {1,, 3, 4} A + = R 31 A = R 31 A 3 = 1(R 11+R ) B + = R 1 B = R 1 B 3 = 1(R 11 R ) R MN SU() SU() [A +, A ] = A 3, [A 3, A ± ] = ±A ±, [B +, B ] = B 3, [B 3, B ± ] = ±B ± A ±,3 B ±,3 Dilatation Lorentz (4.1.3) H R MN i [H, O(τ, ˆx)] = i τ O(τ, ˆx), i [R MN, O(τ, ˆx)] = ρ µ MN ˆ µ O(τ, ˆx) ˆ µ = ( τ, ˆ j ) ĝ µν = (1, ˆγ ij ) R S 3 Killing υ µ = (i, 0, 0, 0) ρ µ MN = (0, ρ j MN) ρ j MN = i V 3 4 ( Y 1 M ˆ j Y 1 N Y 1 N ˆ j Y 1 M ) (4.1.9)

54 54 4 R S 3 ρ j MN S3 Killing ˆ i ρ j MN + ˆ i ρ j MN = 0 Killing M, N ρ j MN = ρ j NM ρj MN = ϵ M ϵ N ρ j N M Q M Hermite Q M K µ P µ (4.1.) (4.1.1) i [Q M, O(τ, ˆx)] = ρ µ M ˆ µ O(τ, ˆx) + 4 ˆ µ ρ µ MO(τ, ˆx), i [ Q M, O(τ, ˆx) ] = ρ µ M ˆ µ O(τ, ˆx) + 4 ˆ µ ρ µ M O(τ, ˆx) ρ µ M ρ µ M = ( ( ) ρ 0 M, ρ j ) V3 M = i eτ Y V3 1 M, i eτ ˆ j Y 1 M EuclidR S 3 Killing ˆ µ ρ ν M + ˆ ν ρ µ M = ĝ µν ˆ λ ρ λ M/ Killing ρ µ M Killing ρ0 M(τ, ˆx) = ρ 0 M( τ, ˆx) ρ j M(τ, ˆx) = ρ j M( τ, ˆx) Dilatation H S 3 R MN Q M Q M Killing υ µ ρ µ MN ρµ M ρµ M R 4 dx µ dx µ dr + ˆγ ij d x i d x j O µ (x)dx µ = O 0 (r, x)dr+ O j (r, x)d x j d x j O µ (x)dx µ = rdˆx j τ = log r = e τ {O 0 (r, x)dτ + O j (r, x)dˆx j } (r, x j ) ds R S 3 (τ, ˆx j ) O µ (r, x) = e τ O µ (τ, ˆx) { O µ (x) = e τ e τ O 0 (τ, ˆx) τ } + O j (τ, ˆx) ˆxj x µ x µ { = e τ X µ O 0 (τ, ˆx) + ˆγ jk X } µ ˆx O j(τ, ˆx) k (4.1.10)

55 4.1. R S 3 55 dr = X µ dx µ (4.1.7) τ/ x µ = e τ X µ ˆx j = X ν ˆx j = e τ (δ µν X µ X ν ) ˆxj = ˆγ jk X µ x µ x µ X ν X ν ˆx k Hermite (3..1) O µ(τ, ˆx) = ( O 0 ( τ, ˆx), O j ( τ, ˆx)) EuclidR S 3 O λ1 λ l (τ, ˆx) 15 Killing {υ µ, ρ µ MN, ρ µ M, ρ µ M} ρ µ {H, R MN, Q M, Q M} Q ρ i [Q ρ, O λ1 λ l ] = (ρ λ ˆ λ + 4 ˆ ) λ ρ λ O λ1 λ l + 1 l ( ˆ λi ρ λ ˆ ) λ ρ λi Oλ1 λ i 1λλ i+1 λ l (4.1.11) i=1 h MN Ê MÊν µ N = ĝ µν, M,N ( Ê µ M = (T µ ) M X µ, γ jk X ) µ = ˆx k Ê µ MʵN = h MN ( ) V3 Y V3 1 M, ˆ j Y 1 M h MN = ϵ M δ MN Ê µ M = ϵ M Ê µ M = N h MN Ê λ N M ʵ M Êν N = µν ĝ ʵ M ʵN = δ MN O M1 M l = Êλ 1 M 1 Êλ l M l O λ1 λ l Hermite (3..1) O M 1 M l (τ, ˆx) = I M1 N 1 I Ml N l ϵ N1 ϵ Nl O N1 N l ( τ, ˆx) N 1, N l (4.1.10) O M (τ, ˆx) = ʵ M O µ(τ, ˆx) = e τ (T µ ) M O µ (x) O µ (x) O M (τ, ˆx)

56 56 4 R S 3 I MN = (T µ) M (T ν ) N (δ µν X µ X ν ) = δ MN V 3 4 Y 1 MY 1 N N I MN I NL = δ ML 3 O M1 M l (τ, ˆx) 4 i [H, O M1 M l ] = i τ O M1 M l, i [R MN, O M1 M l ] = (ρ µ MN µ + iσ MN ) O M1 M ( l i [Q M, O M1 M l ] = ρ µ M µ + 4 ˆ µ ρ µ M + 1 ) ˆ µ ρ µ NΣ MN N i [ Q ] ( M, O M1 M l = ρ µ M µ + 4 ˆ ) µ ρ µ M O M1 M l O M1 M l µ = ( τ, / ˆx j ) τ Euler l Σ MN O M1 M l = (Σ MN ) Ni M i O M1 M i 1 N i M i+1 M l i=1 N i (Σ MN ) KL = δ ML δ NK ϵ K ϵ L δ M K δ N L Σ MN R MN R MN M,N h MN A M B N (= M,N h MN A MB N) M,N h MN A MB N h MN 3 I MN = I NM N I MN j I NL = iρ jmn L,K I MKI LN ρ jlk = ρ jmn 4 R MN Êλ M ˆ 0 O λ = τ O M Êλ M ˆ j O λ = j O M + i N ρ jnm O N iρ j MN ρ jkl + Êj ˆ L j ρ k MN Ê kk = i(σ MN ) KL iρ jnm (4.1.1) Q M Q M ÊN λ ( ˆ λ ρ σ M ˆ σ ρ λm )Ê σl = iρj M ρ jln Êλ N ( ˆ λ ρ σ M ˆ σ ρ λm )Ê σl = i ρj M ρ jln iρ j M ρ jln = δ MN ρ 0 L ϵ Lδ M L ϵ N ρ 0 N i ρj M ρ jln = δ ML ρ 0 N ϵ N δ M N ϵ L ρ 0 L ρ 0 M = ˆ µ ρ µ M /4 ρ0 M = ˆ µ ρ µ M /4

57 4.. Minkowski R S 3 57 R S 3 ˆω µmn = Êλ M ˆ µ Ê λn = (0, iρ jnm ) (4.1.1) ˆ µ O M = µ O M + N ˆω µmn O N Q M Q M i [Q M, O M1 M l ] = (ρ µm ˆ µ + 4 ˆ µ ρ µm ˆ µ ρ µnσ ) MN O M1 M l i [ Q ] M, O M1 M l = ( ρ µm ˆ µ + 4 ˆ µ ρ µm ˆ µ ρ µnσ ) MN O M1 M l (3..) {µ 1 µ l }; = lim τ e τ O µ1 µ l (τ, ˆx) 0 (4.1.13) {M 1 M l } H, {r} =, {r}, R MN, {r} = {r } (Σ MN ) {r },{r}, {r }, Q M, {r} = 0 (4.1.14) {r} SU() SU() Σ MN, {r} Q M 4. Minkowski R S 3 MinkowskiR S 3 M 4 Euclid Wick

58 58 4 R S 3 MinkowskiR S 3 Killing ˆ µ ζ ν + ˆ ν ζ µ ĝ µν ˆ λ ζ λ / = 0 15 Killing Killing 3 η ζ 0 + ψ = 0, η ζ i + ˆ i ζ 0 = 0, ˆ i ζ j + ˆ j ζ i 3 ˆγ ijψ = 0 (4..1) ψ = ˆ i ζ i ψ ( 3 +3)ψ = 0 ( η + 1)ψ = 0 (4..1) ˆ j ˆ i Killing ψ = 0 ψ e ±iη Y 1 M ψ = 0 η ζ 0 = 3 ζ 0 = 0 S 3 Killing ˆ i ζ j + ˆ j ζ i = 0 η µ = (1, 0, 0, 0) ζ 0 = 0 η ζ i = 0 S 3 Killing ζ µ MN = ρ µ MN = (0, ρ j MN) S 3 Killing ρ j MN (4.1.9) ψ 0 Killing ζ µ M = ( ( ) ζm, 0 ζ j ) V3 M = eiη Y V3 1 M, i eiη ˆ j Y 1 M ζ µ M Euclid R S 3 Killing ρ µ τ = iη Wick Dilatation i[h, O λ1 λ l ] = η O λ1 λ l H MinkowskiR S 3 Hamilton Killing ζ µ Q ζ = dω 3 ζ µ T µ0 (4..) S 3

59 4.3. R S 3 59 (4..1) ˆ µ T µ0 = η T 00 + ˆ i T i0 = 0 η Q ζ = dω 3 ψt λ λ/3 = 0 15 Killing ζ µ = {η µ, ζ µ MN, ζ µ M, ζ µ M } Q ζ = {H, R MN, Q M.Q M} Hamilton S 3 H = dω 3 T 00, S 3 R MN = dω 3 ζmnt j j0 S 3 Killing Q M = V 3 P (+) dω 3 Y S 3 1 MT 00 (4..3) P (+) = e iη (1 + i η )/ S 3 e ±iη P (+) e iη Q M Hermite Q M Q ζ = {H, R MN, Q M.Q M} (4.1.8) O λ1 λ l (η, ˆx) Euclid (4.1.11) Q ρ ρ µ Q ζ ζ µ Hermite O λ 1 λ l (η, ˆx) = O λ1 λ l (η, ˆx) {µ 1 µ l }; = lim η i e i η O µ1 µ l (η, ˆx) 0 (4..4) (4.1.14) 4.3 R S 3 MinkowskiR S 3

