Lebesgue可測性に関するSoloayの定理と実数の集合の正則性=1This slide is available on ` `%%%`#`&12_`__~~~ౡ氀猀e

Similar documents
( ) 7 29 ( ) meager (forcing) [12] Sabine Koppelberg 1995 [10] [15], [2], [3] [15] [2] [3] [11]

1980年代半ば,米国中西部のモデル 理論,そして未来-モデル理論賛歌

プログラム

本文/目次(裏白)

1. R n Ω ε G ε 0 Ω ε B n 2 Ωε = with Bu = 0 on Ω ε i=1 x 2 i ε +0 B Bu = u (Dirichlet, D Ω ε ), Bu = u ν (Neumann, N Ω ε ), Ω ε G ( ) / 25

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

第86回日本感染症学会総会学術集会後抄録(I)

第5章 偏微分方程式の境界値問題

Erased_PDF.pdf

III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). T

untitled


Ł\”ƒ-2005

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3

第90回日本感染症学会学術講演会抄録(I)

1

Exercise in Mathematics IIB IIB (Seiji HIRABA) 0.1, =,,,. n R n, B(a; δ) = B δ (a) or U δ (a) = U(a;, δ) δ-. R n,,,, ;,,, ;,,. (S, O),,,,,,,, 1 C I 2

I , : ~/math/functional-analysis/functional-analysis-1.tex

I: 2 : 3 +

放射線専門医認定試験(2009・20回)/HOHS‐05(基礎二次)

プログラム

(Basic of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Weak Law

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi

Lebesgue Fubini L p Banach, Hilbert Höld

ε ε x x + ε ε cos(ε) = 1, sin(ε) = ε [6] [5] nonstandard analysis 1974 [4] We shoud add that, to logical positivist, a discussion o

Mathematical Logic I 12 Contents I Zorn

page: 1 1 Club guessing sequence , 1). M. Foreman ([ 7 ], [ 8 ] ). 1960,,,, ZFC,,.,,., ZFC,, 20.. G. Cantor.., Zermelo ZFC 2).,., ZFC,., ZFC

Riemann-Stieltjes Poland S. Lojasiewicz [1] An introduction to the theory of real functions, John Wiley & Sons, Ltd., Chichester, 1988.,,,,. Riemann-S

sequentially Cohen Macaulay Herzog Cohen Macaulay 5 unmixed semi-unmixed 2 Semi-unmixed Semi-unmixed G V V (G) V G V G e (G) G F(G) (G) F(G) G dim G G

LLG-R8.Nisus.pdf


COE-RES Discussion Paper Series Center of Excellence Project The Normative Evaluation and Social Choice of Contemporary Economic Systems Graduate Scho

ルベーグ積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

1 (1) (2)

- 2 -


PR映画-1

II III I ~ 2 ~

中堅中小企業向け秘密保持マニュアル



1 (1997) (1997) 1974:Q3 1994:Q3 (i) (ii) ( ) ( ) 1 (iii) ( ( 1999 ) ( ) ( ) 1 ( ) ( 1995,pp ) 1


1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)? (2) () f(x)? b lim a f n (x)dx = b

1 a b = max{a, b}, a b = mi{a, b} a 1 a 2 a a 1 a = max{a 1,... a }, a 1 a = mi{a 1,... a }. A sup A, if A A A A A sup A sup A = + A if A = ± y = arct

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction 1 (1) (2) {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a

_0212_68<5A66><4EBA><79D1>_<6821><4E86><FF08><30C8><30F3><30DC><306A><3057><FF09>.pdf

Shunsuke Kobayashi 1 [6] [11] [7] u t = D 2 u 1 x 2 + f(u, v) + s L u(t, x)dx, L x (0.L), t > 0, Neumann 0 v t = D 2 v 2 + g(u, v), x (0, L), t > 0. x

