26 3 ( 29 5 ) D 3 1 (KEK) 1 Minkowski (conformal field theory, CFT) Minkowski Minkowski Hamilton Hermite Euclid

Size: px
Start display at page:

Download "26 3 ( 29 5 ) D 3 1 (KEK) 1 Minkowski (conformal field theory, CFT) Minkowski Minkowski Hamilton Hermite Euclid"

Transcription

1 26 3 ( 29 5 ) D 3 (KEK) Minkowski (conformal field theory, CFT) Minkowski Minkowski Hamilton Hermite Euclid Euclid Minkowski () Euclid Minkowski Euclid D 4 (, 206)

2 . x µ x µ η µν dx µ dx ν η µν dx µ dx ν = Ω(x)η µν dx µ dx ν (.) Ω Minkowski η µν = (,,, ) x µ x ν η µν x λ x σ = Ω(x)η λσ Ω = Poincaré η µν η µν x µ x µ = x µ + ζ µ ζ µ µ ζ ν + ν ζ µ 2 D η µν λ ζ λ = 0 Killing ζ λ Killing Ω = + 2 D λζ λ (.2) Killing (η µν 2 +(D 2) µ ν ) λ ζ λ = 0 ζ µ (D +)(D +2)/2 2

3 D (translation) D(D )/2 Lorentz dilatation D (special conformal transformation) ζ λ T,L,D,S (ζ λ T ) µ = δ λ µ, (ζ λ L) µν = x µ δ λ ν x ν δ λ µ, ζ λ D = x λ, (ζ λ S) µ = x 2 δ λ µ 2x µ x λ (.3) Killing µ ζ ν + ν ζ µ = 0 Poincaré dilatation x µ x µ = λx µ, x µ x µ = x µ + a µ x 2 + 2a µ x µ + a 2 x 2 (conformal inversion) x µ x µ = xµ x 2 x µ xµ x 2 xµ x 2 + aµ x µ x 2 + a µ ( x µ x 2 + a µ ) 2 = x µ + a µ x 2 + 2a µ x µ + a 2 x 2.2 Lorentz dilatation P µ M µν D K µ 2 (D + )(D + 2)/2 SO(D, 2) [P µ, P ν ] = 0, [M µν, P λ ] = i (η µλ P ν η νλ P µ ), 2 dilatation D 3

4 [M µν, M λσ ] = i (η µλ M νσ + η νσ M µλ η µσ M νλ η νλ M µσ ), [D, P µ ] = ip µ, [D, M µν ] = 0, [D, K µ ] = ik µ, [M µν, K λ ] = i (η µλ K ν η νλ K µ ), [K µ, K ν ] = 0, [K µ, P ν ] = 2i (η µν D + M µν ) (.4) Lorentz SO(D, ) Poincaré Hermite P µ = P µ, M µν = M µν, D = D, K µ = K µ SO(D, 2) J ab [J ab, J cd ] = i (η ac J bd + η bd J ac η bc J ad η ad J bc ) Hermite J ab = J ab J ab = J ba η ab = (,,,, ) a, b = 0,, 2,, D, D+ µ, ν = 0,,, D M µν = J µν, D = J D+D, P µ = J µd+ J µd, K µ = J µd+ + J µd Lorentz dilatation (.4) (primary) l O µ µ l 3 Hermite O µ µ l (x) = O µ µ l (x) 3 D = 4 Lorentz SO(3, ) (j, j) j = j = l/2 O µ µ l = (σ µ ) α α (σ µl ) α l α l O α α l α α l η µν (σ µ ) α α (σ ν ) β β ε αβ ε α β j j (/2, 0) (0, /2) (, /2) (/2, ) Rarita-Schwinger (, 0) (0, ) 4

5 O (x ) = Ω(x) /2 O(x) O µ µ l (x)dx µ dx µ l l O µ µ l (x ) = Ω(x) l 2 x ν x xνl O µ x µ ν ν l l (x) (.5) SO(D, ) D µν Jacobian xν x µ = Ω(x) /2 D ν µ (x) O j (x) R[D] jk O j(x ) = Ω(x) /2 R[D(x)] k j O k (x) 0 O (x ) O n (x n ) 0 = 0 O (x ) O n(x n ) 0 (.6) 0 x j x µ x µ = x µ + ζ µ x O j O j δ ζo j (x) = O j (x) O j(x) ζ µ O j(x ) = O j(x) + ζ µ µ O j (x) D µ ν = δ µ ν ( ν ζ µ µ ζ ν )/2 Ω (.2) (.5) δ ζ O µ µ l (x) = (ζ ν ν + D νζ ν ) O µ µ l (x) + l ( ) µj ζ ν ν ζ µj Oµ µ 2 j νµ j+ µ l (x) j= 5

6 δ ζ O µ µ l (x) = i [Q ζ, O µ µ l (x)] Q ζ Killing ζ µ (D + )(D + 2)/2 Killing ζ λ T,L,D,S(.3) i [P µ, O λ λ l (x)] = µ O λ λ l (x), i [M µν, O λ λ l (x)] = (x µ ν x ν µ iσ µν ) O λ λ l (x), i [D, O λ λ l (x)] = (x µ µ + ) O λ λ l (x), i [K µ, O λ λ l (x)] = ( x 2 µ 2x µ x ν ν 2 x µ + 2ix ν Σ µν ) Oλ λ l (x) Σ µν O λ λ l = i l ( ) ηµλj δ σ ν η νλj δ σ µ Oλ λ j σλ j+ λ l j= Σ µν O λ λ l = (Σ µν ) λ λ l σ σ l (.7) O σ σ l Lorentz M µν (Σ µν ) σ λ = i(η µλ δ σ ν (Σ µν ) η νλ δ σ µ ) l l σ σ l λ λ l = δ σ λ j= δ σ j λ j (Σ µν ) σ j λ j δ σ j+ λ j+ δ σ l λ l O /2 Σ µν ψ = i 4 [γ µ, γ ν ]ψ {γ µ, γ ν } = 2η µν Killing Q ζ = d D xζ λ T λ0 6

7 d D x Killing µ T µν = 0 η Q ζ = (/D) d D x λ ζ λ T µ µ ζ λ ζt,l,d,s(.3) λ P µ = d D xt µ0, M µν = d D x (x µ T ν0 x ν T µ0 ), D = d D xx λ T λ0, K µ = d D x ( ) x 2 T µ0 2x µ x λ T λ0 (.8) C 0 Q ζ (= Q ζ ) Q ζ 0 = 0, 0 Q ζ = 0 n O j (j =,, n) 0 [Q ζ, O (x ) O n (x n )] 0 = 0 n δ ζ 0 O (x ) O n (x n ) 0 = i 0 O (x ) [Q ζ, O j (x j )] O n (x n ) 0 = 0 j= (.6) O j j Q ζ D K µ (.7) ( ) n x µ j j= x µ + j 0 O (x ) O n (x n ) 0 = 0, j ( ) n x 2 j j= x µ 2x jµ x ν j 2 j x ν j x jµ 0 O (x ) O n (x n ) 0 = 0 j.3 Wightman l Wight- 7

8 man W µ µ l,ν ν l (x y) = 0 O µ µ l (x)o ν ν l (y) 0 (.9) W µ µ l,ν ν l (x) = cp µ µ l,ν ν l (x) (x 2 ) x 0 x 0 iϵ ϵ UV P µ µ l,ν ν l [ A ] 2 Wightman 0 O(x)O(0) 0 = c (x 2 ) = c x 0 x 0 iϵ (x 2 + 2iϵx 0 ) x 0 0 ϵ 2 2 Wightman 0 O µ (x)o ν (0) 0 = ci µν (x 2 ) x 0 x 0 iϵ 0 O µν (x)o λσ (0) 0 = c ( I µλ I νσ + I µσ I νλ 2 ) 2 D η µνη λσ (x 2 ) x µ I µν I µν = η µν 2 xµ x ν x 2 x 0 x 0 iϵ I λ µ I λν = η µν I µ µ = D 2 l P µ µ l,ν ν l = l! (I µ ν I µl ν l + perms) traces perms traces c ( ) c > 0 c = 8

9 Wightman (.9) f,2 (x) : (f, f 2 ) = d D xd D yf µ µ l (x)w µ µ l,ν ν l (x y)f ν ν l 2 (y). Wightman Fourier W µ µ l,ν ν l (k) = d D xw µ µ l,ν ν l (x)e ik µx µ d D k (f, f 2 ) = (2π) f µ µ l D (k)f ν ν l 2 (k)w µ µ l,ν ν l (k) f,2 (k) Fourier k 2 (f, f) > 0 Wightman s D for s = 0, 2 D 2 + s for s 0 (.0) (unitarity bound).4 Fourier D = 4 Wightman W (x) Fourier [ B ] 2 2π( ) W (k) = (2π) 4 Γ( ) 2 θ(k0 )θ( k 2 )( k 2 ) 2 9