60 60 4 R S 3 R S 3 I = 1 dη dω 3 S 3 X ( η ) X S 3 1 X e iωη Y JM ω (J + 1) = 0 X = J 0 M 1 { φjm e i(j+1)η Y JM + φ } JMe i(j+1)η YJM (J + 1) P X = η X X [X(η, x), P X (η, x )] = iδ 3 (x x ) S 3 δ 3 (x x ) = YJM(x)Y JM (x ) J 0 M = 8δ(α α )δ(cos β cos β )δ(γ γ ) [φ J1 M 1, φ J M ] = δ J1 J δ M1 M Hamilton { 1 H = dω 3 : S 3 P X 1 } X ( 3 1) X : = (J + 1)φ JMφ JM (4.3.1) J 0 M T µν = 3 ˆ µ X ˆ ν X 1 3 X ˆ µ ˆ ν X 1 { ˆ λ X ˆ λ X + 1 6ĝµν 6 ˆRX } ˆR µν X

61 4.3. R S 3 61 T λ λ = 1 3 X( ˆ ˆR)X = 0 S 3 Hamilton (4.3.1) (4..3) Q M = P (+) 1 J 1,M 1 J,M 4 V 3 (J 1 + 1)(J + 1) {[ (J 1 + 1)(J + 1) + (J + 1) 1 ( φ J1 M 1 φ J M e i(j 1+J +)η dω 3 Y S 3 1 MY J 1 M 1 Y J M ] +ϵ M1 φ J 1 M 1 ϵ M φ J M e ) i(j 1+J +)η [ + (J 1 + 1)(J + 1) + (J + 1) 1 ] ( φ J1 M 1 ϵ M φ J M e i(j 1 J )η +ϵ M1 φ J 1 M 1 φ J M e )} i(j 1 J )η = C 1 M JM 1 (J + 1)(J + )ϵ,j+ 1 J 0 M 1,M M M1 φ J M 1 φ J+ 1 M C S 3 SU() SU()Clebsch-Gordan C JM J 1 M 1,J M = = V 3 dω 3 YJMY J1 M 1 Y J M S 3 (J1 + 1)(J + 1) CJ Jm J m 1,J m CJ Jm 1 m 1,J m (4.3.) C Jm J 1 m 1,J m Clebsch-Gordan J + J 1 + J J 1 J J J 1 + J M = M 1 + M Q M J = 1/ C C C JM J 1 M 1,J M C JM 00,JN = δ MN = C JM J M,J 1 M 1 = C J M J 1 M 1,J M = ϵ M C J 1M 1 JM,J M

62 6 4 R S 3 4 M {1,, 3, 4} 5 R 11 = (m + m )φ JMφ JM, R = (m m )φ JMφ JM, J>0 M J>0 M R 1 = (J + 1 m )(J + m )φ JMφ JM, J>0 M R 31 = (J + 1 m)(j + m)φ JMφ JM J>0 M M = (m, m 1) M = (m 1, m ) 1 i[q ζ, X] = ζ µ ˆ µ X ˆ µ ζ µ X Killing η µ Hamilton i[h, X] = η X ζ µ M (E.3.1) i[q M, X] (4.1.14) Q M 5 SU() SU()Clebsch-Gordan G JM J 1 (M 1 y 1 );J M (E..3) S 3 Killing ζ j MN = i( V 3 /) V,y G1/M 1/(V y);1/n Y j 1/(V y) J = 1/ [ E ] R MN = 1 ϵ V G 1 M 1 J 0 S 1,S V,y ( V y); 1 N GJS 1 1 (V y);js φ JS 1 φ JS G 1/M J(V y);jn = J(J + )C 1/m J+yv,Jn C1/m J yv,jn G JM 1/(V y);jn = J(J + )C1/+yv,Jn Jm CJm 1/ yv,jn G J = 1/ J 1 = J J 1 = 1/ J = J

63 4.3. R S 3 63 φ JM Q M [Q M, φ JM 1 ] = J(J + 1) M ϵ M C 1 M JM 1,J 1 M φ J 1 M Q M 1 φ 00 Z X X φ 00 L + J Φ [L] JN = L K=0 M 1,M f(l, K)C JN L KM1,KM φ L KM 1 φ KM Q M [Q M, Φ [L] JN ] = S L φ L K 1 K=0 M 1,M M φ 1 KM { (L K)(L K + 1)f(L, K)ϵ S C 1 M L K 1 M 1,L K S CJN L KS,KM ( + (K + 1)(K + )f L, K + 1 ) } ϵ S C 1 M KM,K+ 1 SCJN K+ 1 S,L K 1 M 1 (crossing relation) S 3 S 3 dω 3 Y J 1 M 1 Y J M Y J 3 M 3 Y J4 M 4 Y J1 M 1 Y J M = 1 V3 J 0 M C JM J 1 M 1,J M Y JM ϵ M C J 1M 1 J M,J MC J 3M 3 JM,J 4 M 4 = J 0 J 0 M M ϵ M C J 1M 1 J 4 M 4,J MC J 3M 3 JM,J M (4.3.3)

64 64 4 R S 3 [Q M, Φ [L] JN ] J = L L f(l, K) f ( L, K + 1 ) = (L K)(L K + 1) f(l, K) (K + 1)(K + ) L f f(l, K) = ( 1) K L (L K + 1)(K + 1) K (4.3.4) Q M Φ LN = Φ [L] LN Φ 00 = (φ 00) L = 0 Φ LN SU() SU()Clebsch-Gordan Q M Clebsch- Gordan Q M Φ LN(L Z 0 ) n φ n 00 0 (4..4) X n 4 Φ 1M 0 T µν 6 Φ LM 0 l = L L + (.3.) 7 6 Φ 1M 0 lim η i e i4η M 1,M C 1M 1/M 1,1/M Ê µ M 1 ÊM ν T µν 0 C 00 1/M 1,1/M = ϵ M δ M1 M = h M1M M 1,M h M1 M Ê µ M 1 Ê ν M = η µν 7 l = l +

65 4.3. R S 3 65 T µ1 µ l µ 1 T µ1 µ l = 0 Q κ = dω 3 κ µ1 µ l 1 T µ1 µ l 1 0 κ µ 1 µ l 1 Killing

66

67 Wess-Zumino Weyl δg µν = ωg µν Γ δ ω Γ = d 4 x gω { } acµνλσ + bg 4 + cr + d R + efµν C µνλσ Weyl G 4 Euler Cµνλσ = Rµνλσ Rµν R, G 4 = Rµνλσ 4Rµν + R (5.1.1) Fµν Weyl (counterterm) (bare action) Wess-Zumino (Wess- Zumino integrability condition)[δ ω1, δ ω ] = 0

68 68 5 (5.1.1) [δ ω1, δ ω ] Γ = 4c d 4 x gr ( ) ω ˆ 1 ω ω ˆ ω 1 c = 0 R 5. Riegert-Wess-Zumino g µν = e ϕ ḡ µν ϕ Euler Euler E 4 = G 4 3 R (5..1) Euler E 4 ge 4 = ḡ(4 4 ϕ+ Ē 4 ) S RWZ (ϕ, ḡ) = b ϕ 1 d 4 x dϕ ge (4π) 4 0 = b 1 d 4 x ḡ ( ϕ (4π) 4 ϕ + Ē4ϕ ) g 4 (self-adjoint) d 4 x ga 4 B = d 4 x g( 4 A)B 4 4 = 4 + R µν µ ν 3 R µ R µ (5..)

69 5.. Riegert-Wess-Zumino 69 Riegert-Wess-Zumino ϕ Riegert b 1 N X N W Weyl N A b 1 = ( N X + 11 N W + 6N A ) (5..3) f I Riegert ϕ I(f, g) = I(f, ḡ)( f ϕ ) Riegert ϕ g µν (= e ϕ ḡ µν ) ḡ µν Jacobian [df] g = [df]ḡe is(ϕ,ḡ) e iγ(g) = [df] g e ii(f,g) = e is(ϕ,ḡ) [df]ḡe ii(f,ḡ) = e is(ϕ,ḡ) e iγ(ḡ) g µν ϕ ϕ ω, ḡ µν e ω ḡ µν e is(ϕ ω,eωḡ) e iγ(eωḡ) = e is(ϕ ω,eωḡ) e is(ω,ḡ) e iγ(ḡ) e iγ(g) S S(ϕ ω, e ω ĝ) + S(ω, ĝ) = S(ϕ, ĝ) Wess-Zumino S RWZ (5..) [0, ϕ] [0, ω] [ω, ϕ]

70 70 5 (5..4) Riegert-Wess-Zumino Riegert-Wess-Zumino S RWZ Riegert ϕ (5..4) Γ(ḡ) Γ Riegert (g) = S RWZ (ϕ, ḡ) + Γ Riegert (ḡ) Γ Riegert (g) = b 1 (4π) d 4 x ge E 4 Riegert-Wess-Zumino S RWZ Wess-Zumino 4 Einstein 5.3 Weyl QED U(1) Weyl U(1) F µν Wess-Zumino S QED(ϕ, ḡ) = aϕ gfµν/4 ϕ

71 QED Riegert ϕ ϕ S QED ϕ Γ QED (ḡ) Γ QED (ḡ) = 1 { ( )} 1 e r k gf 4 1π log µ µν µ k = ḡ µν k µ k ν ḡ µν ḡ µν Minkowski QED 1 β e = e 3 r/1π e r Wess-Zumino (5..4) k e ω k Wess-Zumino a = e r/6π 1 { ( )} 1 + e r 4 6π ϕ e r k gf 1π log µ µν g µν (= e ϕ ḡ µν ) p = k e ϕ (5.3.1) Γ QED (g) = 1 { ( )} 1 e r p gf 4 1π log µ µν µ p k (comoving momentum) Weyl t Weyl (1/t ) d 4 x gc µνλσ ḡ µν Weyl { ( ) } 1 k gc Γ Weyl (g) = + β 0 log β 0 ϕ µνλσ (5.3.) t r µ