2001 年度 『数学基礎 IV』 講義録


ver F = i f i m r = F r = 0 F = 0 X = Y = Z = 0 (1) δr = (δx, δy, δz) F δw δw = F δr = Xδx + Y δy + Zδz = 0 (2) δr (2) 1 (1) (2 n (X i δx

xia2.dvi


微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í

I (Analysis I) Lebesgue (Lebesgue Integral Theory) 1 (Seiji HIRABA) 1 ( ),,, ( )

Kullback-Leibler

Powered by TCPDF ( Title 第 11 講 : フィッシャー統計学 II Sub Title Author 石川, 史郎 (Ishikawa, Shiro) Publisher Publication year 2018 Jtitle コペンハーゲン解

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T


Tricorn

1).1-5) - 9 -

provider_020524_2.PDF

untitled

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

untitled

Feynman Encounter with Mathematics 52, [1] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull


日本内科学会雑誌第98巻第4号

日本内科学会雑誌第97巻第7号

y = x x R = 0. 9, R = σ $ = y x w = x y x x w = x y α ε = + β + x x x y α ε = + β + γ x + x x x x' = / x y' = y/ x y' =

x 3 a (mod p) ( ). a, b, m Z a b m a b (mod m) a b m 2.2 (Z/mZ). a = {x x a (mod m)} a Z m 0, 1... m 1 Z/mZ = {0, 1... m 1} a + b = a +

Anderson ( ) Anderson / 14

,, Poisson 3 3. t t y,, y n Nµ, σ 2 y i µ + ɛ i ɛ i N0, σ 2 E[y i ] µ * i y i x i y i α + βx i + ɛ i ɛ i N0, σ 2, α, β *3 y i E[y i ] α + βx i

JFE.dvi

,.,. NP,., ,.,,.,.,,, (PCA)...,,. Tipping and Bishop (1999) PCA. (PPCA)., (Ilin and Raiko, 2010). PPCA EM., , tatsukaw

特別寄稿 1931 Kurt Gödel, inexhaustibility Jean Cavaillès,

BayesfiI‡É“ÅfiK‡È−w‘K‡Ì‡½‡ß‡ÌChow-Liu…A…‰…S…−…Y…•

浜松医科大学紀要

main.dvi

2 A id A : A A A A id A def = {(a, a) A A a A} 1 { } 1 1 id 1 = α: A B β : B C α β αβ : A C αβ def = {(a, c) A C b B.((a, b) α (b, c) β)} 2.3 α

Gelfand 3 L 2 () ix M : ϕ(x) ixϕ(x) M : σ(m) = i (λ M) λ (L 2 () ) ( 0 ) L 2 () ϕ, ψ L 2 () ((λ M) ϕ, ψ) ((λ M) ϕ, ψ) = λ ix ϕ(x)ψ(x)dx. λ /(λ ix) ϕ,

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C602E646F63>

³ÎΨÏÀ

Basic Math. 1 0 [ N Z Q Q c R C] 1, 2, 3,... natural numbers, N Def.(Definition) N (1) 1 N, (2) n N = n +1 N, (3) N (1), (2), n N n N (element). n/ N.

抄録/抄録1    (1)V

newmain.dvi

2,., ,. 8.,,,..,.,, ,....,..,... 4.,..

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

三石貴志.indd

研修コーナー

i iii 1 ZFC Skolem

On the Limited Sample Effect of the Optimum Classifier by Bayesian Approach he Case of Independent Sample Size for Each Class Xuexian HA, etsushi WAKA

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

Jacobi, Stieltjes, Gauss : :

Transcription:

Khomskii Lebesgue Soloay 1 Friday 27 th November 2015 1 This slide is available on http://slideshare.net/konn/lebesguesoloay 1 / 34

Khomskii 1 2 3 4 Khomskii 2 / 34

Khomskii Solovay 3 / 34

Khomskii Lebesgue Theorem 1 (Vitali) R/Q Lebesgue R/Q R/Q R µ(r) = 0 4 / 34

Khomskii DC R [ x y (x R y) = x n n < ω (x n R x n+1 )] R/Q? Solovay-Shelah 5 / 34

