i iii 1 ZFC Skolem

Size: px
Start display at page:

Download "i iii 1 ZFC Skolem"

Transcription

1

2

3 i iii 1 ZFC Skolem Yet Another Walk Tutorial Minimal walks, colorings and lines Walks and Trees Trees and Lines Basis theorem G is for Girl 61

4

5 iii Gainax Panty & Stocking with Garterbelt OCaml J Garrigue

6 iv scheme C ocaml turtle graphics GUI Java Smalltalk Department of Polymathematics

7 v Science of Philosophy of Science

8

9 1 1 ZFC 1963, Paul Cohen, ZFC(Zermelo-Fraenkel ). Cohen, ZFC Forcing. Cohen, ZFC,..,.,, ZFC. ZFC Skolem,, 1.,. 1. (, ) (,. Löwenheim-Skolem )., [2]..,. [5], [3], [1].

10 2 1 ZFC, [4], [6]. K.,. Y.,. K. 1.1 Y,. *1,, K,, ZFC Y, K., Y ZFC, Cohen K., ZFC Gödel 1940, Cohen, ZFC..,, φ ZFC, Y K ZFC φ φ, ZFC + φ. Y,. ZFC φ *2., ZFC + φ ZFC, ZFC + φ φ., φ ZFC + φ 1, ZFC + φ φ., ZFC + φ φ,., ZFC φ ZFC + φ *1. 2 ℵ 0 = ℵ 1. *2 T φ, T φ, T φ.

11 1.1 3., ZFC + φ ZFC φ. ZFC + φ, ZFC φ K,. φ CH(Continuum Hypothesis), ZFC CH, ZFC + CH Y.. K *3,. 1. ( ) Y. K.., *4.., *5. T M, T φ φ, M φ φ., T φ, T φ,.. φ, φ x(x x = e) ( e ). φ, Y K Y φ φ, Z + ( 0), = 2 0, φ. φ. φ. {e} φ.. φ. K.,,, ZFC., φ φ, φ φ Y,,, K *3. *4,,. *5.

12 4 1 ZFC 1.1 Y. ZFC + CH, ZFC + CH,, CH ZFC.. CH ZFC K., φ ZFC, φ ZFC ZFC φ, φ ZFC ZFC φ,., Gödel, Cohen 1.2 Y, ZFC K, V Y. (= 0), ( ) K. V. ( 1). V α, α. x P(x) x, V 1 =P( ) = { } = {0}, V 2 = P({0}) = {0, {0}} = {0, 1} Y K, V ZFC *6, *6 (V, ), V,,.

13 1.2 5., V, (ℵ 2 ). ℵ 1 Y V K Y V. K, Y K. V, ZFC,, *7.,, Y, ZFC Löwenheim-Skolem *8 Skolem *9 K. ZFC, Löwenheim-Skolem, ZFC.,, ZFC., ZFC, M M E (M, E), E V M -., x(x M x M), M (transitive). -. * 10. * 11,, ZFC - * 12. ( 2) Y V M, V ω. K V ω,.., ZFC *7, V. *8 Löwenheim-Skolem,. *9 ZFC, ZFC., ZFC..,. *10 Mostowski. [5] III,IV. *11 Gödel, ZFC - ZFC, ZFC - ZFC.. [5] VII 1. *12, -

14 6 1 ZFC 1.2 ZFC. Y ω 1 (= ℵ 1 ) M. K ω 1 M Y K M. ω 1 M Y, M K., M ZFC. ZFC ω 1. ω 1 M. Y, Skolem. K M ω 1 V ω 1. ZFC,., ZFC,. (absoluteness) 1.3 Skolem K ω 1,. {1, 2} N., 0 =, 1 = {0}, 2 = {0, 1}. N ZFC., N, N. Y, N K, Y, x(x y) y K N. x N(x y) N, N, N * 13 *13 N N.

15 1.3 Skolem 7 N 1 2 = {0, 1}, 2 1 = {0}. N N 1 K. V N. = N = 1., N., N Y, 1 N, 1 N K.,., M ZFC * 14., M = Y, M M M M. a, a M a M. M M, M. a, M = K., M. 1,2,..., ω ω = ω M,., α M M, V, V α M M. ZFC.,,,.. ZFC, Y,, K [5] [2], ω 1. Skolem, M ZFC M ω 1, M, Y M ω 1, ω M 1 M, V ω 1 K. ( 3). ω1 M ωm 5 ωm ω, V ω 1 Y, ω1 M M ω 1, M ω(= ω M ) ω1 M. V ω ω M 1, K. V M, M V Y Skolem, [5] IV. *14 ZFC, ZFC.