72 7 5 ḡ µν h µν ḡ µν Minkowski ḡ µν = η µν + th µν I int = d 4 xth µν T µν / T µν h µν β 0 β 0 = 1 40(4π) (N X + 3N W + 1N A ) t β t = β 0 t 3 r (5..4) Wess- Zumino p t r(p) = 1 β 0 log(p /Λ QG) (5.3.3) Γ Weyl (g) = 1 gc t µνλσ (5.3.4) r(p) Λ QG = µ exp( 1/β 0 t r) ( Minkowski ) T µν I int = t d 4 x ĝh µν T µν / β Adler-Bardeen 1

73 t (Riegert ) t t = 0

74

75 75 6 : / 4 Einstein I e ii 1 Einstein

76 76 6 I = d 4 x { g 1 t C µνλσ bg h ( )} 1 16πG R Λ + L M (6.1.1) (5.1.1) Weyl Euler t Euler b Euler G Λ Newton h Planck c 1 Wess-Zumino R 4 4 h Einstein 4 4 I Planck 4 Weyl t C µνλσ = 0 (conformal flat) g µν = e ϕ ḡ µν, ḡ µν = (ĝe th ) µν = ĝ µν + th µν + t h µλh λ ν + (6.1.) h µν h µ µ = ĝ µν h µν = 0 ĝ µν Riegert ϕ Wess-Zumino

77 g µν ĝ µν e iγ = = [dgdf] g exp{ii(f, g)} [dϕdhdf]ĝ exp {is(ϕ, ḡ) + ii(f, g)} (6.1.3) S Wess-Zumino f Wess-Zumino t ϕ Riegert-Wess- Zumino (5..) (6.1.3) t β t = β 0 t 3 r h µν β 0 = 1 { 197 (4π) } 40 (N X + 3N W + 1N A ) ϕ h µν 1/15 199/30 Riegert-Wess-Zumino Weyl C µνλσ = 0 Riegert-Wess-Zumino b 1 t ( ) I Weyl R R R

78 78 6 b 1 = ( N X + 11 ) 360 N W + 6N A (6.1.4) 7/90 Riegert ϕ 87/0 Riegert-Wess-Zumino 3 ĝ µν 4 Riemann Weyl Schwarzschild Riemann t ĝ µν 4 I 4DQG = S RWZ (ϕ, ĝ) + I(f, g) t 0 (6.1.5) Weyl t h µν ḡ µν ĝ µν 3 Euclid e I I > 0 Weyl Euclid I = (1/t ) gc µνλσ 4

79 Planck Riegert ϕ ϕ ω ĝ µν e ω ĝ µν 6. (contravariant vector)ξ µ δ ξ g µν = g µλ ν ξ λ + g νλ µ ξ λ g µν (6.1.) e ϕ ḡ µν δ ξ ϕ = ξ λ λ ϕ ˆ λ ξ λ, δ ξ ḡ µν = ḡ µλ ν ξ λ + ḡ νλ µ ξ λ 1 ḡµν ˆ λ ξ λ λ ξ λ = ˆ λ ξ λ δ ξ h µν = 1 ( ˆ µ ξ ν + t ν ξ µ 1 ˆ ) λ ξ λ + ξ λ ˆ λ h µν ĝµν + 1 h ( µλ ˆ ν ξ λ ˆ ) λ 1 ξ ν + h ( νλ ˆ µ ξ λ ˆ ) λ ξ µ + (6..1) (covariant vector) ξ µ = ĝ µν ξ ν t Weyl κ = ξ/t t 0 δ κ h µν = ˆ µ κ ν + ˆ ν κ µ 1 η µν ˆ λ κ λ (6..)

80 80 6 δ κ ϕ = 0 (6..) Killing ˆ µ ζ ν + ˆ ν ζ µ 1 η µν ˆ λ ζ λ = 0 (6..3) ξ µ = ζ µ (6..1) δ ζ ϕ = ζ λ λ ϕ ˆ λ ζ λ, δ ζ h µν = ζ λ ˆ λ h µν + 1 h µλ ( ˆ ν ζ λ ˆ ) λ 1 ζ ν + h ( νλ ˆ µ ζ λ ˆ ) λ ζ µ (6..4) ĝ µν Riegert (.3.) 6.3 ĝ µν t Weyl ĝ µν Minkowski η µν = ( 1, 1, 1, 1)

81 Riegert (6..) κ µ (6..4) ζ µ Riegert Riegert-Wess-Zumino (5..) Minkowski (b 1 /8π ) d 4 xϕ 4 ϕ Riegert ϕ Dirac Riegert { S RWZ = d 4 x b 1 8π χ = η ϕ (6.3.1) [ ( η χ) + χ χ + ( ϕ ) ] } + v ( η ϕ χ) Lagrange (Lagrange multiplier) χ ϕ v P χ P ϕ P v Poisson {χ(η, x), P χ (η, x )} P = {ϕ(η, x), P ϕ (η, x )} P = {v(η, x), P v (η, x )} P = δ 3 (x x ) χ P χ = (b 1 /4π ) η χ ϕ v φ 1 = P ϕ v 0, φ = P v 0 5 Lagrange (v η ϕ ϕ η v)/ φ 1 = P ϕ v/ φ = P v + ϕ/

82 8 6 ϕ χ v P ϕ P χ P v Poisson C ab = {φ a, φ b } P = det C ab 0 Dirac Dirac {F, G} D = {F, G} P {F, φ a } P C 1 ab {φ b, G} P Dirac Poisson F {F, φ a } D = 0 Dirac Poisson F Hamilton φ a = 0 0 Dirac Dirac {χ(η, x), P χ (η, x )} D = {ϕ(η, x), P ϕ (η, x )} D = δ 3 (x x ) Hamilton { H = d 3 x π b 1 P χ + P ϕ χ + b 1 8π [ χ χ + ( ϕ ) ]} (6.3.) η ϕ = {ϕ, H} D = χ, η χ = {χ, H} D = 4π b 1 P χ, η P χ = {P χ, H} D = P ϕ b 1 π χ, η P ϕ = {P ϕ, H} D = b 1 4π 4 ϕ (6.3.3)

83 Dirac [ϕ(η, x), P ϕ (η, x )] = [χ(η, x), P χ (η, x )] = iδ 3 (x x ) (6.3.4) (6.3.3) P χ = b 1 4π ηχ, P ϕ = η P χ b 1 π χ (6.3.5) Riegert 4 ϕ = 0 η P ϕ = (b 1 /4π ) 4 ϕ k µ x µ = ωη + k x e ik µx µ ηe ik µx µ ω = k Riegert ϕ = ϕ < + ϕ > ϕ < (x) = π b1 d 3 k 1 µxµ {a(k) + iωηb(k)} (π) 3/ eik ω3/ ϕ > = ϕ < (6.3.1) (6.3.5) χ < (x) = i π d 3 k 1 µxµ {a(k) + ( 1 + iωη)b(k)} b1 (π) 3/ eik, ω1/ b1 d 3 k P χ< (x) = 4π (π) 3/ ω1/ ik µxµ {a(k) + ( + iωη)b(k)} e, b1 d 3 k P ϕ< (x) = i 4π (π) 3/ ω3/ ik µxµ {a(k) + (1 + iωη)b(k)} e (6.3.4) [ a(k), a (k ) ] = δ 3 (k k ), [ a(k), b (k ) ] = [ b(k), a (k ) ] = δ 3 (k k ), [ b(k), b (k ) ] = 0

84 84 6 Hamilton H = d 3 kω { a (k)b(k) + b (k)a(k) b (k)b(k) } Hamilton (6.3.) 6.3. δ κ h µν (6..) Coulomb i h i µ = 0 h 00 (= h i i) h 00 = 0, h 0j = h j, h ij = h ij h j h ij i h i = 0 i h ij = h i i = 0 κ µ ζ µ (6..4) Riegert Dirac u ij = η h ij u ij Weyl I = d 4 x { 1 ( hij 4η η + 4) h ij + h j ( η + ) } h j { = d 4 x 1 ηu ij η u ij u ij u ij 1 h ij h ij + λ ij ( η h ij u ij ) } + η h j η h j + h j h j λ ij Lagrange

85 λ ij u ij h ij h j P ij u = η u ij, P ij h = ηp ij u u ij, P j = η h j [ h ij (η, x), P kl h (η, y) ] = [ u ij (η, x), P kl u (η, y) ] = iδ ij,kl 3 (x y), [ h i (η, x), P j (η, y) ] = iδ ij 3 (x y), (6.3.6) δ ij 3 (x) = ij δ 3 (x) δ ij,kl 3 (x) = ij,kl δ 3 (x) ij = δ ij i j, ij,kl = 1 ( ik jl + il jk ij kl ) i ij = 0 j j = i ij,kl = 0 i i,kl = 0 ik k j = ij ij,kl kl, mn = ij,mn Hamilton H = { d 3 x : 1 Pij u P u ij + P ij h u ij + u ij u ij + 1 h ij h ij Pj P j h j h j }: = 1/ : : 4 h ij = 0 η P ij h = 4 h ij Riegert h ij = h ij < + h ij > h ij <(x) = d 3 k 1 { c ij (k) + iωηd ij (k) } ik µxµ e (π) 3/ ω 3/