Khomskii Solovay-Shelah Theorem 2 (Solovay 1970 [5]) ZF + DC + (LM) Theorem 3 (Shelah 1984 [4]) ZF + DC + LM ZFC ZFC Solovay 6 / 34

Khomskii 1 2 3 4 Khomskii 7 / 34

Khomskii Solovay Theorem 2 (Solovay 1970) κ Col(ω, < κ) HOD ω ZF + DC + LM 8 / 34

Khomskii Solovay Theorem 2 (Solovay 1970) κ Col(ω, < κ) HOD ω ZF + DC + LM 8 / 34

Khomskii Definition 3 V On ZFC ω N ω 1 ω 9 / 34

Khomskii (cont.) Definition 4 κ 2 κ := P(κ). κ = def α < κ f : α κ γ < κ [sup f < γ]. i.e. κ κ = def λ < κ 2 λ < κ. i.e. κ κ = def κ > ω κ κ κ V κ ZFC ZFC 10 / 34

Khomskii Solovay Theorem 2 (Solovay 1970) κ Col(ω, < κ) HOD ω ZF + DC + LM 11 / 34

Khomskii Solovay Theorem 2 (Solovay 1970) κ Col(ω, < κ) HOD ω ZF + DC + LM 11 / 34

Khomskii (x y M = x M) ZF Gödel L On M L V M Γ = def φ φ M ω Γ! 0 12 / 34

Khomskii HOD ω Solovay HOD ω A A OD ω = def φ(x, y) σ ω On A = { x φ(x, σ) } V Levy φ V = φ V α = φ α On V α A A HOD ω def = trcl({ A }) OD ω, i.e. A OD ω HOD ω 13 / 34

Khomskii Solovay Theorem 2 (Solovay 1970) κ Col(ω, < κ) HOD ω ZF + DC + LM 14 / 34

Khomskii Solovay Theorem 2 (Solovay 1970) κ Col(ω, < κ) HOD ω ZF + DC + LM 14 / 34

Khomskii V G V[G] On V G V[G] ω 0 15 / 34

Khomskii V G V[G] G P On P V G V[G] ω 0 15 / 34

Khomskii V G V[G] G P p P V G V[G] On P ω V G V[G] 0 15 / 34

Khomskii V G V[G] G P p P V G V[G] p P φ p P G V[G] φ On 0 ω V G V[G] x P-name ẋ V P- P V[G] 15 / 34

Khomskii V G V[G] G P p P V G V[G] p P φ p P G V[G] φ On 0 ω V G V[G] x P-name ẋ V P- V[G] V P V[G] 15 / 34

Khomskii Levy Col(ω, < κ) Col(ω, < κ) : Levy κ ω 1 On V V ω κ κ ω V 2 ω V 1 ω 0 16 / 34

Khomskii Levy Col(ω, < κ) Col(ω, < κ) : Levy κ ω 1 On κ V V[G] V ω κ ω < λ < κ ω λ ω V 2 ω V 1 ω 0 16 / 34

Khomskii Levy Col(ω, < κ) Col(ω, < κ) : Levy κ ω 1 On 0 κ = ω V[G] 1 ω V[G] V ω κ ω < λ < κ ω λ V[G] ω κ V[G] κ ω 1 16 / 34

Khomskii Theorem 2 (Solovay 1970) κ Col(ω, < κ) HOD ω ZF + DC + LM 17 / 34

Khomskii Theorem 2 (Solovay 1970) κ κ ω 1 HOD ω ZF + DC + LM 17 / 34

Khomskii Theorem 2 (Solovay 1970) κ κ ω 1 HOD ω Lebesgue Shelah Solovay 17 / 34

Khomskii Theorem 2 (Solovay 1970) κ κ ω 1 HOD ω Lebesgue Shelah Solovay V[G] HOD ω Solovay 17 / 34

Khomskii 1 2 3 4 Khomskii 18 / 34

Khomskii Solovay 1 κ ω 1 2 A HOD( ω On) V[G] φ σ ω On A = { x φ(x, σ) } 3 σ M := V[G λ] λ < κ V[G λ] λ 4 V[G λ] 5 φ, σ A M Borel B 6 Borel A 19 / 34