10 (f, f) = d 4 k f(k) 2 W (k)/(2π) 4 = lim ( )θ( k 2 ) 2 = δ( k 2 ) (2π) lim (f, f) = 2 d 4 k (2π) 4 f(k) 2 2πθ(k 0 )δ( k 2 ) = d 3 k (2π) 3 2 k f(k) 2 A µ 2 0 A µ (x)a ν (0) 0 ( = η µν 2α x ) µx ν x 2 (x 2 ) x 0 x 0 iϵ = { α 2 2( )( 2) η µν 2 α } µ ν (x 2 ) x 0 x 0 iϵ Fourier Fourier W (α) µν W µν (α) (k) = (2π) 2 2π( ) 4 Γ( )Γ( + ) θ(k0 )θ( k 2 )( k 2 ) 2 { ( α)η µν 2α( 2) k } µk ν k 2 O µ α = W () µν = W µν α = A µ O µ O O = Wightman f µ f µ (k)f ν (k)w (α) µν (k) k µ = (K, 0, 0, 0) f µ f ν W (α) µν = Cθ(K)θ(K 2 ) { [(2 3)α ] f ( α) f j 2} K 2( 2) 0

11 C = 4(2π) 3 ( )/4 Γ( )Γ( + ) (2 3)α 0 α 0 3α 2α, α α = 3 4 = 3 µ O µ = 0 µ W µν (x) = 0 (x 0).5 O P µ µ ν O O (descendant) O 2 D = 4 O µ O 2 O O(x) 2 O(0) 0 = 6 2 ( + )( ) (x 2 ) +2 x 0 x 0 iϵ 4 F µν 2( )

12 2 O 2 > = 2 O = 0 { 0 µ O(x) ν O(0) 0 = 2 η µν 2( + ) x µx ν x 2 } (x 2 ) + x 0 x 0 iϵ Wightman O µ µ O µ 0 µ O µ (x) ν O ν (0) 0 = 4( )( 3) (x 2 ) + x 0 x 0 iϵ > 3 = 3 O µ µ O µ = 0 µ O µν 2 0 µ O µν (x) λ O λσ (0) 0 = ( 4)(4 7) { η νσ } x ν x σ x 2 (x 2 ) + x 0 x 0 iϵ µ ν O µν 0 µ ν O µν (x) λ σ O λσ (0) 0 = 24 ( )( 3)( 4) (x 2 ) +2 x 0 x 0 iϵ 4 Wightman = 4 O µν µ O µν = 0 2

13 .6 Feynman Feynman Wightman 0 T [O µ µ l (x)o ν ν l (0)] 0 = θ(x 0 ) 0 O µ µ l (x)o ν ν l (0) 0 + θ( x 0 ) 0 O ν ν l (0)O µ µ l (x) 0 Fourier 0 T [O µ µ l (x)o ν ν l (0)] 0 = d 4 k µxµ eik D (2π) 4 µ µ l,ν ν l (k) 0 T [O(x)O(0)] 0 = θ(x 0 ) (x 2 + 2iϵx 0 ) + θ( x0 ) (x 2 2iϵx 0 ) = (x 2 + iϵ) 2ϵ x 0 ϵ Fourier 2 Γ(2 ) D(k) = i(2π) 4 Γ( ) (k2 iϵ) 2 0 T [O µ (x)o ν (0)] 0 = { 2 2( 2) η µν 2 µ ν } (x 2 + iϵ) Fourier D µ,ν (k) = i (2π)2 Γ(2 ) 4 Γ( + ) { ( )ηµν k 2 2( 2)k µ k ν } (k 2 iϵ) 3 3

14 O f I int = g d 4 x (fo + H.c.) S S = + it f f i f T f = g 2 = g 2 d 4 xf (x) d 4 k (2π) 4 f (k)f(k)d(k) d 4 yf(y) 0 T [O(x)O(y)] 0 S S = 2Im(T ) = T 2 0 Im f T f = g 2 d 4 k (2π) 4 f(k) 2 Im {id(k)} 0 (x+iϵ) λ (x iϵ) λ = 2i sin(πλ)θ( x)( x) λ sin(πλ) = π/γ(λ)γ( λ) 2 π( ) Im {id(k)} = (2π) 4 Γ( ) 2 θ( k2 )( k 2 ) 2 Wightman Fourier [θ(k 0 ) /2 ] 4

15 2 Euclid Euclid Minkowski Euclid δ µν 2. Ising D D Euclid 5 Euclid T T c T T c O(x)O(0) e x /ξ ξ T = T c ξ O(x)O(0) = x 2 S CFT < D relevant 5 D Minkowski D 5

16 O t ( ) S CFT S CFT ta D d D xo(x) a ξ D ta D ξ at /(D ) 6 O ε t = (T T c )/T c ε ν ξ at ν ν = /(D ε ) D 2.2 Euclid Euclid R D SO(D +, ) η µν δ µν M D (.4) (.7) P µ D Hermite P µ = K µ, D = D SO(D, 2) J ab η ab = (,,,, ) D ξ a dξ/da = 0 t β = adt/da = (D )t 6

17 a, b = 0,,, D, D + D Euclid µ, ν =,, D SO(D +, ) 0 M µν = J µν, D = ij D+0, P µ = J µd+ ij µ0, K µ = J µd+ + ij µ0 J ab (.5) Hermite Euclid Hermite l O µ µ l (x)o ν ν l (0) = cp µ µ l,ν ν l (x 2 ) P µ µ l,ν ν l x M D Euclid I µν I µν = δ µν 2 x µx ν x 2 P µ µ l,ν ν l = l! (I µ ν I µl ν l + perms) traces c c = Hermite x µ Rx µ = x µ x 2 O µ µ l (x) = (x 2 ) I µ ν (x) I µl ν l (x)o ν ν l (Rx) (2.) Hermite Hermite i[p µ, O(x)] = µ O(x) 7

18 Hermite i[p µ, O (x)] = µ O (x) Hermite y µ = x µ /x 2 O (x) = (y 2 ) O(y) Hermite P µ = K µ i(y 2 ) [K µ, O(y)] = y ν { (y 2 ) O(y) } x µ y ν = (y 2 ) ( y 2 µ 2y µ y ν ν 2 y µ ) O(y) (y 2 ) O i[d, O(x)] = (x µ µ + )O(x) Hermite Hermite D = D I µν (x) = I µν (y) i[p µ, O ν (x)] = µ O ν (x) Hermite i(y 2 ) I νλ [K µ, O λ (y)] = y ν { (y 2 ) I νλ O λ (y) } x µ y ν ( ) = (y 2 ) {I νλ y 2 µ 2y µ y σ σ 2 y µ Oλ (y) ( + 2δ µν y λ 2δ µλ y ν + 4 y ) } µy ν y λ O y 2 λ (y) I µλ I λν = δ µν i[k µ, O λ (y)] = (y 2 µ 2y µ y σ σ 2 y µ +2iy σ Σ µσ )O λ (y) iσ µσ O λ = δ µλ O σ + δ λσ O µ O µ µ l O µ µ l Rx 2 = /x 2 O (x)o(0) = (x 2 ) O(Rx)O(0) = x (c = ) I µλ I λν = δ µν O µ(x)o ν (0) = δ µν, O µν(x)o λσ (0) = (δ µλ δ νσ + δ µσ δ νλ 2 ) 2 D δ µνδ λσ 8

19 Euclid M µν {µ µ l }, = (Σ µν ) ν ν l,µ µ l {ν ν l },, id {µ µ l }, = {µ µ l },, K µ {µ µ l }, = 0 7 {µ µ l }, = O µ µ l (0) 0 (2.2) (state-operator correspondence) 0 P µ Hermite y µ = Rx µ I µν (x) = I µν (y) Hermite O µ µ l (0) = lim x 2 0 (x2 ) I µ ν I µl ν l O ν ν l (Rx) = lim y 2 (y2 ) I µ ν I µl ν l O ν ν l (y) (2.2) {µ µ l }, = 0 O µ µ l (0) = lim x 2 (x2 ) I µ ν I µl ν l 0 O ν ν l (x) f µ µ l (f, f) = f µ µ l f ν ν l {µ µ l }, {ν ν l }, = f µ µ l 2 > 0 7 Minkowski = O(0) 0 M D O (x) = O(x) = 0 O (0)O(0) 0 = 0 O(0)O(0) 0 9