86 86 6 h ij > = h ij < h j = 0 η P j = 4 h j h j = h j < + h j > h j > = h j < h j <(x) = d 3 k 1 (π) 3/ ω e ik µxµ j(k)e 3/ u ij <(x) = i P ij u<(x) = P ij h< (x) = i P j <(x) = i d 3 k 1 { c ij (k) + ( 1 + iωη)d ij (k) } e ikµxµ, (π) 3/ ω 1/ d 3 k ω 1/ (π) 3/ { c ij (k) + ( + iωη)d ij (k) } e ikµxµ, d 3 k ω 3/ { c ij (k) + (1 + iωη)d ij (k) } e ik µx µ, (π) 3/ d 3 k (π) 3/ ω3/ e j ik µxµ (k)e (6.3.6) [ c ij (k), c kl (k ) ] = δ ij,kl 3 (k k ), [ c ij (k), d kl (k ) ] = [ d ij (k), c kl (k ) ] = δ ij,kl 3 (k k ), [ d ij (k), d kl (k ) ] = 0, [ e i (k), e j (k ) ] = δ ij 3 (k k ) δ ij 3 (k) δ ij,kl 3 (k) δ 3 (k) ij (k) = δ ij k ik j k, ij,kl (k) = 1 { ik (k) jl (k) + il (k) jk (k) ij (k) kl (k) } ε i (a) (a = 1, ) ε ij (a) (a = 1, ) k iε i (a) = 0

87 k i ε ij (a) (k) = ε (a)i i (k) = 0 a=1 ε i (a) (k)εj (a) (k) = ij (k) ε j (a) (k)ε (b)j(k) = δ ab a=1 ε ij (a) (k)εkl (a) (k) = ij,kl (k) ε ij (a) (k)ε (b)ij(k) = δ ab c ij (k) = e j (k) = a=1 a=1 ε ij (a) (k)c (a)(k), d ij (k) = ε j (a) (k)e (a)(k) a=1 ε ij (a) (k)d (a)(k), [ c(a) (k), c (b) (k ) ] = δ ab δ 3 (k k ), [ c(a) (k), d (b) (k ) ] = [ d (a) (k), c (b) (k ) ] = δ ab δ 3 (k k ), [ d(a) (k), d (b) (k ) ] = 0, [ e(a) (k), e (b) (k ) ] = δ ab δ 3 (k k ) Hamilton H = d 3 kω { c (a) (k)d (a)(k) + d (a) (k)c (a)(k) d (a) (k)d (a)(k) e (a) (k)e (a)(k) } a=1 6.4 δ ζ (6..4) Riegert D. I 4DQG T µν = ĝ δi 4DQG δĝ µν ˆT µν = ĝ µλ ĝ νσ ˆT λσ Minkowski

88 88 6 Riegert T µν = b { 1 4 ϕ 8π µ ν ϕ + µ ϕ ν ϕ + ν ϕ µ ϕ µ λ ϕ ν λ ϕ 4 3 µ ν λ ϕ λ ϕ + η µν ( ϕ ϕ 3 λ ϕ λ ϕ ) 3 λ σ ϕ λ σ ϕ 3 µ ν ϕ + } 3 η µν 4 ϕ Riegert-Wess-Zumino (5..) T λ λ = (b 1 /4π ) 4 ϕ = 0 µ T µν = (b 1 /4π ) 4 ϕ ν ϕ = 0 (00) T 00 = π P χ + P ϕ χ P χ ϕ k P χ k ϕ b 1 + b ( 1 8π 3 χ χ 4 3 kχ k χ + ϕ ϕ 3 k ϕ k ϕ 3 k l ϕ k ϕ) l P χ + b 1 1π 4 ϕ (0j) T 0j = 3 P χ j χ 1 3 jp χ χ + P ϕ j ϕ + b 1 8π ( 4 j χ ϕ 8 3 kχ j k ϕ χ j ϕ + χ j ϕ j k χ k ϕ 1 3 jp ϕ b 1 1π j χ (..5) Q ζ P 0 = H = d 3 xa, P j = d 3 xb j A B j A = π :P χ : + :P ϕ χ: + b ( 1 :χ χ: + : ϕ ϕ: ), b 1 8π B j = :P χ j χ: + :P ϕ j ϕ: )

89 Lorentz M 0j = d 3 x { ηb j x j A :P χ j ϕ:}, M ij = d 3 x {x i B j x j B i } Dilatation D = d 3 x { } ηa + x k B k + :P χ χ: +P ϕ K 0 = K j = (η d x{ 3 + x ) A + ηx k B k + η :P χ χ: +x k :P χ k ϕ: b ( 1 :χ : + : 4π k ϕ k ϕ: ) } + ηp ϕ + P χ, ( η d x{ 3 + x ) B j x j x k B k ηx j A x j :P χ χ: η :P χ j ϕ: b } 1 π :χ jϕ: x j P ϕ M 0j D K µ η η M 0j = η D = η K µ = 0 D K µ δ ζ ϕ(6..4) 6.5 D.1 Hermite Hermite A B (operator product) A(x)B(y) = 0 A(x)B(y) 0 + : A(x)B(y): 0 A(x)B(y) 0 = [A < (x), B > (y)]

90 90 6 A < A B > B :A(x)B(y):=:B(y)A(x): [A(x), B(y)] = 0 A(x)B(y) 0 0 B(y)A(x) 0 0 B(y)A(x) 0 = 0 A(x)B(y) 0 Riegert 0 ϕ(x)ϕ(x ) 0 = π b 1 ω>z d 3 k 1 (π) 3 ω {1 + iω (η 3 η )} e iω(η η iϵ)+ik (x x ) = 1 log {[ (η η iϵ) + (x x ) ] z e γ } 4b 1 1 iϵ 4b 1 x x log η η iϵ x x (6.5.1) η η iϵ + x x ϵ 6 Riegert z z 7 z 0 ϵ (6.5.1) [ϕ(η, x), P ϕ (η, x )] = 0 ϕ(η, x)p ϕ (η, x ) 0 0 ϕ(η, x)p ϕ (η, x ) 0 = i 1 π ϵ [(x x ) + ϵ ] 6 ϵ 7 Einstein (6.1.) Riegert

91 δ 3 (x) = d 3 k (π) 3 eik x ϵω = 1 π ϵ (x + ϵ ) (6.5.) χ P χ ϵ Wick [:AB(x):, : C k (y):] k = [A(x), C i (y)] :B(x) C k (y): + [B(x), C i (y)] :A(x) C k (y): i k( i) i k( i) + { 0 A(x)C i (y) 0 0 B(x)C j (y) 0 H.c.} : C k (y): i,j(i j) k( i,j) H.c. { } Hermite [ D.1] Riegert (..1) :ϕ n : A [A(x), :ϕ n (y):] = inδ 3 (x y) :χϕ n 1 (y): = iδ 3 (x y) η :ϕ n (y): (6.5.3) B j [B j (x), :ϕ n (y):] = iδ 3 (x y) j :ϕ n (y): +i 1 b 1 n(n 1)e j (x y) :ϕ n (x): (6.5.4)

92 9 6 e j (x) e j (x) = 1 ϵx j [1 h(x)] iϵ iϵ + x, h(x) = log π x (x + ϵ ) x iϵ x h h (x) = h(x) lim x 0 h(x) = 1 ( ) (6.5.3) (6.5.4) [:P χ j ϕ(x):, :ϕ n (y):] = 0 Lorentz i[p µ, :ϕ n (x):] = µ :ϕ n (x):, i[m µν, :ϕ n (x):] = (x µ ν x ν µ ) :ϕ n (x): Lorentz e j d 3 x e j (x) = 0 d 3 x x i e j (x) = 1 3 δ ij dilatation 0 4πx dx 1 π ϵ[1 h(x)] (x + ϵ ) = 1 6 δ ij (6.5.5) i[d, :ϕ n (x):] = x µ µ :ϕ n (x): +n :ϕ n 1 (x): 1 4b 1 n(n 1) :ϕ n (x):, i[k µ, :ϕ n (x):] = ( ) x µ x µ x ν ν :ϕ n (x): ( x µ n :ϕ n 1 (x): 1 ) n(n 1) :ϕ n (x): 4b 1 :ϕ n 1 : P ϕ 1/b 1 D K 0 (6.5.5) K j d 3 x { x e j (x y) x j x k e k (x y) } = y j n = 1 Riegert (6..4) i[q ζ, ϕ] = δ ζ ϕ

93 V α (x) =:e αϕ(x) := n=0 α n n! :ϕn (x): (6.5.6) α Riegert :ϕ n : V α i[p µ, V α (x)] = µ V α (x), i[d, V α (x)] = (x µ µ + h α ) V α (x), i[m µν, V α (x)] = (x µ ν x ν µ ) V α (x), i[k µ, V α (x)] = ( x µ x µ x ν ν x µ h α ) Vα (x) h α = α α 4b 1 (6.5.7) 1/b 1 Lorentz R 1 β = R β = n=0 n=0 β n ( ) 4π n! :ϕn ϕ: = :e βϕ P χ + ϕ :, b 1 β n n! :ϕn λ ϕ λ ϕ: = :e βϕ ( χ + k ϕ k ϕ ) : Lorentz Dilatation i[d, R 1, β (x)] = (xµ µ + h β + ) R 1, β (x) i[k µ, R 1 β(x)] = { x µ x µ x λ λ x µ (h β + ) } R 1 β(x) + 4 : µ ϕe βϕ (x):, i[k µ, R β(x)] = { x µ x µ x λ λ x µ (h β + ) } R β(x) 4 h β β : µϕe βϕ (x):

94 94 6 h β (6.5.7) R β = R 1 β + β R β =:e ( βϕ ϕ + β ) λ ϕ λ ϕ : (6.5.8) h β h β R β i[p µ, R β (x)] = µ R β (x), i[m µν, R β (x)] = (x µ ν x ν µ ) R β (x), i[d, R β (x)] = ( x λ λ + h β + ) R β (x), i[k µ, R β (x)] = { x µ x µ x λ λ x µ (h β + ) } R β (x) h β + m R [m] γ =:e γϕ ( ϕ + γ h γ λ ϕ λ ϕ) m : h γ +m m = 0, 1 V α R β 6.6 [Q ζ, d 4 xo(x)] = 0 (6.6.1) 4 Killing ζ µ i[q ζ, V α (x)] = µ {ζ µ V α (x)}