Khomskii Solovay 1 κ ω 1 2 A HOD( ω On) V[G] φ σ ω On A = { x φ(x, σ) } 3 σ M := V[G λ] λ < κ V[G λ] λ 4 V[G λ] 5 φ, σ A M Borel B 6 Borel A 19 / 34

Khomskii Solovay 1 κ ω 1 2 A HOD( ω On) V[G] φ σ ω On A = { x φ(x, σ) } 3 σ M := V[G λ] λ < κ V[G λ] λ 4 V[G λ] 5 φ, σ A M Borel B 6 Borel A Col(ω, < κ) 19 / 34

Khomskii Solovay κ ω 1 2 A HOD( ω On) V[G] φ σ ω On A = { x φ(x, σ) } 3 σ M := V[G λ] λ < κ V[G λ] λ 4 V[G λ] 5 φ, σ A M Borel B 6 Borel A HOD( ω On) 19 / 34

Khomskii Solovay κ ω 1 A HOD( ω On) V[G] φ σ ω On A = { x φ(x, σ) } 3 σ M := V[G λ] λ < κ V[G λ] λ 4 V[G λ] 5 φ, σ A M Borel B 6 Borel A κ σ 19 / 34

Khomskii Solovay κ ω 1 A HOD( ω On) V[G] φ σ ω On A = { x φ(x, σ) } σ M := V[G λ] λ < κ V[G λ] λ 4 V[G λ] 5 φ, σ A M Borel B 6 Borel A 19 / 34

Khomskii 4. I Definition 4 M x M def = B M [B : M Borel = x / B ]. B M B V[G] Borel k U k c(0) = 0 B c = U c(1), c(0) = 1 B c = ω ω \ B c c(0) = 2 B c = n<ω B (c)n c ω ω c (k) = c(k + 1), (c) n (k) = c( n, k ). Borel 20 / 34

Khomskii 4. II N M := V[G λ] Borel N N N V[G] M Borel (2 ℵ 0 ) M λ M κ (2 ℵ 0 ) M < κ V[G] M Borel V[G] N 21 / 34

Khomskii Solovay κ ω 1 A HOD( ω On) V[G] φ σ ω On A = { x φ(x, σ) } σ M := V[G λ] λ < κ V[G λ] λ V[G λ] 5 φ, σ A M Borel B 6 Borel A 22 / 34

Khomskii Solovay κ ω 1 A HOD( ω On) V[G] φ σ ω On A = { x φ(x, σ) } σ M := V[G λ] λ < κ V[G λ] λ V[G λ] 5 φ, σ A M Borel B 6 Borel A 22 / 34

Khomskii Borel Borel MB 23 / 34

Khomskii Borel Borel MB MB M MB M Col(ω, < κ) V[G] Col(ω, < κ) <ω µ 23 / 34

Khomskii Borel Borel MB MB M MB M Col(ω, < κ) V[G] Col(ω, < κ) <ω µ Col(ω, < κ) V[G] p 23 / 34

Khomskii Borel Borel MB MB M MB M Col(ω, < κ) V[G] Col(ω, < κ) <ω µ Col(ω, < κ) V[G] p MB MB M - ṙ 23 / 34

Khomskii Borel Borel MB MB M MB M Col(ω, < κ) V[G] Col(ω, < κ) <ω µ Col(ω, < κ) V[G] p MB MB M - ṙ x A M[x] Col(ω,<κ) φ(ṙ, ˇσ) [ ] D M D M MB Col(ω,<κ) φ(ṙ, ˇσ) 23 / 34

Khomskii Borel Borel MB MB M MB M Col(ω, < κ) V[G] Col(ω, < κ) <ω µ Col(ω, < κ) V[G] p MB MB M - ṙ x A M[x] Col(ω,<κ) φ(ṙ, ˇσ) [ ] D M D M MB Col(ω,<κ) φ(ṙ, ˇσ) B := { } D D MB M, D MB Col(ω,<κ) φ(ṙ, š) Borel Borel 23 / 34