20 2.3 Hermite R D O(x) = e ip µx µ O(0)e ip µx µ Hermite P µ = K µ O (x) = e ik µx µ O( )e ik µx µ O( ) = O (0) = lim x 2 (x 2 ) O(x) Hermite (2.) O(x)O(x ) = (x 2 ) O (Rx)O(x ) = (x 2 ) e ikµ(rx)µ e ipνx ν = O(0) 0 = 0 O( ) K µ P ν O(x)O(x ) = ( x C (x 2 ) n (x, x 2 ) x 2 n=0 C n ) n/2 C n = (n!) 2 x µ x µn x ν x ν n (x 2 x 2 ) n/2 K µ K µn P ν P νn Gegenbauer nc n = 2( + n )zc n (2 + n 2)C n 2 z = x x / x 2 x 2 C n z Gegenbauer ( = /2 Legendre ) ( 2zt + t 2 ) = C n (z)t n z t = n=0 x 2 /x 2 O(x)O(x ) = /(x x ) 2 20

21 2.4 (OPE) ϕ (operator product expansion, OPE) ϕ ϕ I + T µν + l=0,2,4, O µ µ l I T µν ( 2 D ) O µ µ l l OPE ( ) ϕ l d 2 ϕ(x )ϕ(x 2 ) = O µ µ l (x )O ν ν l (x 2 ) = x 2, 2d [ ] x 2 2 l! (I µν I + perms) traces µlνl (x 2 ) µ = x µ x 2µ I µν = I µν (x 2 ) f,l ϕ(x )ϕ(x 2 )O µ µ l (x 3 ) = Z µ = (x 3) µ x 2 3 f,l x 2 2d +l x 3 l x 23 l (Z µ Z µl traces), (x 23) µ x 2 23 f,l OPE ϕ OPE ϕ(x)ϕ(y) = = x y 2d +,l(=2n) x y 2d +,l(=2n) (2.3) f,l [ (x y)µ (x y) µl x y 2d +l O µ µ l (y) + f,l x y 2d C,l(x y, y )O,l (y) l O,l (y) C,l (x y, y ) 2 ]

22 l = 0 C,0 OPE O = O,0 ϕ(x)ϕ(y)o(z) = f,0 x y 2d C,0(x y, y ) O(y)O(z) C,0 (x y, y ) y z = 2 x z y z Feynmann Γ( ) [t( t)] 2 Γ( )Γ( ) dt 0 [t(x z) ( t)(y z) 2 ] = B(, ) dt[t( t)] n=0 ( ) n n! [ t( t)(x y) 2 ] n ([y z + t(x y)] 2 ) +n (a) n = Γ(a + n)/γ(a) Pochhammer ( 2 ) n (x 2 ) = 4n ( ) n ( + D/2) n (x 2 ), +n [(y + tx) 2 ] = etx y (y 2 ) / y z 2 y C,0 (x y, y ) = B(, ) dt[t( t)] ( ) n [t( t)a 2 ] n ( 2 4 n n! ( + D/2) y) n e ta y n n=0 a=x y C,0 (x y, y ) = + 2 (x y) µ µ y ( + ) (x y) µ(x y) ν µ y ν y 6( + )( + D/2) (x y)2 y 2 + (2.3) l 0 22

23 2.5 Conformal Blocks j ϕ j ϕ (x )ϕ 2 (x 2 )ϕ 3 (x 3 )ϕ 4 (x 4 ) = ( ) 2 ( ) 34 x24 x4 G(u, v) x 4 x 3 x x ij = i j u v u = x2 2x 2 34, v = x2 4x 2 23 x 2 3x 2 24 x 2 3x 2 24 ϕ ϕ 2 OPE ϕ ϕ 4 OPE (x 2, 2 ) (x 4, 4 ) (x 2, 2 ) (x 3, 3 ) (crossing symmetry) G(u, v) G(v, u) G(/u, v/u) = 2 = 3 = 4 OPE G(u, v) = +,l f 2,lg,l (u, v) d ϕ d ϕ d (x )ϕ d (x 2 )ϕ d (x 3 )ϕ d (x 4 ) = [ + f x 2 2d x 34,lg 2 2d,l (u, v) ] g,l (u, v) conformal block x 2 x 4 v d G(u, v) = u d G(v, u) conformal block u d v d =,l f 2,l,l [ v d g,l (u, v) u d g,l (v, u) ] (2.4) 23

24 Conformal block g,l OPE (l = 0) OPE g,0 (u, v) = x 2 x 34 C,0 (x 2, 2 )C,0 (x 34, 4 ) x 24 2 C,0 (x 2, 2 )C,0 (x 34, 4 ) x 24 = 2 B(, dtds[t( t)s( s)] )2 0 ( ) n+m ( ) n+m ( ) n+m [t( t)x 2 2] n [s( s)x 2 34] m n!m! ( ) n ( ) m [(x 24 + tx 2 sx 34 ) 2 ] +n+m n,m=0 = + D/2 A 2 = t( t)x 2 2 B2 = s( s)x 2 34 (x 24 + tx 2 sx 34 ) 2 = Λ 2 A 2 B 2, Λ 2 = tsx t( s)x s( t)x ( t)( s)x 2 24 B( 2, 2 )2 0 dtds [t( t)s( s)] 2 (Λ 2 A 2 B 2 ) F 4(, ;, ; X, Y ) X = A 2 /(Λ 2 A 2 B 2 ) Y = B 2 /(Λ 2 A 2 B 2 ) F 4 Appell (double series) F 4 (a, b;, c, d; x, y) = n,m=0 n!m! (a) n+m (b) n+m x n y m (c) n (d) m Gauss 2 F ( a F 4 (a, b; b, b; x, y) = ( x y) a 2F 2, a + ) 2 ; b; 4xy ( x y) 2 B( 2, 2 )2 0 dtds [t( t)s( s)] 2 (Λ 2 ) 2F 24 ( 2, + ; 2 ; 4A2 B 2 ) Λ 4

25 t s 0 0 t a ( t) b dt [tα + ( t)β] = B(a, b), a+b α a βb s a ( s) b ds ( sα) c ( sβ) = B(a, b)f (a, c, d; a + b; α, β) d F F (a, b, c; d; x, y) = n,m=0 n!m! (a) n+m (b) n (c) m x n y m (d) n+m Gauss ( F (a, b, c, b + c; x, y) = ( y) a 2F a, b; b + c; x y ) y ( ) 4 u n ( x 3 x 24 v 2 2 n n! ( ) 2n ( ) 2F n 2 + n, ) 2 + n; + 2n; v n=0 u = u/v v = /v ( ) 2n 4 n ( 2 ) n( + 2 ) n = ( ) 2n G(a, b, c, d; x, y) = n,m=0 (d a) n (d b) n n! (c) n (a) n+m (b) n+m m! (d) 2n+m x n y m g,0 ( 2 + n) m = ( 2 ) n+m/( 2 ) n ( + 2n) m = ( ) 2n+m /( ) 2n x 3 x 4 g,l (u, v) = g,l (u, v ) g,0 u v u v g,0 (u, v) = u 2 G ( 2, 2, + D 2, ; u, v ) conformal block g,l Gauss u = z z, v = ( z)( z) 25

26 G(a, b, c, c; u, v) = [ z 2 F (a, b; c; z) 2 F (a, b ; c 2; z) z z z 2 F (a, b; c; z) 2 F (a, b ; c 2; z) ] Gauss k β (x) = x β2 2F ( β 2, β 2, β; x ) (2.5) D = 4 g,0 (u, v) D=4 = z z z z [k (z)k 2 ( z) (z z)] l OPE l conformal blocks l D = 4 g,l (u, v) D=4 = ( )l 2 l z z z z [k +l(z)k l 2 ( z) (z z)] (2.6) 2 g,l (u, v) D=2 = ( )l 2 l [k +l (z)k l ( z) + (z z)] (2.7) D = 3 l z = z 2.6 Casimir Conformal Blocks conformal block Casimir SO(D +, ) J ab Casimir C 2 = J ab J 2 ab C 2 = 2 M µνm µν D 2 2 (K µp µ + P µ K µ ) 26