16 8 1 ZFC 1.3 M V 1.4 Y ZFC. M, OK., K M M M., G. G. M[G]. G M. M[G] M, G ZFC Y M[G] M G K R x R[x],. R {x} R[x]. M {G} ZFC M[G]. ( 4). G M, M M Y,? K M M[G]. On, M On = M[G] On. M[G] Y, M[G] ZFC., G K. (poset), (dense subset), (filter).

17 1.4 ジェネリック拡大と基数の保存 9 ふ[G 図 1.4 ジェネリック拡大 図 1.5 M の基数と M [G] の基数 だそこに関してはテクニカルだけど概念自体が難解ということはないので教科書を読み進 めるのにそれほど苦労はないと思う. 定義も言ってないからもう雰囲気だけ感じてほしい んだけど, ジェネリックというのは poset のフィルターで, その poset の全ての稠密部分 集合と交わるようなもののこと. どのような poset を考えるかによって M[G] で何が成り 立つようになるかが変わってくる. G はたとえば実数を ω2m 個なり ω7m 個なりコーディ ングした集合だけど, 別の poset を用いることで実数以外にも色んなジェネリックを付け 加えることができる. たとえば無限ツリー構造における無限長のパス (path) とか. ま, そ のへんもおいおいね. さて, 一つ言っておきたいのは, 単に実数をたくさん加えただけじゃ必ずしも M [G] で 連続体仮説の否定が成り立つとは保証されないということかな. 難しいのはそこ. どうし てだかわかる Y いえ. そうなんですか K なぜかというと, M と M [G] でどの順序数が ω1 かが変わってしまうかもしれないか ら. たとえば図 5 を見て. この図では, ω1m が M [G] では基数ではなくただの可算順序数 M [G] に 崩壊 してしまっている. あと ω2m =ω1 になったりしてるね Y ω1m が V にとっては可算順序数になってしまうのと同じですよね K うん. ジェネリック拡大の際, 何が起こるとこういうことになるかわかる

18 Y ω M 1 M[G], M[G] ωm 1 ω. M K. ω2 M, M[G] ωm[g] 1, M, M[G] Y K Cohen, M M[G]..., poset ccc(countable chain condition, )., M[G]. Y K,,. M, M[G]

19 11 [1] [2] [3] [4] [5],./ [6]..

20

21 f(x) = { 0 (x 1) 1 (x > 1) ε δ *1 *1

22 14 2 *2 7 * 3 *4 *2 *3 *4

23 *5 20 *6 * *5 *6 *7

24 16 2 *8 P P x P x P *8 ZFC

25 RCA 0 RCA 0 D = {(x, y) R 2 x 2 + y 2 1} f : D D f(p) = p p D f RCA 0 * 9 * 10 1, 5, 7, 3, 5, 9, 2, 0, 5, 5, 5, 7, 3, 8, 9, 4, 5, 3, 7, 8, 3, 5, 6, *9 *10

26 18 2 * 11 { 0 (x 1) f(x) = 1 (x > 1) ( ) n 10 n r n 0 r > 1 f(r) = 1 r < 1 f(r) = r = 1 r r r * 12 k {a n } k K {b n } *11 *12 r 0 1

27 * forcing semantics sheaf semantics * 14 poset pull back forcing Grothendieck *13 *14 δ : C Ĉ = SetsCop aĉ Sh(C J) J C limit colimit

28 sheaf semantics SGL poset forcing coq intros coq ε δ

29 21 [1] Saunders MacLane Ieke Moerdijk Sheaves in Geometry and Logic: A First Introduction to Topos Theory Springer; 1st ed 1992 Corr 2nd printing 1994 (1992/04)

30

31 23 3 Yet Another Walk Tutorial Todorcevic minimal walk walk walk constructivity *1 coherency *2 walk Todorcevic Todorcevic expository (Todorcevic [7] [8] ) minimal walk walk walk walk J.T. Moore 2 work five element basis([6]) L-space problem ([5]) walk walk Moore walk five element basis Todorcevic [7] Moore [6] walk Aronszajn Countryman Shelah walk ( [4] Todorcevic ) walk theory *1 ω ω 2 ω ω ω ωω... = ϵ 0 recursive *2 (coherent)

32 24 3 Yet Another Walk Tutorial Aronszajn Specker Baumgartner Countryman walk ZFC combinatorics Erdös Rado Galvin(Shelah pcf ) combinatorics walk Todorcevic Todorcevic dis Todorcevic self-contained walk T walk explicit ZFC α β γ otp(x) X L X L cofinal y L x X y x ω ω 1 ω 2 index ω = N ω 1 x 0, x 1,..., x n x i σ τ σ τ σ τ σ τ = [X] n X n X <ω X α X <α α X C-sequence C α α < ω 1 fix 1. C α+1 = {α}. 2. α C α α cofinal otp(c α ) = ω. 3. α C α * 3 *3