Khomskii Solovay κ ω 1 A HOD( ω On) V[G] φ σ ω On A = { x φ(x, σ) } σ M := V[G λ] λ < κ V[G λ] λ V[G λ] φ, σ A M Borel B 6 Borel A 24 / 34

Khomskii Solovay κ ω 1 A HOD( ω On) V[G] φ σ ω On A = { x φ(x, σ) } σ M := V[G λ] λ < κ V[G λ] λ V[G λ] φ, σ A M Borel B 6 Borel A 24 / 34

Khomskii Solovay κ ω 1 A HOD( ω On) V[G] φ σ ω On A = { x φ(x, σ) } σ M := V[G λ] λ < κ V[G λ] λ V[G λ] φ, σ A M Borel B Borel A 24 / 34

Khomskii 1 2 3 4 Khomskii 25 / 34

Khomskii Baire Baire? Khomskii [2] Definition 5 I P(X) σ- 1 A I, B A = B I, 2 { A n I n < ω } n<ω A n I I + := { B B B / I }. B Borel 26 / 34

Khomskii Definition 6 (Khomskii 2012) A R I- def = B B \ I C B \ I [C \ B I (C A C A = )]. I- A 27 / 34

Khomskii Definition 6 (Khomskii 2012) A R I- def = B B \ I C B \ I [C \ B I (C A C A = )]. I- A A C C B 27 / 34

Khomskii Definition 6 (Khomskii 2012) A R I- def = B B \ I C B \ I [C \ B I (C A C A = )]. I- A A C C B 27 / 34

Khomskii Definition 6 (Khomskii 2012) A R I- def = B B \ I C B \ I [C \ B I (C A C A = )]. I- A A C C B 27 / 34

Khomskii Definition 6 (Khomskii 2012) A R I- def = B B \ I C B \ I [C \ B I (C A C A = )]. I- A A C C B 27 / 34

Khomskii σ- null := { A R A : Lebesgue }, meager := { A R A : } A A: null- A Baire A: meager- Ramsey 28 / 34

Khomskii Khomskii Theorem 7 (Khomskii 2012) I σ-i + (proper) Solovay I- I- 29 / 34

Khomskii Future Work I Solovay Wright [6] ZF + DC + BP + LM 30 / 34

Khomskii Future Work II Solovay Solovay Shelah Solovay Shelah Khomskii 31 / 34

Khomskii I Thomas Jech. Set Theory: The Third Millennium Edition, revised and expanded. Springer Monographs in Mathematics. Springer, 2002. Yurii Khomskii. Regularity Properties and Definability in the Real Number Continuum. Idealized forcing, polarized partitions, Hausdorff gaps and mad families in the projective hierarchy. English. PhD thesis. Institute for Logic, Language and Computation, Universiteit van Amsterdam, 2012. Ralf Schindler. Set Theory: Exploring Independence and Truth. Universitext. Springer International Publishing Switzerland, 2014. isbn: 9783319067247. 32 / 34

Khomskii II Saharon Shelah. Can You Take Solovay s Inaccessible Away? In: Israel Journal of Mathematics 48.1 (1984), pp. 1 47. issn: 0021-2172. doi: 10.1007/BF02760522. url: http://dx.doi.org/10.1007/bf02760522. Robert M. Solovay. A model of set theory in which every set of reals is Lebesgue measurable. In: The Annals of Mathematics. 2nd ser. 92.1 (July 1970), pp. 1 56. issn: 0003486X. doi: 10.2307/1970696. url: http://www.jstor.org/stable/1970696. 33 / 34

Khomskii III J. D. Maitland Wright. Functional Analysis for the Practical Man. English. In: Functional analysis: surveys and recent results. Proceedings of the Conference on Functional Analysis. (Paderborn, Germany). Ed. by Klaus-Dieter Bierstedt and Benno Fuchssteiner. Mathematics Studies 27. North-Holland, 1977, pp. 283 290. isbn: 9780444850577. 34 / 34