27 { (x 2 2 µ 2 µ 2(x 2 ) µ (x 2 ) ν µ 2 ν 2 (x 2 ) µ 2 µ (x 2 ) µ µ l C 2, l = C,l, l, C,l = ( D) + l(l + D 2), l n n;, l ϕ (x )ϕ 2 (x 2 )ϕ 3 (x 3 )ϕ 4 (x 4 ) =,l,n 0 ϕ (x )ϕ 2 (x 2 ) n;, l n;, l ϕ 3 (x 3 )ϕ 4 (x 4 ) [ J ab, [ J ab, ϕ (x )ϕ 2 (x 2 ) ]] n;, l = 0 ϕ (x )ϕ 2 (x 2 )C 2 n;, l = C,l 0 ϕ (x )ϕ 2 (x 2 ) n;, l C 2 P µ n + ( + 2 ) ( + 2 D) } 0 ϕ (x )ϕ 2 (x 2 ) n;, l O,l conformal block g,l 0 ϕ (x )ϕ 2 (x 2 ) n;, l n;, l ϕ 3 (x 3 )ϕ 4 (x 4 ) 0 n ( ) x 2 2 /2 ( = 24 x 2 ) 34 /2 4 f,lg 2,l (u, v) x 2 4 x 2 3 (x 2 2) ( + 2 )/2 (x 2 34) ( 3+ 4 )/2 conformal block Dg,l (u, v) = 2 C,lg,l (u, v), 27

28 D = ( u + v)u ( u ) + [ ( v) 2 u( + v) ] ( v ) u u v v 2( + u v)uv 2 u v Du u + [ ( 2 ( 2 34 ) ( + u v) u u + v ) ( u v) ] v v ( + u v) z z D = z 2 ( z) 2 z + 2 z2 ( z) 2 z + ( 2 2 ( ) z 2 z + ) z2 z (z + z) + (D 2) z z ( ( z) z z z ( z) ) z D = 4, 2 (2.6) (2.7) (2.5) ( k β (x) = x β2 β 2F 2 2 2, β 2 + ) 34 2 ; β; x 2.7 (.0) D = 4 µ,, µ ν, = δ δ µν µ; ν, = P µ ν, µ; λ, ν; σ, = λ, [K µ, P ν ] σ, = λ, 2i (Dδ µν + M µν ) σ, = 2δ ( δ µν δ λσ δ µλ δ νσ + δ νλ δ µσ ) 28

29 Hermite P µ = K µ K µ ν, = ν, P µ = 0 λ, M µν σ, = (Σ µν ) λσ a = (µ, λ) b = (ν, σ) 6 6 a b 3 2( 3) 2( ) 2( + ) 3 SO(4) {r} {r}, M µν {r}, = (Σ µν ) {r },{r} {r },, id {r}, = {r},, K µ {r}, = 0 SO(4) SU(2) SU(2) SU(2) j, j 2 {r} (j, j 2 ) (2j + )(2j 2 + ) l O µ µ l j = j 2 = l/2 P µ n n µ µ n ; {r}, = P µ P µn {r}, {r }, {r}, = δ {r }{r}δ µ; {r}, = P µ {r}, ( µ; {r }, ν; {r}, = δ 2 δ{r }{r} + 2 {r }, im µν {r}, ) (2.8) 29

30 Lorentz im µν = i 2 (δ µαδ νβ δ µβ δ να ) M αβ = 2 (Σ αβ) µν M αβ Σ αβ µ µ M {v} αβ ν = (Σ αβ) µν 2 {r }, im µν {r}, = µ {r }, M {v} αβ M {r} αβ {r}, ν (2.9) M {R} αβ M {v} αβ = M {v} αβ + M {r} αβ M {r} αβ = 2 M {R} αβ M {R} αβ 2 M {v} αβ M {v} αβ 2 M {r} αβ M {r} αβ = c 2 ({R}) c 2 ({v}) c 2 ({r}) c 2 SO(4) Casimir {r} SU(2) SU(2) (j, j 2 ) {v} (/2, /2) {R} (J, J 2 ) J,2 j,2 ± /2 (2.9) Casimir 2J (J +)+2J 2 (J 2 +) 3 2j (j + ) 2j 2 (j 2 + ) (2.8) (2.8) j, j 2 0 (2.8) J = j /2, J 2 = j 2 /2 2 2(j + j 2 + 2) j + j for j, j 2 0 j = j 2 = l/2 l l + 2 j = 0, j 2 0 J = /2, J 2 = j 2 /2 30

31 2 2(j 2 + ) j 2 + for j = 0, j 2 0 j j 2 j = j 2 = P µ P µ K µ K µ P ν P ν = 32 ( )δ for j = j 2 = Conformal Bootstrap 3.5 (2.4) conformal block g,l p,l F d,,l (z, z) =,,l F d,,l (z, z) = vd g,l (u, v) u d g,l (v, u) u d v d (2.0) p,l = f,l 2 (d = ) l p,l = δ,l+2 δ l,2n 2 l+ (l!) 2 /(2l)! OPE f,l p,l 0 3

32 OPE D = 4 d OPEϕ d ϕ d + O (d ) /2 + 2.(d ) (d ) 3/2 + o((d ) 2 )(2.) D = 2 Ising ϕ d σ O ε d = σ = /8 = ε = d = /8 OPE = D = 3 Ising z = /2 + X + iy X Y N Λ[F ] = m,n=even 2 m+n N λ m,n m X n Y F X=Y =0 X = Y = 0 (z = z = /2) (2.0) p,l Λ [F d,,l ] = 0 (2.2),l 32

33 l Λ[F d,,l ] 0 p,l 0 OPE ϕ d ϕ d + f O + l>0 l=even O,l D 2+l O f l > 0 d f f (l = 0) D 2 + l (l > 0) Λ[F d,,l ] 0 λ m,n p,l 0,l p,l Λ [F d,,l ] 0 (2.2) d f d f d f f c (d) D/2 f c (d) l l (linear programing method) λ m,n (2.) OPE O f ( f c ) = f c Ising σ = 0.582(3) ε =.43() 33

34 OPE ( ) 2.9 Wilson-Fisher Wilson-Fisher 8 D = 4 ϵ 4 S = [ ] d D x 2 ( ϕ)2 + λϕ 4 β λ = ϵλ + 9λ2 2π 2 ϵ 0 λ = ϵ2π 2 /9 ϕ : ϕ 2 : γ = 3λ 2 /6π 4 δ = 3λ/2π 2 9 ϕ = D λ2 ( 6π = ϵ ) + ϵ ϕ 2 = D 2 + 3λ 2π 2 = (2 ϵ) + ϵ 3 Ising OPEσ σ ε ϕ ϕ ϕ 2 σ = ϕ ε = ϕ 2 Ising ϵ σ = 0.5 ε = J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, Oxford Univ. Press. 9 S. Hathrell, Ann. Phys. 39 (982)36 [ L. Brown, Ann. Phys. 26 (980) 35 ] 0 o(ϵ 5 ) σ = ε = 34

35 3 3. Wess-Zumino Weyl δg µν = 2ωg µν Γ δ ω Γ = d 4 x gω { ac 2 µνλσ + bg 4 + cr 2 + d 2 R + ef 2 µν } C µνλσ 2 Weyl G 4 Euler C 2 µνλσ = R 2 µνλσ 2R 2 µν + 3 R2, G 4 = R 2 µνλσ 4R 2 µν + R 2 (3.) Fµν 2 Weyl Wess-Zumino (Wess- Zumino integrability condition)[δ ω, δ ω2 ] = 0 2 (3.) [δ ω, δ ω2 ] Γ = 24c d 4 x gr ( ω ˆ 2 ω 2 ω 2 ˆ 2 ω ).402 S. Rychkov and Z. Tan, J. Phys. A48 (205) 29FT0 R. Gopkumar et al, Phys. Rev. Lett. 8 (207) 0860 M. Duff, Nucl. Phys. B25 (977) L. Bonora, P. Cotta-Ramusino and C. Reina, Phys. Lett. B26 (983)

36 c = 0 R Riegert-Wess-Zumino g µν = e 2ϕ ḡ µν ϕ Euler Euler E 4 = G R Euler E 4 ge 4 = ḡ(4 4 ϕ+ Ē 4 ) S RWZ (ϕ, ḡ) = b (4π) 2 = b (4π) 2 ϕ d 4 x dϕ ge 4 0 d 4 x ḡ ( 2ϕ 4 ϕ + Ē4ϕ ) (3.2) 3 g 4 (self-adjoint) d 4 x ga 4 B = d 4 x g( 4 A)B 4 4 = 4 + 2R µν µ ν 2 3 R µ R µ 3 R. Riegert, Phys. Lett. 34B (984) 56 36

37 Riegert-Wess-Zumino ϕ Riegert b N X N W Weyl N A b = (N X + ) N W + 62N A f I Riegert ϕ I(f, g) = I(f, ḡ)( f ϕ ) Riegert ϕ g µν (= e 2ϕ ḡ µν ) ḡ µν Jacobian [df] g = [df]ḡe is(ϕ,ḡ) e iγ(g) = [df] g e ii(f,g) = e is(ϕ,ḡ) [df]ḡe ii(f,ḡ) = e is(ϕ,ḡ) e iγ(ḡ) g µν ϕ ϕ ω, ḡ µν e 2ω ḡ µν (3.3) e is(ϕ ω,e2ω ḡ) e iγ(e2ω ḡ) = e is(ϕ ω,e2ω ḡ) e is(ω,ḡ) e iγ(ḡ) e iγ(g) S S(ϕ ω, e 2ω ĝ) + S(ω, ĝ) = S(ϕ, ĝ) Wess-Zumino S RWZ (3.2) [0, ϕ] [0, ω] [ω, ϕ] 37