95 6.7. BRST 95 O h α = 4 V α (6.5.6) h α = 4 Riegert ) α = b 1 (1 1 4b1 (6.6.) ( N ) b 1 α 4 V α g V α (6.1.4) b 1 > 4 α h β = R β b 1 Riegert ) β = b 1 (1 1 b1 (6.6.3) R β Ricci β β/h β 1 (6.5.8) Ricci gr h γ = 4 m Riegert γ = b 1 (1 1 (4 m)/b 1 ) R [m] γ Ricci m gr m 6.7 BRST (6..4) BRST BRST 15 ζ µ c µ

96 Grassmann c λ cµν c c λ + c λ = c µ ( ) ) ( ) ζ λ T ζ λ S + ( µ cµν ζl λ + µν cζλ D + c µ + = c λ + x µ c µλ + x λ c + x c λ + x λ x µ c µ + c µν Hermite c c µν c µ c µ b λ b µν b b λ + {c, b} = 1, {c µν, b λσ } = η µλ η νσ η µσ η νλ, {c µ, b ν +} = {c µ +, b ν } = η µν µ (..1) P µ gh = i ( bc µ + + b µ +c + b µ λ cλ + + b λ +c µ λ), M µν gh = i ( b µ +c ν b ν +c µ + b µ c ν + b ν c µ + + b µλ c ν λ b νλ c µ λ), D gh = i ( b λ c +λ b λ +c λ ), K µ gh = i ( bc µ b µ c + b µ λ cλ + b λ c µ λ gh BRST ( Q BRST = c µ P µ + 1 ) ( P µ gh + c µν M µν + 1 ) M µν gh ( +c µ + K µ + 1 ) Kgh µ ) + c (D + 1 ) Dgh = c ( D + D gh) + c µν ( M µν + M gh µν ) bn b µν N µν + ˆQ P µ M µν D K µ N = ic µ +c µ, N µν = i ˆQ = c µ P µ + c µ +K µ ( c µ + c ν + c µ c ν + ) + ic µλ c ν λ,

97 6.7. BRST 97 BRST P µ M µν D K µ Q BRST = ˆQ ND ic µ +c ν M µν = 0 BRST {Q BRST, b} = D + D gh, {Q BRST, b µν } = ( M µν + M µν gh ), {Q BRST, b µ } = K µ + K µ gh, {Q BRST, b µ +} = P µ + P µ gh [Q BRST, D+D gh ] = 0 BRST ζ µ Riegert BRST i[q BRST, ϕ(x)] = c µ µ ϕ(x) µc µ (x) V α R β O BRST i[q BRST, O(x)] = c µ µ O(x) + 4 µc µ O(x) = 4 i[q BRST, d 4 xo(x)] = d 4 x µ {c µ O(x)} = 0 BRST (6.6.1) BRST ω = 1 4! ϵ µνλσc µ c ν c λ c σ BRST i{q BRST, c µ (x)} = c ν ν c µ (x)

98 98 6 ω i[q BRST, ω(x)] = c µ µ ω(x) = ω µ c µ (x) c µ ω = 0 ω = 4 i[q BRST, ωo(x)] = 1 4 ( 4) ω µc µ O(x) = 0 BRST BRST 4 BRST 6.8 p Riegert Euclid Wick S RWZ + µv α µ V α = d 4 xv α O γ = d 4 xo γ Riegert σ ϕ ϕ + σ σ Euler d 4 x ĝĝ4/3π = σ S RWZ S RWZ + 4b 1 σ A = e ασ O γ A γ/α O γ σ O γ1 O γn = 1 α 0 da A A s O γ1 O γn e µav α = µ s Γ( s) α O γ 1 O γn (V α ) s (6.8.1)

99 s = 4b 1 α n 4 i=1 O n = A n e γnϕ A n n n Weyl d 4 xo n ω 4 n d 4 xo n n = 0 Weyl Riegert ϕ 0 ϕ 0 + (4/γ 0 ) ln ω e γ nϕ 0 O n (n > 0) d 4 xo n ω 4γ n/γ 0 d 4 xo n γ i α n = 4 4 γ n γ 0 N b 1 n n 1970 (6..)

100 100 6 n = 1970 Lee Wick 4 (6.1.1) h

101 101 7 R S 3 Minkowski M 4 R S 3 (6..4) ( ) 7.1 R S 3 R S 3 S 3 1 Euler x i = (α, β, γ) 1 ds R S 3 = ĝ µνdx µ dx ν = dη + ˆγ ij dx i dx j = dη (dα + dβ + dγ + cos βdαdγ) ˆR ijkl = (ˆγ ikˆγ jl ˆγ ilˆγ jk ), ˆRij = ˆγ ij, ˆR = 6 Ĉ µνλσ = Ĝ4 = 0 V 3 = dω 3 = dω 3 = d 3ˆx ˆγ = 1 sin βdαdβdγ 8 π 0 π 4π dα dβ dγ 1 sin β = π Euler ˆx j

102 10 7 S 3 n (symmetric transverse traceless, ST ) SU() SU() (J + ε n, J ε n ) Y i 1 i n J(Mε n ) ε n = ±n/ 3 Y i 1 i n J(Mε n) = { J(J + ) + n}y i 1 i n J(Mε n) 3 = ˆγ ij ˆ i ˆ j S 3 J( n/) M = (m, m ) m = J ε n, J ε n + 1,, J + ε n 1, J + ε n, m = J + ε n, J + ε n + 1,, J ε n 1, J ε n n > 0 (J + n + 1)(J n + 1) n = 0 (J + 1) ST Y i 1 i n J(Mε n) = ( 1)n ϵ M Y i 1 i n J( Mε n), S 3 dω 3 Y i 1 i n J 1 (M 1 ε 1 n) Y i 1 i n J (M ε n ) = δ J1 J δ M1 M δ ε 1 n ε n δ M1 M = δ m1 m δ m 1 m ϵ M = ( 1) m m ϵ M = 1 n 4 y = ε 1 = ± 1, x = ε = ±1, z = ε 3 = ± 3, w = ε 4 = ±

103 7.1. R S R S Coulomb ˆ i A i = 0 R S 3 I = { 1 dη dω ( 3 S 3 Ai η + 3 ) A i 1 } A 0 3 A 0 A i = ˆγ ij A j A 0 A 0 = 0 A i e iωη Y i J(my) ω (J + 1) = 0 A i = J 1 M,y 1 { qjm e i(j+1)η YJ(My) i + q } JMe i(j+1)η YJ(My) i (J + 1) P i A = η A i [A i (η, x), P j A(η, y)] = iδ ij 3 (x y) S 3 M,y Y i J(My) (x)y j J(My) (y) δ ij 3 (x y) = J 1 [q J1 (M 1 y 1 ), q J (M y ) ] = δ J 1 J δ M1 M δ y1 y Hamilton { 1 H = dω 3 : S 3 PiAP Ai 1 } Ai ( 3 ) A i : = (J + 1)q J(My) q J(My) (7.1.1) J 1 M,y

104 104 7 Weyl h 00 = h, h 0i = h i, h ij = h tr ij ˆγ ijh h tr ij (htri i = 0) δ κ h = 3 ηκ ˆ k κ k, δ κ h i = η κ i + ˆ i κ 0, δ κ h tr ij = ˆ i κ j + ˆ j κ i 3 ˆγ ij ˆ k κ k ˆ i h i = ˆ i h tr ij = 0 h T i h TT ij h i = h T i, h tr ij = h TT ij Riegert-Wess-Zumino Weyl R S 3 I 4DQG = { dη dω 3 b 1 S 3 (4π) ϕ ( ) 4 η 3 η η ϕ 1 ( htt ij 4 η 3 η η ) h ij TT +h T i ( 3 + ) ( η + 3 ) h i T 1 } 7 h ( ) 3 h (7.1.) h δ κ ( ˆ i h i ) = δ κ ( ˆ i h tr ij ) = 0 h = 0 3 κ 0 = 0 κ 0 (η) ( 3 + )h T i = 0 J = 1/

105 7.1. R S h T i J= 1 = 0 (7.1.3) + Killing Dirac χ = η ϕ(6.3.1) Riegert { I = dη dω 3 b } [ 1 ( η χ) + χ S 3 8π 3 χ 4χ + ( 3 ϕ) ] + v( η ϕ χ) S 3 1 Dirac [χ(η, x), P χ (η, y)] = [ϕ(η, x), P ϕ (η, y)] = iδ 3 (x y) P χ = b 1 4π ηχ, P ϕ = η P χ b 1 π 3χ + b 1 π χ Hamilton { H = dω 3 : π P χ + P ϕ χ + b } [ 1 χ 3 χ 4χ + ( b 1 8π 3 ϕ) ] : Riegert-Wess-Zumino (7.1.) Riegert ϕ e iωη Y JM {ω (J) }{ω (J + ) } = 0 Riegert ϕ = { π (ˆq + ˆpη)Y 00 b J 1 M J(J + 1) + 1 J 0 M (J + 1)(J + 1) ( ajm e ijη Y JM + a ) JMe ijη YJM ( bjm e i(j+)η Y JM + b ) } JMe i(j+)η YJM

106 106 7 Y 00 = 1/ V 3 = 1/ π [ˆq, ˆp] = i, [a J1 M 1, a J M ] = δ J1 J δ M1 M, [b J1 M 1, b J M ] = δ J1 J δ M1 M a JM b JM Hamilton H = 1 ˆp + b 1 + {Ja JMa JM (J + )b JMb JM } (7.1.4) J 0 M b 1 R S 3 h TT ij Dirac h T i h ij TT e iωη Y ij J(Mx) hi T e iωη Y i J(My) (7.1.) {ω (J) }{ω (J + ) } = 0 (J 1)(J + 3){ω (J + 1) } = 0 h ij TT = 1 4 h i T = J 1 M,x J 1 M,x J 1 M,y 1 J(J + 1) 1 (J + 1)(J + 1) { cj(mx) e ijη Y ij J(Mx) + c J(Mx) eijη Y ij } J(Mx) i (J 1)(J + 1)(J + 3) { dj(mx) e i(j+)η Y ij J(Mx) +d J(Mx) ei(j+)η Y ij J(Mx)}, { ej(my) e i(j+1)η Y i J(My) e J(My) ei(j+1)η Y i J(My) } (7.1.5) h i T Q M