38 (3.3) Riegert-Wess-Zumino Riegert-Wess-Zumino S RWZ Riegert ϕ (3.3) Γ(ḡ) Γ Riegert (g) = S RWZ (ϕ, ḡ) + Γ Riegert (ḡ) Γ Riegert (g) = b d 4 x ge (4π) 2 4 E 4 4 Riegert-Wess-Zumino S RWZ Wess-Zumino Riegert 3.3 Weyl QED U() Weyl U() F 2 µν Wess-Zumino S QED(ϕ, ḡ) = aϕ gf 2 µν/4 ϕ QED Riegert ϕ ϕ S QED ϕ Γ QED (ḡ) Γ QED (ḡ) = { ( )} e2 r k 2 gf 4 2π log 2 2 µ 2 µν 38

39 µ k 2 = ḡ µν k µ k ν ḡ µν ḡ µν Minkowski QED β e = e 3 r/2π 2 e r Wess-Zumino (3.3) k 2 e 2ω k 2 Wess-Zumino a = e 2 r/6π 4 { + e2 r 6π ϕ e2 r 2 2π log 2 ( k 2 µ 2 )} gf 2 µν g µν (= e 2ϕ ḡ µν ) p 2 = k2 e 2ϕ (3.4) Γ QED (g) = 4 { e2 r 2π 2 log ( p 2 µ 2 )} gf 2 µν µ p k (comoving momentum) Weyl t Weyl (/t 2 ) d 4 x gc 2 µνλσ ḡ µν Weyl { ( ) } k 2 gc 2 Γ Weyl (g) = + β 0 log 2β 0 ϕ µνλσ (3.5) t 2 r ḡ µν h µν ḡ µν Minkowski 39 µ 2

40 ḡ µν = η µν + th µν I int = t d 4 xh µν T µν /2 T µν h µν 2 β 0 4 β 0 = 240(4π) 2 (N X + 3N W + 2N A ) t β t = β 0 t 3 r (3.5) Wess-Zumino (3.3) p t 2 r(p) = β 0 log(p 2 /Λ 2 QG) (3.6) Γ Weyl (g) = gc 2 t 2 µνλσ (3.7) r(p) Λ QG = µ exp( /2β 0 t 2 r) 5 t (Riegert ) 4 2 β 0 5 Adler-Bardeen 40

41 t t = 0 4

42 A P µ µ l,ν ν l Euclid Minkowski η µν x 0 x 0 iϵ x µ = (Rx) µ = x µ x 2 Ω(x) = /x 4 R 2 = I x µ = (Rx ) µ O (x ) = Ω(x) /2 O(x) = x 2 O(x) 6 x O (x) = (/x 2 ) O(Rx) O x O (x )O (y ) = O(x )O(y ) (.6) (x 2 y 2 ) O(x)O(y) = O(Rx)O(Ry) (Rx Ry) 2 = x2 y 2 (x y) 2 O(x)O(y) = (x y) 2 O µ(x ) = Ω(x) ( )/2 x ν O x ν (x) = x 2 I µν (x)o ν (x) µ 6 Euclid O Hermite O 42

43 I µν (x) = δ µν 2x µ x ν /x 2 O µ(x )O ν(y ) = O µ (x )O ν (y ) (x 2 y 2 ) I µλ (x)i νσ (y) O λ (x)o σ (y) = O µ (Rx)O ν (Ry) I µλ (x)i νσ (y)i λσ (x y) = I µν (x y) + 2 x2 y 2 ( xµ x ν (x y) 2 x 2 = I µν (Rx Ry) y ) µy ν y 2 O µ (x)o ν (y) = I µν(x y) (x y) 2 P µ,ν = I µν B Wightman Fourier D Euclid Wightman2 O(x)O(0) Fourier (x 2 ) = (2π) D 2 Γ( D ) 2 4 D 4 Γ( ) d D k ( eik x k 2) (2π) D D 2 (B.) Minkowski Wightman Fourier Euclid k x k x+k D x D k x Minkowski D x D = ix 0 +ϵ (B.) Minkowski Wightman 0 O(x)O(0) 0 { (x 0 iϵ) 2 + x 2 } = (2π) D 2 Γ( D ) 2 d D k eik x 4 D 4 Γ( ) (2π) D dk D { (x 0 iϵ) 2π e kd k 2 + (k D ) 2} D 2 (B.2) 43

44 k D e iϵkd k D k D = ±i k k D = i k i k D = i k i < k D < ( = D/2 ) k D = ik 0 = i dk D { 2π e kd (x0 iϵ) k 2 + (k D ) 2} D 2 dk 0 { [k 0 2π e ik0 x0 ϵk0 ) 2 (k 0 io) 2] D 2 [ k 2 (k 0 + io) 2] } D 2 o (x + io) λ (x io) λ = 0 for x > 0 2i x λ sin πλ for x < 0 = 2i( x) λ θ( x) sin πλ [k 2 (k 0 io) 2 ] D/2 [k 2 (k 0 + io) 2 ] D/2 = 2i( k 2 ) D/2 θ( k 2 ) sin π( D/2) k 2 = k 2 (k 0 ) 2 (B.2) [ ( 2 sin π D )] D (2π) 2 Γ( D ) 2 d D k eik x 2 4 D 4 Γ( ) (2π) D dk 0 x0 e ik0 ( k 2 ) D 2 θ( k 2 ) 0 2π (2π) D 2 + d D k = eik x 4 D 4 Γ( )Γ( D + ) θ(k 0 )θ( k 2 )( k 2 ) (2π) D 2 Γ(λ)Γ( λ) = π/ sin πλ Γ(λ+) = λγ(λ) Fourier W (k) 44 D 2

45 C M 4 I = d 4 x ĝ (ĝ µν µ X ν X ˆRX ) 2 Minkowski ĝ µν = η µν P X = η X [X(η, x), P X (η, x )] = iδ 3 (x x ) X = X < + X > X > = X < X < (x) = d 3 k φ(k)e ik µx µ (2π) 3/2 2ω [φ(k), φ (k )] = δ 3 (k k ) 2 (Wightman ) 0 X(x)X(0) 0 = [X < (x), X > (0)] 0 X(x)X(0) 0 = d 3 k e i k (η iϵ)+ik x = (2π) 3 2 k 4π 2 (η iϵ) 2 + x 2 ϵ UV ĝ µν T µν = (2/ ĝ) δi/δĝ µν Minkowski T µν = 2 3 µx ν X 3 X µ ν X 6 η µν λ X λ X P 0 = H = d 3 xa, P j = d 3 xb j, M 0j = d 3 x ( ηb j x j A), M ij = d 3 x (x i B j x j B i ), 45

46 D = K 0 = K j = d 3 x ( ηa + x k B k + :P X X : ), { (η d 3 x 2 + x 2) A + 2ηx k B k + 2η :P X X : + } 2 :X2 :, d 3 x {( η 2 + x 2) B j 2x j x k B k 2ηx j A 2x j :P X X : } A B j A = 2 :P2 X : 2 :X 2 X :, B j =:P X j X : 2 = j j 2 0 X(x)X(x ) 0 = 4π 2 (x x ) 2 + ϵ 2, 0 X(x)P X (x ) 0 = i 2π 2 ϵ [(x x ) 2 + ϵ 2 ] 2, 0 P X (x)p X (x ) 0 = 2π 2 (x x ) 2 3ϵ 2 [(x x ) 2 + ϵ 2 ] 3 X P X [X(η, x), P X (η, x )] = 0 X(η, x)p X (η, x ) 0 0 X(η, x)p X (η, x ) 0 = i π 2 ϵ [(x x ) 2 + ϵ 2 ] 2 X P X 3 δ d 3 k δ 3 (x) = eik x ϵω = ϵ (2π) 3 π 2 (x 2 + ϵ 2 ) 2 OPE [:AB(x):, :CD(y):] = [A(x), C(y)] :B(x)D(y): + [A(x), D(y)] :B(x)C(y): + [B(x), C(y)] :A(x)D(y): + [B(x), D(y)] :A(x)C(y): +QC(x y) 46

47 QC(x y) = A(x)C(y) B(x)D(y) + A(x)D(y) B(x)C(y) H.c. H.c. Hermite A B j [A(x), A(y)] = 2 i 2 xδ 3 (x y) (:P X (x)x(y): :X(x)P X (y):), [B j (x), B k (y)] = i x k δ 3 (x y) : j X(x)P X (y): +i x j δ 3 (x y) :P X (x) k X(y):, [A(x), B j (y)] = i x j δ 3 (x y) :P X (x)p X (y): 2 iδ 3(x y) : 2 X j X(y): 2 i 2 xδ 3 (x y) :X(x) j X(y): i 2 π 2 f j(x y) ( [A(x), :P X X(y):] = iδ 3 (x x) :P 2 X(y): + ) 2 :X 2 X(y): 2 i 2 xδ 3 (x y) :X(x)X(y): +i 0 f(x y), π2 [B j (x), :P X X(y):] = iδ 3 (x x)b j (y) + i j x δ(x y) :P X (x)x(y): f j f f j (x) = ϵx j (x 2 ϵ 2 ) f(x) = ϵ(5x 2 3ϵ 2 ) π 2 (x 2 + ϵ 2 ) 6 40π 2 (x 2 + ϵ 2 ) 5 f j (x) = j f(x) ϵ d 3 xf j (x) = 0, d 3 xf(x) = 0, d 3 xx j f(x) = 0 d 3 xx 2 f(x) = /60ϵ 2 ϵ 0 7 (.4) 7 f δ f(x) = ( /320) 2 ( δ 3 (x)/x 2) δ π 2 δ 3 (x) = 4ϵ 3 /(x 2 + ϵ 2 ) 3 47

48 :X n : [A(x), :X n (y):] = iδ 3 (x y) η :X n (y):, [B j (x), :X n (y):] = iδ 3 (x y) j :X n (y): +i 2π n(n )g j(x y) :X n 2 (y):, 2 [:P X X(x):, :X n (y):] = inδ 3 (x y) :X n (y): +i 3 2π n(n )g(x y) 2 :Xn 2 (y): g j g g j (x) = π 2 ϵx j g(x) = ϵ (x 2 + ϵ 2 ) 4 6π 2 (x 2 + ϵ 2 ) 3 g j (x) = j g(x) :X n : i [P µ, :X n (x):] = µ :X n (x):, i [M µν, :X n (x):] = (x µ ν x ν µ ) :X n (x):, i [D, :X n (x):] = (x µ µ + n) :X n (x):, i [K µ, :X n (x):] = ( x 2 µ 2x µ x ν ν 2x µ n ) :X n (x): :X n : n D S CFT relevant ( < D ) ε 48

49 t = (T T c )/T c S t = S CFT ta ε D d D xε(x) ε a 8 ξ ta ε D ξ ε D ξ at ν, ν = D ε (D.) relevant ε < D ν ξ t 0 t O O t = Oe S t O t = n=0 ( n! O ta ε D d D xε(x)) n O = Oe S CFT CFT ξ UV a = ε σ Ising OPE σ σ I + ε, σ ε ε, ε ε I 8 t a a 49

50 f C = 2 f/ t 2 = ε(0) t / t ξ (t ) CFT ε C = ε(0) d D xε(x) = d D x x ξ x ξ x 2 ε ε t ξ x ξ ξ C ξ D 2 ε + const. ξ 9 α C t α ξ t ν t α = ν(d 2 ε ) CFT σ ε OPE σε M = σ(0) t = t2 d D x d D y σ(0)ε(x)ε(y) 2! x ξ y ξ ξ (t 0) M t 2 ξ 2D σ 2 ε t ν σ 9 D = 2 Ising 50

51 σ M t β β = ν σ h S t,h = S CFT ta ε D d D xε(x) ha σ D d D xσ(x) χ = h σ(0) t,h = d D x σ(0)σ(x) ξ D 2 σ t ν(d 2 σ) h=0 x ξ χ t γ γ = ν(d 2 σ ) t = 0 h M h /δ h S h = S CFT ha σ D d D xσ(x) M = σ(0) h = h d D x σ(0)σ(x) x ξ ξ σ D ha σ D ξ (h 0) M h ξ D 2 σ h σ/(d σ ) δ = D σ σ 5

52 η 2 σ = D 2 + η (D.) σ ε α = 2 νd [Josephson slaw], β = ν(d 2 + η), 2 γ = ν(2 η) [Fisher slaw], δ = D + 2 η D 2 + η α + 2β + γ = 2 γ = β(δ ) [Rushbrooke slaw], [Widom slaw] D = 2 Ising ε = σ = /8 ν = η = /4 α = 0, β = 8, γ = 7 4, δ = 5 52

53 E E. Fradkin and M. Palchik, Conformal Quantum Field Theory in D-dimensions (Kluwer Academic Publishers, Dordrecht, 996) P. Di Francesco, P. Mathieu and D. Senechal, Conformal Field Theory (Springer, New York, 997). (unitarity bound) G. Mack, All Unitary Ray Representations of the Conformal Group SU(2, 2) with Positive Energy, Commun. Math. Phys. 55 (977). S. Minwalla, Restrictions imposed by Superconformal Invariance on Quantum Field Theories, Adv. Theor. Math. Phys. 2 (998) 78. B. Grinstein, K. Intriligator and I. Rothstein, Comments on Unparticle, Phys. Lett. B662 (2008) 367. D. Dorigoni and S. Rychkov, Scale Invariance + Unitarity Conformal Invariance?, arxiv Conformal Bootstrap A. Polyakov, Zh. Eksp. Teor. Fiz. 66 (974) 23. S. Ferrara, A. Grillo and R. Gatto, Ann. Phys. 76 (973) 6. G. Mack, Nucl. Phys. B8 (977)

54 Conformal Blocks F. Dolan and H. Osborn, Conformal Four Point Functions and the Operator Product Expansion, Nucl. Phys. B599 (200) 459. F. Dolan and H. Osborn, Conformal Partial Wave and the Operator Product Expansion, Nucl. Phys. B678 (2004) 49. F. Dolan and H. Osborn, Conformal Partial Waves: Further Mathematical Results, arxiv: Conformal Bootstrap R. Rattazzi, V. Rychkov, E. Tonni and A. Vichi, Bounding Scalar Operator Dimensions in 4D CFT, JHEP 082 (2008) 03. V. Rychkov and A. Vichi, Universal Constraints on Conformal Operator Dimensions, Phys. Rev. D80 (2009) S. El-Showk, M. Paulos, D. Poland, S. Rychkov, D. Simmons-Duffin and A. Vichi, Solving the 3D Ising Model with the Conformal Bootstrap, Phys. Rev. D86 (202) OPE D. Pappadopulo, S. Rychkov, J. Espin and R. Rattazzi, OPE Convergence in Conformal Field Theory, Phys. Rev. D86 (202) M. Hogervorst and S. Rychkov, Radial Coordinates for Conformal Blocks, arxiv:

量子重力理論と宇宙論 (上巻) 共形場理論と重力の量子論 浜田賢二 高エネルギー加速器研究機構 (KEK) 素粒子原子核研究所 量子重力の世界は霧に包まれた距離感のない幽玄の世界にたとえること ができる 深い霧が晴れて時空が

量子重力理論と宇宙論 (上巻) 共形場理論と重力の量子論 浜田賢二 高エネルギー加速器研究機構 (KEK) 素粒子原子核研究所   量子重力の世界は霧に包まれた距離感のない幽玄の世界にたとえること ができる 深い霧が晴れて時空が 量子重力理論と宇宙論 (上巻) 共形場理論と重力の量子論 浜田賢二 高エネルギー加速器研究機構 (KEK) 素粒子原子核研究所 http://research.kek.jp/people/hamada/ 量子重力の世界は霧に包まれた距離感のない幽玄の世界にたとえること ができる 深い霧が晴れて時空が現れる 国宝松林図屏風 (長谷川等伯筆) 平成 0 年 11 月初版/平成 1 年 09 月改定/ 平成

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

2 Planck Planck BRST Planck Λ QG Planck GeV Planck Λ QG Friedmann CMB

2 Planck Planck BRST Planck Λ QG Planck GeV Planck Λ QG Friedmann CMB 量子重力理論と宇宙論 (下巻) くりこみ理論と初期宇宙論 浜田賢二 高エネルギー加速器研究機構 (KEK) 素粒子原子核研究所 http://research.kek.jp/people/hamada/ 量子重力の世界は霧に包まれた距離感のない幽玄の世界にたとえること ができる 深い霧が晴れて時空が現れる 国宝松林図屏風 (長谷川等伯筆) 平成 20 年 11 月初版/平成 21 年 09 月改定/

More information

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji 8 4 2018 6 2018 6 7 1 (Contents) 1. 2 2. (1) 22 3. 31 1. Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji SETO 22 3. Editorial Comments Tadashi

More information

Macdonald, ,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdona

Macdonald, ,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdona Macdonald, 2015.9.1 9.2.,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdonald,, q., Heckman Opdam q,, Macdonald., 1 ,,. Macdonald,

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1 QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1 (vierbein) QCD QCD 1 1: QCD QCD Γ ρ µν A µ R σ µνρ F µν g µν A µ Lagrangian gr TrFµν F µν No. Yes. Yes. No. No! Yes! [1] Nash & Sen [2] Riemann

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) = 1 1 1.1 I R 1.1.1 c : I R 2 (i) c C (ii) t I c (t) (0, 0) c (t) c(i) c c(t) 1.1.2 (1) (2) (3) (1) r > 0 c : R R 2 : t (r cos t, r sin t) (2) C f : I R c : I R 2 : t (t, f(t)) (3) y = x c : R R 2 : t (t,

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc2.com/ 1 30 3 30.1.............. 3 30.2........................... 4 30.3...................... 5 30.4........................ 6 30.5.................................. 8 30.6...............................