107 J = 1/ ( 3 + )h i T J=1/ = 0 [c J1 (M 1 x 1 ), c J (M x ) ] = [d J 1 (M 1 x 1 ), d J (M x ) ] = δ J 1 J δ M1 M δ x1 x, [e J1 (M 1 y 1 ), e J (M y ) ] = δ J 1 J δ M1 M δ y1 y c J(Mx) d J(Mx) e J(My) Hamilton H = {Jc J(Mx) c J(Mx) (J + )d J(Mx) d J(Mx)} J 1 M,x (J + 1)e J(My) e J(My) (7.1.6) J 1 M,y 7. / Q ζ = {H, R MN, Q M, Q M} 3.4 T µν = F µλ F λ ν 1 4ĝµνF λσ F λσ F µ ν = ĝ µλ F λν A 0 = ˆ i A i = 0 Hamilton (7.1.1) Q M = J 1 D 1 M J(M 1 y 1 ),J+ 1 M 1,y 1,M,y (M y ) (J + 1)(J + ) ( ϵ M1 )q J( M 1 y 1 ) q J+ 1 (M y )

108 108 7 SU() SU()Clebsch-Gordan D D 1 M J(M 1 y 1 ),J+ 1 (M y ) = = V 3 dω 3 Y S 3 1 MY J(M i 1 y 1 )Y ij+ 1 (M y ) J(J + 3)C 1 m J+y 1 m 1, J+ 1 +y m C 1 m J y 1 m 1, J+ 1 y m D E. S 3 Riegert Riegert-Wess-Zumino Riegert T µν = b { 1 4 8π ˆ ϕ ˆ µ ˆ ν ϕ + ˆ ˆ µ ϕ ˆ ν ϕ + ˆ ˆ ν ϕ ˆ µ ϕ ˆ µ ˆ λ ϕ ˆ ν ˆ λ ϕ 4 3 ˆ µ ˆ ν ˆ λ ϕ ˆ λ ϕ + 4 ˆR µλνσ ˆ λ ϕ ˆ σ ϕ +4 ˆR µλ ˆ λ ϕ ˆ ν ϕ + 4 ˆR νλ ˆ λ ϕ ˆ µ ϕ 4 3 ˆR µν ˆ λ ϕ ˆ λ ϕ 4 3 ˆR ˆ µ ϕ ˆ ν ϕ 3 ˆ µ ˆ ν ˆ ϕ 4 ˆR µλνσ ˆ λ ˆ σ ϕ ˆR µν ˆ ϕ + ˆR ˆ µ ˆ ν ϕ 4 ˆR µλ ˆ λ ˆ ν ϕ 4 ˆR νλ ˆ λ ˆ µ ϕ 1 3 ˆ µ ˆR ˆ ν ϕ 1 3 ˆ ν ˆR ˆ µ ϕ +ĝ µν [ ˆ ϕ ˆ ϕ 3 ˆ λ ˆ ϕ ˆ λ ϕ 3 ˆ λ ˆ σ ϕ ˆ λ ˆ σ ϕ 8 3 ˆR λσ ˆ λ ϕ ˆ σ ϕ + 3 ˆR ˆ λ ϕ ˆ λ ϕ + 3 ˆ 4 ϕ + 4 ˆR λσ ˆ λ ˆ σ ϕ ˆR ˆ ϕ ˆ λ ˆR ˆ λ ϕ T λ λ = (b 1 /4π ) ˆ 4 ϕ = 0 R S 3 Riegert Hamilton (7.1.4) Q M = ( b1 iˆp ) a 1 + J 0 M C 1 M JM 1,J+ 1 M 1,M M { α(j)ϵm1 a J M 1 a J+ 1 M +β(j)ϵ M1 b J M 1 b J+ 1 M + γ(j)ϵ M a J+ 1 M b JM 1 }

109 C (4.3.) α(j) = J(J + ), β(j) = (J + 1)(J + 3), γ(j) = 1(7..1) SU() SU()Clebsch-Gordan (4.3.3) Q M Q N Riegert i[q ζ, ϕ] = ζ µ ˆ ϕ ˆ µ ζ µ (7..) (E.3.1) + + ˆ i h i = ˆ i h tr ij = 0 h = 0 δ κ h = (3 η κ 0 + ψ)/ = 0 δ κ ( ˆ i h i ) = η ψ + 3 κ 0 = 0 δ κ ( ˆ i h tr ij ) = ( 3 + )κ j + ˆ j ψ/3 = 0 ψ = ˆ λ κ λ Killing 15 Killing (4..1) S 3 Killing η κ i 0 f(η) κ µ = (0, f(η)y i 1/(My) ) h T i J = 1/ (7.1.3) + Killing

110 110 7 Hamilton H (7.1.6) Q M = E 1 M { J(M 1 x 1 ),J+ 1 J 1 M 1,x 1,M,x (M α(j)ϵm1 x c ) J( M1x1) c J+ 1 (M x ) +β(j)ϵ M1 d J( M 1 x 1 ) d J+ 1 (M x ) + γ(j)ϵ M c J+ 1 ( M x ) d J(M 1 x 1 ) + H 1 M J(M 1 x 1 );J(M y ){ A(J)ϵM1 c J( M 1 x 1 ) e J(M y ) J 1 M 1,x 1,M,y +B(J)ϵ M e J( M y ) d J(M 1 x 1 ) + D 1 M C(J)ϵ J(M 1 y 1 ),J+ 1 J 1 M 1,y 1,M,y (M y ) M 1 e J( M 1 y 1 ) e J+ 1 (M y ) α(j) β(j) γ(j) Riegert (7..1) 4J A(J) = (J 1)(J + 3), B(J) = (J + ) (J 1)(J + 3), C(J) = (J 1)(J + 1)(J + )(J + 4) J(J + 3) SU() SU()Clebsch-Gordan E 1 M J(M 1 x 1 ),J+ 1 (M x ) = = V 3 dω 3 Y S 3 1 (J 1)(J + )C 1 m J+x 1 m 1,J+ 1 +x m C 1 m J x 1 m 1,J+ 1 x m, MY ij J(M 1 x 1 ) Y ijj+ 1 (M x ) H 1 M J(M 1 x 1 );J(M y ) = V 3 dω 3 Y S ij 3 1 MY ˆ J(M 1 x 1 ) i Y jj(m y ) = (J 1)(J + 3)C 1 m J+x 1 m 1,J+y m C 1 m J x 1 m 1,J y m (E..) (E..4) Weyl α β γ A B C } }

26 3 ( 29 5 ) D 3 1 (KEK) 1 Minkowski (conformal field theory, CFT) Minkowski Minkowski Hamilton Hermite Euclid

26 3 ( 29 5 ) D 3 1 (KEK)   1 Minkowski (conformal field theory, CFT) Minkowski Minkowski Hamilton Hermite Euclid 26 3 ( 29 5 ) D 3 (KEK) http://research.kek.jp/people/hamada/ Minkowski (conformal field theory, CFT) Minkowski Minkowski Hamilton Hermite Euclid Euclid Minkowski () Euclid Minkowski Euclid D 4 (, 206)

More information

2 Planck Planck BRST Planck Λ QG Planck GeV Planck Λ QG Friedmann CMB

2 Planck Planck BRST Planck Λ QG Planck GeV Planck Λ QG Friedmann CMB 量子重力理論と宇宙論 (下巻) くりこみ理論と初期宇宙論 浜田賢二 高エネルギー加速器研究機構 (KEK) 素粒子原子核研究所 http://research.kek.jp/people/hamada/ 量子重力の世界は霧に包まれた距離感のない幽玄の世界にたとえること ができる 深い霧が晴れて時空が現れる 国宝松林図屏風 (長谷川等伯筆) 平成 20 年 11 月初版/平成 21 年 09 月改定/

More information

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1 QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1 (vierbein) QCD QCD 1 1: QCD QCD Γ ρ µν A µ R σ µνρ F µν g µν A µ Lagrangian gr TrFµν F µν No. Yes. Yes. No. No! Yes! [1] Nash & Sen [2] Riemann

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

( )

( ) 7..-8..8.......................................................................... 4.................................... 3...................................... 3..3.................................. 4.3....................................

More information

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x 7 7.1 7.1.1 Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x 3 )=(x 0, x )=(ct, x ) (7.3) E/c ct K = E mc 2 (7.4)

More information

untitled

untitled 20 11 1 KEK 2 (cosmological perturbation theory) CMB R. Durrer, The theory of CMB Anisotropies, astro-ph/0109522; A. Liddle and D. Lyth, Cosmological Inflation and Large-Scale Structure (Cambridge University

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

6 6.1 L r p hl = r p (6.1) 1, 2, 3 r =(x, y, z )=(r 1,r 2,r 3 ), p =(p x,p y,p z )=(p 1,p 2,p 3 ) (6.2) hl i = jk ɛ ijk r j p k (6.3) ɛ ijk Levi Civit

6 6.1 L r p hl = r p (6.1) 1, 2, 3 r =(x, y, z )=(r 1,r 2,r 3 ), p =(p x,p y,p z )=(p 1,p 2,p 3 ) (6.2) hl i = jk ɛ ijk r j p k (6.3) ɛ ijk Levi Civit 6 6.1 L r p hl = r p (6.1) 1, 2, 3 r =(x, y, z )=(r 1,r 2,r 3 ), p =(p x,p y,p z )=(p 1,p 2,p 3 ) (6.2) hl i = jk ɛ ijk r j p k (6.3) ɛ ijk Levi Civita ɛ 123 =1 0 r p = 2 2 = (6.4) Planck h L p = h ( h

More information

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji 8 4 2018 6 2018 6 7 1 (Contents) 1. 2 2. (1) 22 3. 31 1. Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji SETO 22 3. Editorial Comments Tadashi

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

,,..,. 1

,,..,. 1 016 9 3 6 0 016 1 0 1 10 1 1 17 1..,,..,. 1 1 c = h = G = ε 0 = 1. 1.1 L L T V 1.1. T, V. d dt L q i L q i = 0 1.. q i t L q i, q i, t L ϕ, ϕ, x µ x µ 1.3. ϕ x µ, L. S, L, L S = Ld 4 x 1.4 = Ld 3 xdt 1.5

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. tomocci 18 7 5...,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. M F (M), X(F (M)).. T M p e i = e µ i µ. a a = a i

More information

Macdonald, ,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdona

Macdonald, ,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdona Macdonald, 2015.9.1 9.2.,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdonald,, q., Heckman Opdam q,, Macdonald., 1 ,,. Macdonald,

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc2.com/ 1 30 3 30.1.............. 3 30.2........................... 4 30.3...................... 5 30.4........................ 6 30.5.................................. 8 30.6...............................