More information

newmain.dvi

newmain.dvi 数論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/008142 このサンプルページの内容は, 第 2 版 1 刷発行当時のものです. Daniel DUVERNEY: THÉORIE DES NOMBRES c Dunod, Paris, 1998, This book is published

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc2.com/ 1 6 3 6.1................................ 3 6.2.............................. 4 6.3................................ 5 6.4.......................... 6 6.5......................

More information

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2 filename=mathformula58.tex ax + bx + c =, x = b ± b 4ac, (.) a x + x = b a, x x = c a, (.) ax + b x + c =, x = b ± b ac. a (.3). sin(a ± B) = sin A cos B ± cos A sin B, (.) cos(a ± B) = cos A cos B sin

More information

『共形場理論』

『共形場理論』 T (z) SL(2, C) T (z) SU(2) S 1 /Z 2 SU(2) (ŜU(2) k ŜU(2) 1)/ŜU(2) k+1 ŜU(2)/Û(1) G H N =1 N =1 N =1 N =1 N =2 N =2 N =2 N =2 ĉ>1 N =2 N =2 N =4 N =4 1 2 2 z=x 1 +ix 2 z f(z) f(z) 1 1 4 4 N =4 1 = = 1.3

More information

[1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin Clifford Spin 10 A 12 B 17 1 Cliffo

[1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin Clifford Spin 10 A 12 B 17 1 Cliffo [1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin + 8 5 Clifford Spin 10 A 12 B 17 1 Clifford Spin D Euclid Clifford Γ µ, µ = 1,, D {Γ µ, Γ ν

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. tomocci 18 7 5...,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. M F (M), X(F (M)).. T M p e i = e µ i µ. a a = a i

More information

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes ) ( 3 7 4 ) 2 2 ) 8 2 954 2) 955 3) 5) J = σe 2 6) 955 7) 9) 955 Statistical-Mechanical Theory of Irreversible Processes 957 ) 3 4 2 A B H (t) = Ae iωt B(t) = B(ω)e iωt B(ω) = [ Φ R (ω) Φ R () ] iω Φ R (t)

More information

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a = II 6 ishimori@phys.titech.ac.jp 6.. 5.4.. f Rx = f Lx = fx fx + lim = lim x x + x x f c = f x + x < c < x x x + lim x x fx fx x x = lim x x f c = f x x < c < x cosmx cosxdx = {cosm x + cosm + x} dx = [

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2 1 Abstract n 1 1.1 a ax + bx + c = 0 (a 0) (1) ( x + b ) = b 4ac a 4a D = b 4ac > 0 (1) D = 0 D < 0 x + b a = ± b 4ac a b ± b 4ac a b a b ± 4ac b i a D (1) ax + bx + c D 0 () () (015 8 1 ) 1. D = b 4ac

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................

More information

K E N Z U 2012 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.2................................... 4 1.2.1..................................... 4 1.2.2.................................... 5................................

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 p µ γ µ + mp ν γ ν + m 5.1 γ p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 1 2 p µp ν {γ µ, γ ν } + m 2 5.2 p m p p µ γ µ {, } 10 γ {γ µ, γ ν } 2η µν 5.3 p µ γ µ + mp

More information

i

i i 3 4 4 7 5 6 3 ( ).. () 3 () (3) (4) /. 3. 4/3 7. /e 8. a > a, a = /, > a >. () a >, a =, > a > () a > b, a = b, a < b. c c n a n + b n + c n 3c n..... () /3 () + (3) / (4) /4 (5) m > n, a b >, m > n,

More information

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4 35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

Morse ( ) 2014

Morse ( ) 2014 Morse ( ) 2014 1 1 Morse 1 1.1 Morse................................ 1 1.2 Morse.............................. 7 2 12 2.1....................... 12 2.2.................. 13 2.3 Smale..............................

More information

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1)

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1) φ 4 Minimal subtraction scheme 2-loop ε 28 University of Tokyo Atsuo Kuniba version 2/Apr/28 Formulas Γ n + ɛ = n n! ɛ + ψn + + Oɛ n =,, 2, ψn + = + 2 + + γ, 2 n ψ = γ =.5772... Euler const, log + ax x

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

30 I .............................................2........................................3................................................4.......................................... 2.5..........................................

More information

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1)

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1) D d dx 1 1.1 n d n y a 0 dx n + a d n 1 y 1 dx n 1 +... + a dy n 1 dx + a ny = f(x)...(1) dk y dx k = y (k) a 0 y (n) + a 1 y (n 1) +... + a n 1 y + a n y = f(x)...(2) (2) (2) f(x) 0 a 0 y (n) + a 1 y

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K II. () 7 F 7 = { 0,, 2, 3, 4, 5, 6 }., F 7 a, b F 7, a b, F 7,. (a) a, b,,. (b) 7., 4 5 = 20 = 2 7 + 6, 4 5 = 6 F 7., F 7,., 0 a F 7, ab = F 7 b F 7. (2) 7, 6 F 6 = { 0,, 2, 3, 4, 5 },,., F 6., 0 0 a F

More information

量子力学A

量子力学A c 1 1 1.1....................................... 1 1............................................ 4 1.3.............................. 6 10.1.................................. 10......................................

More information

入試の軌跡

入試の軌跡 4 y O x 4 Typed by L A TEX ε ) ) ) 6 4 ) 4 75 ) http://kumamoto.s.xrea.com/plan/.. PDF) Ctrl +L) Ctrl +) Ctrl + Ctrl + ) ) Alt + ) Alt + ) ESC. http://kumamoto.s.xrea.com/nyusi/kumadai kiseki ri i.pdf

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

2017 II 1 Schwinger Yang-Mills 5. Higgs 1

2017 II 1 Schwinger Yang-Mills 5. Higgs 1 2017 II 1 Schwinger 2 3 4. Yang-Mills 5. Higgs 1 1 Schwinger Schwinger φ 4 L J 1 2 µφ(x) µ φ(x) 1 2 m2 φ 2 (x) λφ 4 (x) + φ(x)j(x) (1.1) J(x) Schwinger source term) c J(x) x S φ d 4 xl J (1.2) φ(x) m 2

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

( )

( ) 7..-8..8.......................................................................... 4.................................... 3...................................... 3..3.................................. 4.3....................................

More information

2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =

More information

,,..,. 1

,,..,. 1 016 9 3 6 0 016 1 0 1 10 1 1 17 1..,,..,. 1 1 c = h = G = ε 0 = 1. 1.1 L L T V 1.1. T, V. d dt L q i L q i = 0 1.. q i t L q i, q i, t L ϕ, ϕ, x µ x µ 1.3. ϕ x µ, L. S, L, L S = Ld 4 x 1.4 = Ld 3 xdt 1.5

More information

Einstein ( ) YITP

Einstein ( ) YITP Einstein ( ) 2013 8 21 YITP 0. massivegravity Massive spin 2 field theory Fierz-Pauli (FP ) Kinetic term L (2) EH = 1 2 [ λh µν λ h µν λ h λ h 2 µ h µλ ν h νλ + 2 µ h µλ λ h], (1) Mass term FP L mass =

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2 1 1.1 R(x) = 0 y + P (x)y + Q(x)y = R(x)...(1) y + P (x)y + Q(x)y = 0...(2) 1 2 u(x) v(x) c 1 u(x)+ c 2 v(x) = 0 c 1 = c 2 = 0 c 1 = c 2 = 0 2 0 2 u(x) v(x) u(x) u (x) W (u, v)(x) = v(x) v (x) 0 1 1.2

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f 22 A 3,4 No.3 () (2) (3) (4), (5) (6) (7) (8) () n x = (x,, x n ), = (,, n ), x = ( (x i i ) 2 ) /2 f(x) R n f(x) = f() + i α i (x ) i + o( x ) α,, α n g(x) = o( x )) lim x g(x) x = y = f() + i α i(x )

More information

IA

IA IA 31 4 11 1 1 4 1.1 Planck.............................. 4 1. Bohr.................................... 5 1.3..................................... 6 8.1................................... 8....................................

More information

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ = 1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A

More information

II 2 II

II 2 II II 2 II 2005 yugami@cc.utsunomiya-u.ac.jp 2005 4 1 1 2 5 2.1.................................... 5 2.2................................. 6 2.3............................. 6 2.4.................................

More information

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) = 1 9 8 1 1 1 ; 1 11 16 C. H. Scholz, The Mechanics of Earthquakes and Faulting 1. 1.1 1.1.1 : - σ = σ t sin πr a λ dσ dr a = E a = π λ σ πr a t cos λ 1 r a/λ 1 cos 1 E: σ t = Eλ πa a λ E/π γ : λ/ 3 γ =

More information

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n . X {x, x 2, x 3,... x n } X X {, 2, 3, 4, 5, 6} X x i P i. 0 P i 2. n P i = 3. P (i ω) = i ω P i P 3 {x, x 2, x 3,... x n } ω P i = 6 X f(x) f(x) X n n f(x i )P i n x n i P i X n 2 G(k) e ikx = (ik) n

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

DVIOUT-fujin

DVIOUT-fujin 2005 Limit Distribution of Quantum Walks and Weyl Equation 2006 3 2 1 2 2 4 2.1...................... 4 2.2......................... 5 2.3..................... 6 3 8 3.1........... 8 3.2..........................

More information

(2) Fisher α (α) α Fisher α ( α) 0 Levi Civita (1) ( 1) e m (e) (m) ([1], [2], [13]) Poincaré e m Poincaré e m Kähler-like 2 Kähler-like

(2) Fisher α (α) α Fisher α ( α) 0 Levi Civita (1) ( 1) e m (e) (m) ([1], [2], [13]) Poincaré e m Poincaré e m Kähler-like 2 Kähler-like () 10 9 30 1 Fisher α (α) α Fisher α ( α) 0 Levi Civita (1) ( 1) e m (e) (m) ([1], [], [13]) Poincaré e m Poincaré e m Kähler-like Kähler-like Kähler M g M X, Y, Z (.1) Xg(Y, Z) = g( X Y, Z) + g(y, XZ)

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =, [ ] IC. r, θ r, θ π, y y = 3 3 = r cos θ r sin θ D D = {, y ; y }, y D r, θ ep y yddy D D 9 s96. d y dt + 3dy + y = cos t dt t = y = e π + e π +. t = π y =.9 s6.3 d y d + dy d + y = y =, dy d = 3 a, b

More information

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2.

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2. A A 1 A 5 A 6 1 2 3 4 5 6 7 1 1.1 1.1 (). Hausdorff M R m M M {U α } U α R m E α ϕ α : U α E α U α U β = ϕ α (ϕ β ϕβ (U α U β )) 1 : ϕ β (U α U β ) ϕ α (U α U β ) C M a m dim M a U α ϕ α {x i, 1 i m} {U,

More information

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou (Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fourier) (Fourier Bessel).. V ρ(x, y, z) V = 4πGρ G :.

More information

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b) 2011 I 2 II III 17, 18, 19 7 7 1 2 2 2 1 2 1 1 1.1.............................. 2 1.2 : 1.................... 4 1.2.1 2............................... 5 1.3 : 2.................... 5 1.3.1 2.....................................

More information

all.dvi

all.dvi 5,, Euclid.,..,... Euclid,.,.,, e i (i =,, ). 6 x a x e e e x.:,,. a,,. a a = a e + a e + a e = {e, e, e } a (.) = a i e i = a i e i (.) i= {a,a,a } T ( T ),.,,,,. (.),.,...,,. a 0 0 a = a 0 + a + a 0

More information

l µ l µ l 0 (1, x r, y r, z r ) 1 r (1, x r, y r, z r ) l µ g µν η µν 2ml µ l ν 1 2m r 2mx r 2 2my r 2 2mz r 2 2mx r 2 1 2mx2 2mxy 2mxz 2my r 2mz 2 r

l µ l µ l 0 (1, x r, y r, z r ) 1 r (1, x r, y r, z r ) l µ g µν η µν 2ml µ l ν 1 2m r 2mx r 2 2my r 2 2mz r 2 2mx r 2 1 2mx2 2mxy 2mxz 2my r 2mz 2 r 2 1 (7a)(7b) λ i( w w ) + [ w + w ] 1 + w w l 2 0 Re(γ) α (7a)(7b) 2 γ 0, ( w) 2 1, w 1 γ (1) l µ, λ j γ l 2 0 Re(γ) α, λ w + w i( w w ) 1 + w w γ γ 1 w 1 r [x2 + y 2 + z 2 ] 1/2 ( w) 2 x2 + y 2 + z 2

More information

( 12 ( ( ( ( Levi-Civita grad div rot ( ( = 4 : 6 3 1 1.1 f(x n f (n (x, d n f(x (1.1 dxn f (2 (x f (x 1.1 f(x = e x f (n (x = e x d dx (fg = f g + fg (1.2 d dx d 2 dx (fg = f g + 2f g + fg 2... d n n

More information

December 28, 2018

December 28, 2018 e-mail : kigami@i.kyoto-u.ac.jp December 28, 28 Contents 2............................. 3.2......................... 7.3..................... 9.4................ 4.5............. 2.6.... 22 2 36 2..........................

More information

( ) (ver )

( ) (ver ) ver.3.1 11 9 1 1. p1, 1.1 ψx, t,, E, p. = E, p ψx, t,. p, 1.8 p4, 1. t = t ρx, t = m [ψ ψ ψ ψ] ρx, t = mi [ψ ψ ψ ψ] p4, 1.1 = p6, 1.38 p6, 1.4 = fxδ ϵ x = fxδϵx = 1 π fxδ ϵ x dx = fxδ ϵ x dx = [ 1 fϵ π

More information

A

A A04-164 2008 2 13 1 4 1.1.......................................... 4 1.2..................................... 4 1.3..................................... 4 1.4..................................... 5 2

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

A 2008 10 (2010 4 ) 1 1 1.1................................. 1 1.2..................................... 1 1.3............................ 3 1.3.1............................. 3 1.3.2..................................

More information

keisoku01.dvi

keisoku01.dvi 2.,, Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 4 Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 5 Mon, 2006, 401, SAGA, JAPAN Dept.

More information

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i July 8, 4. H H H int H H H int H int (x)d 3 x Schrödinger Picture Ψ(t) S e iht Ψ H O S Heisenberg Picture Ψ H O H (t) e iht O S e iht Interaction Picture Ψ(t) D e iht Ψ(t) S O D (t) e iht O S e ih t (Dirac

More information

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,. 24(2012) (1 C106) 4 11 (2 C206) 4 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 (). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5... 6.. 7.,,. 8.,. 1. (75%)

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x 7 7.1 7.1.1 Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x 3 )=(x 0, x )=(ct, x ) (7.3) E/c ct K = E mc 2 (7.4)

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

I

I I 6 4 10 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [ 3 3. 3.. H H = H + V (t), V (t) = gµ B α B e e iωt i t Ψ(t) = [H + V (t)]ψ(t) Φ(t) Ψ(t) = e iht Φ(t) H e iht Φ(t) + ie iht t Φ(t) = [H + V (t)]e iht Φ(t) Φ(t) i t Φ(t) = V H(t)Φ(t), V H (t) = e iht V (t)e

More information

振動と波動

振動と波動 Report JS0.5 J Simplicity February 4, 2012 1 J Simplicity HOME http://www.jsimplicity.com/ Preface 2 Report 2 Contents I 5 1 6 1.1..................................... 6 1.2 1 1:................ 7 1.3

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

phs.dvi

phs.dvi 483F 3 6.........3... 6.4... 7 7.... 7.... 9.5 N (... 3.6 N (... 5.7... 5 3 6 3.... 6 3.... 7 3.3... 9 3.4... 3 4 7 4.... 7 4.... 9 4.3... 3 4.4... 34 4.4.... 34 4.4.... 35 4.5... 38 4.6... 39 5 4 5....

More information

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1) 1. 1.1...,. 1.1.1 V, V x, y, x y x + y x + y V,, V x α, αx αx V,, (i) (viii) : x, y, z V, α, β C, (i) x + y = y + x. (ii) (x + y) + z = x + (y + z). 1 (iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information