More information

2017 II 1 Schwinger Yang-Mills 5. Higgs 1

2017 II 1 Schwinger Yang-Mills 5. Higgs 1 2017 II 1 Schwinger 2 3 4. Yang-Mills 5. Higgs 1 1 Schwinger Schwinger φ 4 L J 1 2 µφ(x) µ φ(x) 1 2 m2 φ 2 (x) λφ 4 (x) + φ(x)j(x) (1.1) J(x) Schwinger source term) c J(x) x S φ d 4 xl J (1.2) φ(x) m 2

More information

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i July 8, 4. H H H int H H H int H int (x)d 3 x Schrödinger Picture Ψ(t) S e iht Ψ H O S Heisenberg Picture Ψ H O H (t) e iht O S e iht Interaction Picture Ψ(t) D e iht Ψ(t) S O D (t) e iht O S e ih t (Dirac

More information

『共形場理論』

『共形場理論』 T (z) SL(2, C) T (z) SU(2) S 1 /Z 2 SU(2) (ŜU(2) k ŜU(2) 1)/ŜU(2) k+1 ŜU(2)/Û(1) G H N =1 N =1 N =1 N =1 N =2 N =2 N =2 N =2 ĉ>1 N =2 N =2 N =4 N =4 1 2 2 z=x 1 +ix 2 z f(z) f(z) 1 1 4 4 N =4 1 = = 1.3

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

IA

IA IA 31 4 11 1 1 4 1.1 Planck.............................. 4 1. Bohr.................................... 5 1.3..................................... 6 8.1................................... 8....................................

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

all.dvi

all.dvi 5,, Euclid.,..,... Euclid,.,.,, e i (i =,, ). 6 x a x e e e x.:,,. a,,. a a = a e + a e + a e = {e, e, e } a (.) = a i e i = a i e i (.) i= {a,a,a } T ( T ),.,,,,. (.),.,...,,. a 0 0 a = a 0 + a + a 0

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................

More information

1.1 foliation M foliation M 0 t Σ t M M = t R Σ t (12) Σ t t Σ t x i Σ t A(t, x i ) Σ t n µ Σ t+ t B(t + t, x i ) AB () tα tαn µ Σ t+ t C(t + t,

1.1 foliation M foliation M 0 t Σ t M M = t R Σ t (12) Σ t t Σ t x i Σ t A(t, x i ) Σ t n µ Σ t+ t B(t + t, x i ) AB () tα tαn µ Σ t+ t C(t + t, 1 Gourgoulhon BSSN BSSN ϕ = 1 6 ( D i β i αk) (1) γ ij = 2αĀij 2 3 D k β k γ ij (2) K = e 4ϕ ( Di Di α + 2 D i ϕ D i α ) + α ] [4π(E + S) + ĀijĀij + K2 3 (3) Ā ij = 2 3Āij D k β k 2αĀikĀk j + αāijk +e

More information

[1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin Clifford Spin 10 A 12 B 17 1 Cliffo

[1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin Clifford Spin 10 A 12 B 17 1 Cliffo [1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin + 8 5 Clifford Spin 10 A 12 B 17 1 Clifford Spin D Euclid Clifford Γ µ, µ = 1,, D {Γ µ, Γ ν

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

Einstein ( ) YITP

Einstein ( ) YITP Einstein ( ) 2013 8 21 YITP 0. massivegravity Massive spin 2 field theory Fierz-Pauli (FP ) Kinetic term L (2) EH = 1 2 [ λh µν λ h µν λ h λ h 2 µ h µλ ν h νλ + 2 µ h µλ λ h], (1) Mass term FP L mass =

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

SO(3) 49 u = Ru (6.9), i u iv i = i u iv i (C ) π π : G Hom(V, V ) : g D(g). π : R 3 V : i 1. : u u = u 1 u 2 u 3 (6.10) 6.2 i R α (1) = 0 cos α

SO(3) 49 u = Ru (6.9), i u iv i = i u iv i (C ) π π : G Hom(V, V ) : g D(g). π : R 3 V : i 1. : u u = u 1 u 2 u 3 (6.10) 6.2 i R α (1) = 0 cos α SO(3) 48 6 SO(3) t 6.1 u, v u = u 1 1 + u 2 2 + u 3 3 = u 1 e 1 + u 2 e 2 + u 3 e 3, v = v 1 1 + v 2 2 + v 3 3 = v 1 e 1 + v 2 e 2 + v 3 e 3 (6.1) i (e i ) e i e j = i j = δ ij (6.2) ( u, v ) = u v = ij

More information

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ SO(3) 71 5.7 5.7.1 1 ħ L k l k l k = iϵ kij x i j (5.117) l k SO(3) l z l ± = l 1 ± il = i(y z z y ) ± (z x x z ) = ( x iy) z ± z( x ± i y ) = X ± z ± z (5.118) l z = i(x y y x ) = 1 [(x + iy)( x i y )

More information

量子力学A

量子力学A c 1 1 1.1....................................... 1 1............................................ 4 1.3.............................. 6 10.1.................................. 10......................................

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

K E N Z U 2012 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.2................................... 4 1.2.1..................................... 4 1.2.2.................................... 5................................

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc2.com/ 1 6 3 6.1................................ 3 6.2.............................. 4 6.3................................ 5 6.4.......................... 6 6.5......................

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 p µ γ µ + mp ν γ ν + m 5.1 γ p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 1 2 p µp ν {γ µ, γ ν } + m 2 5.2 p m p p µ γ µ {, } 10 γ {γ µ, γ ν } 2η µν 5.3 p µ γ µ + mp

More information

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2 filename=mathformula58.tex ax + bx + c =, x = b ± b 4ac, (.) a x + x = b a, x x = c a, (.) ax + b x + c =, x = b ± b ac. a (.3). sin(a ± B) = sin A cos B ± cos A sin B, (.) cos(a ± B) = cos A cos B sin

More information

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) = 1 1 1.1 I R 1.1.1 c : I R 2 (i) c C (ii) t I c (t) (0, 0) c (t) c(i) c c(t) 1.1.2 (1) (2) (3) (1) r > 0 c : R R 2 : t (r cos t, r sin t) (2) C f : I R c : I R 2 : t (t, f(t)) (3) y = x c : R R 2 : t (t,

More information

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc 013 6 30 BCS 1 1.1........................ 1................................ 3 1.3............................ 3 1.4............................... 5 1.5.................................... 5 6 3 7 4 8

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

all.dvi

all.dvi 29 4 Green-Lagrange,,.,,,,,,.,,,,,,,,,, E, σ, ε σ = Eε,,.. 4.1? l, l 1 (l 1 l) ε ε = l 1 l l (4.1) F l l 1 F 30 4 Green-Lagrange Δz Δδ γ = Δδ (4.2) Δz π/2 φ γ = π 2 φ (4.3) γ tan γ γ,sin γ γ ( π ) γ tan

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes ) ( 3 7 4 ) 2 2 ) 8 2 954 2) 955 3) 5) J = σe 2 6) 955 7) 9) 955 Statistical-Mechanical Theory of Irreversible Processes 957 ) 3 4 2 A B H (t) = Ae iωt B(t) = B(ω)e iωt B(ω) = [ Φ R (ω) Φ R () ] iω Φ R (t)

More information

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx i B5 7.8. p89 4. ψ x, tψx, t = ψ R x, t iψ I x, t ψ R x, t + iψ I x, t = ψ R x, t + ψ I x, t p 5.8 π π π F e ix + F e ix + F 3 e 3ix F e ix + F e ix + F 3 e 3ix dx πψ x πψx p39 7. AX = X A [ a b c d x

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x . P (, (0, 0 R {(,, R}, R P (, O (0, 0 OP OP, v v P (, ( (, (, { R, R} v (, (, (,, z 3 w z R 3,, z R z n R n.,..., n R n n w, t w ( z z Ke Words:. A P 3 0 B P 0 a. A P b B P 3. A π/90 B a + b c π/ 3. +

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

newmain.dvi

newmain.dvi 数論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/008142 このサンプルページの内容は, 第 2 版 1 刷発行当時のものです. Daniel DUVERNEY: THÉORIE DES NOMBRES c Dunod, Paris, 1998, This book is published

More information

A

A A04-164 2008 2 13 1 4 1.1.......................................... 4 1.2..................................... 4 1.3..................................... 4 1.4..................................... 5 2

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K II. () 7 F 7 = { 0,, 2, 3, 4, 5, 6 }., F 7 a, b F 7, a b, F 7,. (a) a, b,,. (b) 7., 4 5 = 20 = 2 7 + 6, 4 5 = 6 F 7., F 7,., 0 a F 7, ab = F 7 b F 7. (2) 7, 6 F 6 = { 0,, 2, 3, 4, 5 },,., F 6., 0 0 a F

More information

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j = 72 Maxwell. Maxwell e r ( =,,N Maxwell rot E + B t = 0 rot H D t = j dv D = ρ dv B = 0 D = ɛ 0 E H = μ 0 B ρ( r = j( r = N e δ( r r = N e r δ( r r = : 2005 ( 2006.8.22 73 207 ρ t +dv j =0 r m m r = e E(

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

数学Ⅱ演習(足助・09夏)

数学Ⅱ演習(足助・09夏) II I 9/4/4 9/4/2 z C z z z z, z 2 z, w C zw z w 3 z, w C z + w z + w 4 t R t C t t t t t z z z 2 z C re z z + z z z, im z 2 2 3 z C e z + z + 2 z2 + 3! z3 + z!, I 4 x R e x cos x + sin x 2 z, w C e z+w

More information

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) = 1 9 8 1 1 1 ; 1 11 16 C. H. Scholz, The Mechanics of Earthquakes and Faulting 1. 1.1 1.1.1 : - σ = σ t sin πr a λ dσ dr a = E a = π λ σ πr a t cos λ 1 r a/λ 1 cos 1 E: σ t = Eλ πa a λ E/π γ : λ/ 3 γ =

More information

( ) (ver )

( ) (ver ) ver.3.1 11 9 1 1. p1, 1.1 ψx, t,, E, p. = E, p ψx, t,. p, 1.8 p4, 1. t = t ρx, t = m [ψ ψ ψ ψ] ρx, t = mi [ψ ψ ψ ψ] p4, 1.1 = p6, 1.38 p6, 1.4 = fxδ ϵ x = fxδϵx = 1 π fxδ ϵ x dx = fxδ ϵ x dx = [ 1 fϵ π

More information

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i 1. 1 1.1 1.1.1 1.1.1.1 v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) R ij R ik = δ jk (4) δ ij Kronecker δ ij = { 1 (i = j) 0 (i j) (5) 1 1.1. v1.1 2011/04/10 1. 1 2 v i = R ij v j (6) [

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 12 12.1? finite deformation infinitesimal deformation large deformation 1 [129] B Bernoulli-Euler [26] 1975 Northwestern Nemat-Nasser Continuum Mechanics 1980 [73] 2 1 2 What is the physical meaning? 583

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

untitled

untitled 0. =. =. (999). 3(983). (980). (985). (966). 3. := :=. A A. A A. := := 4 5 A B A B A B. A = B A B A B B A. A B A B, A B, B. AP { A, P } = { : A, P } = { A P }. A = {0, }, A, {0, }, {0}, {}, A {0}, {}.

More information

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz 1 2 (a 1, a 2, a n ) (b 1, b 2, b n ) A (1.1) A = a 1 b 1 + a 2 b 2 + + a n b n (1.1) n A = a i b i (1.2) i=1 n i 1 n i=1 a i b i n i=1 A = a i b i (1.3) (1.3) (1.3) (1.1) (ummation convention) a 11 x

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou (Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fourier) (Fourier Bessel).. V ρ(x, y, z) V = 4πGρ G :.

More information

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a = II 6 ishimori@phys.titech.ac.jp 6.. 5.4.. f Rx = f Lx = fx fx + lim = lim x x + x x f c = f x + x < c < x x x + lim x x fx fx x x = lim x x f c = f x x < c < x cosmx cosxdx = {cosm x + cosm + x} dx = [

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

chap10.dvi

chap10.dvi . q {y j } I( ( L y j =Δy j = u j = C l ε j l = C(L ε j, {ε j } i.i.d.(,i q ( l= y O p ( {u j } q {C l } A l C l

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

0406_total.pdf

0406_total.pdf 59 7 7.1 σ-ω σ-ω σ ω σ = σ(r), ω µ = δ µ,0 ω(r) (6-4) (iγ µ µ m U(r) γ 0 V (r))ψ(x) = 0 (7-1) U(r) = g σ σ(r), V (r) = g ω ω(r) σ(r) ω(r) (6-3) ( 2 + m 2 σ)σ(r) = g σ ψψ (7-2) ( 2 + m 2 ω)ω(r) = g ω ψγ

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1)

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1) φ 4 Minimal subtraction scheme 2-loop ε 28 University of Tokyo Atsuo Kuniba version 2/Apr/28 Formulas Γ n + ɛ = n n! ɛ + ψn + + Oɛ n =,, 2, ψn + = + 2 + + γ, 2 n ψ = γ =.5772... Euler const, log + ax x

More information

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4 35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information

6. Euler x

6. Euler x ...............................................................................3......................................... 4.4................................... 5.5......................................

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

II 1 II 2012 II Gauss-Bonnet II

II 1 II 2012 II Gauss-Bonnet II II 1 II 212 II Gauss-Bonnet II 1 1 1.1......................................... 1 1.2............................................ 2 1.3.................................. 3 1.4.............................................

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

2009 2 26 1 3 1.1.................................................. 3 1.2..................................................... 3 1.3...................................................... 3 1.4.....................................................

More information

(2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y

(2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y (2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = a c b d (a c, b d) P = (a, b) O P a p = b P = (a, b) p = a b R 2 { } R 2 x = x, y R y 2 a p =, c q = b d p + a + c q = b + d q p P q a p = c R c b

More information

2016 ǯ¥Î¡¼¥Ù¥ëʪÍý³Ø¾Þ²òÀ⥻¥ß¥Ê¡¼ Kosterlitz-Thouless ž°Ü¤È Haldane ͽÁÛ

2016 ǯ¥Î¡¼¥Ù¥ëʪÍý³Ø¾Þ²òÀ⥻¥ß¥Ê¡¼  Kosterlitz-Thouless ž°Ü¤È Haldane ͽÁÛ 2016 Kosterlitz-Thouless Haldane Dept. of Phys., Kyushu Univ. 2016 11 29 2016 Figure: D.J.Thouless F D.M.Haldane J.M.Kosterlitz TOPOLOGICAL PHASE TRANSITIONS AND TOPOLOGICAL PHASES OF MATTER ( ) ( ) (Dirac,

More information

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1)

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1) 23 2 2.1 10 5 6 N/m 2 2.1.1 f x x L dl U 1 du = T ds pdv + fdl (2.1) 24 2 dv = 0 dl ( ) U f = T L p,t ( ) S L p,t (2.2) 2 ( ) ( ) S f = L T p,t p,l (2.3) ( ) U f = L p,t + T ( ) f T p,l (2.4) 1 f e ( U/

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

(2) Fisher α (α) α Fisher α ( α) 0 Levi Civita (1) ( 1) e m (e) (m) ([1], [2], [13]) Poincaré e m Poincaré e m Kähler-like 2 Kähler-like

(2) Fisher α (α) α Fisher α ( α) 0 Levi Civita (1) ( 1) e m (e) (m) ([1], [2], [13]) Poincaré e m Poincaré e m Kähler-like 2 Kähler-like () 10 9 30 1 Fisher α (α) α Fisher α ( α) 0 Levi Civita (1) ( 1) e m (e) (m) ([1], [], [13]) Poincaré e m Poincaré e m Kähler-like Kähler-like Kähler M g M X, Y, Z (.1) Xg(Y, Z) = g( X Y, Z) + g(y, XZ)

More information

Kroneher Levi-Civita 1 i = j δ i j = i j 1 if i jk is an even permutation of 1,2,3. ε i jk = 1 if i jk is an odd permutation of 1,2,3. otherwise. 3 4

Kroneher Levi-Civita 1 i = j δ i j = i j 1 if i jk is an even permutation of 1,2,3. ε i jk = 1 if i jk is an odd permutation of 1,2,3. otherwise. 3 4 [2642 ] Yuji Chinone 1 1-1 ρ t + j = 1 1-1 V S ds ds Eq.1 ρ t + j dv = ρ t dv = t V V V ρdv = Q t Q V jdv = j ds V ds V I Q t + j ds = ; S S [ Q t ] + I = Eq.1 2 2 Kroneher Levi-Civita 1 i = j δ i j =

More information

DVIOUT-fujin

DVIOUT-fujin 2005 Limit Distribution of Quantum Walks and Weyl Equation 2006 3 2 1 2 2 4 2.1...................... 4 2.2......................... 5 2.3..................... 6 3 8 3.1........... 8 3.2..........................

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

ʪ¼Á¤Î¥È¥Ý¥í¥¸¥«¥ë¸½¾Ý (2016ǯ¥Î¡¼¥Ù¥ë¾Þ¤Ë´ØÏ¢¤·¤Æ)

ʪ¼Á¤Î¥È¥Ý¥í¥¸¥«¥ë¸½¾Ý  (2016ǯ¥Î¡¼¥Ù¥ë¾Þ¤Ë´ØÏ¢¤·¤Æ) (2016 ) Dept. of Phys., Kyushu Univ. 2017 8 10 1 / 59 2016 Figure: D.J.Thouless F D.M.Haldane J.M.Kosterlitz TOPOLOGICAL PHASE TRANSITIONS AND TOPOLOGICAL PHASES OF MATTER 2 / 59 ( ) ( ) (Dirac, t Hooft-Polyakov)

More information

note1.dvi

note1.dvi (1) 1996 11 7 1 (1) 1. 1 dx dy d x τ xx x x, stress x + dx x τ xx x+dx dyd x x τ xx x dyd y τ xx x τ xx x+dx d dx y x dy 1. dx dy d x τ xy x τ x ρdxdyd x dx dy d ρdxdyd u x t = τ xx x+dx dyd τ xx x dyd

More information

Z: Q: R: C: 3. Green Cauchy

Z: Q: R: C: 3. Green Cauchy 7 Z: Q: R: C: 3. Green.............................. 3.............................. 5.3................................. 6.4 Cauchy..................... 6.5 Taylor..........................6...............................

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

量子力学3-2013

量子力学3-2013 ( 3 ) 5 8 5 03 Email: hatsugai.yasuhiro.ge@u.tsukuba.ac.jp 3 5.............................. 5........................ 5........................ 6.............................. 8.......................

More information

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2.

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2. A A 1 A 5 A 6 1 2 3 4 5 6 7 1 1.1 1.1 (). Hausdorff M R m M M {U α } U α R m E α ϕ α : U α E α U α U β = ϕ α (ϕ β ϕβ (U α U β )) 1 : ϕ β (U α U β ) ϕ α (U α U β ) C M a m dim M a U α ϕ α {x i, 1 i m} {U,

More information