33 3.1 Minimal walks, colorings and lines β α minimal walk 1 walk 2 walk interaction 3 interaction 4 walk Basis Problem 3.1 Minimal walks, colorings and lines (step). α < β < ω 1 β α step min(c β \ α)(< β) (walk). α β < ω 1 β α walk( minimal walk) β α step β 0 = β; β i+1 = min(c βi \ α); (unless β i = α), ordinal β i i n last step β n = α (full code). α β < ω 1 ρ 0 (α, β) ω <ω ρ 0 (α, β) = otp(c β0 α),..., otp(c βn 1 α) β i (i n) β α walk n = 0 α = β ρ 0 (α, α) =

34 26 3 Yet Another Walk Tutorial α β β i walk i walk β α β i walk β i α walk α β γ β γ α walk ρ 0 (β, γ) ρ 0 (α, γ) Proof. walk α < α β < ω 1 β i (i n), β j(j m) β α, α walk j = min{j β j+1 < α β j } 1. β i = β i( i j) 2. β j = β j = α β β proper 3. β j = β j > α C βj α C βj α proper initial segment Proof. (1). By induction. β 0 = β = β 0. β i = β i = η, β i+1 α β i+1 C η \ α β i+1 = min(c η \ α ) = min(c η \ α) = β i+1. (2). (3). β j+1 C βj α β j+1 α C βj α C βj α proper initial segment ρ 0 (α, β) ρ 0 (α, β) ( α < α β < ω 1 ) α < β γ β α walk γ α walk walk α β γ β γ α walk gcw α (β, γ) β α walk γ α walk Remark α β γ ξ = gcw α (β, γ) ρ 0 (α, β) = ρ 0 (ξ, β) ρ 0 (α, ξ), ρ 0 (α, γ) = ρ 0 (ξ, γ) ρ 0 (α, ξ) gcw Todorcevic full lower trace gcw full lower trace gcw gcw gcd gcd gcw gcw α (β, γ) β γ α walk walk γ walk β

35 3.1 Minimal walks, colorings and lines gcw α (β, γ) γ β walk γ β γ walk gcw α (β, γ) gcw α γ i (i n) γ α walk i = min{j γ j+1 < β γ j } gcw α (β, γ) = { β, if β = γ i, gcw α (γ i+1, β), if β > γ i (full lower trace). α β β α full lower trace F (α, β) β i (i n) β α walk n 1 F (α, β) = {α} i=0 ξ C βi α F (ξ, β). F (α, β) α {α} gcw α full lower trace α gcw α full lower trace β γ α < β gcw α (β, γ) F (β, γ) full lower trace common walk ρ 0 (α, β) = ρ 0 (min(f (β, γ) \ α), β) ρ 0 (α, min(f (β, γ) \ α)),

36 28 3 Yet Another Walk Tutorial ρ 0 (α, γ) = ρ 0 (min(f (β, γ) \ α), γ) ρ 0 (α, min(f (β, γ) \ α)), Proof. full lower trace gcw α ( 1.3 full lower trace γ α walk γ β walk walk γ β!) Todorcevic γ 1 = min(c γ \α) γ 1 = min(c γ \β) α 1 = min(f (β, γ)\α) α 1 F (ξ, β) ξ C γ β α 1 F (β, γ 1) ρ 0 (α, β) = ρ 0 (α 1, β) ρ 0 (α, α 1 ) α ξ β ρ 0 (α, β) = ρ 0 (min(f (ξ, β) \ α), β) ρ 0 (α, min(f (ξ, β) \ α)). α 1 = min(f (ξ, β) \ α) α β ξ ρ 0 (α, γ) = ρ 0 (α 1, γ) ρ 0 (α, α 1 ) α γ 1 < β γ 1 C γ β F (γ 1, β) F (β, γ) α 2 = min(f (γ 1, β) \ α) α 2 α 1 ρ 0 (α, γ 1 ) = ρ 0 (α 2, γ 1 ) ρ 0 (α, α 1 ). walk: γ α γ γ 1 α 2 α 1 α walk: γ α 1 α α β γ α β γ F β = F (α, β) F γ = F (α, γ) F β = F γ ρ 0 (, β) F β = ρ 0 (, γ) F γ ρ 0 (, β) α = ρ 0 (, γ) α Proof. ϵ < α ξ ϵβ = min(f β \ ϵ) ξ ϵγ = min(f γ \ ϵ) ξ ϵβ = ξ ϵγ ξ ϵ ρ 0 (ϵ, β) = ρ 0 (ξ ϵ, β) ρ 0 (ϵ, ξ ϵ ), ρ 0 (ϵ, γ) = ρ 0 (ξ ϵ, γ) ρ 0 (ϵ, ξ ϵ ). ξ ϵ F β = F γ ρ 0 (ϵ, β) = ρ 0 (ϵ, γ)

37 3.1 Minimal walks, colorings and lines 29 ρ 0 (, β) α α fix ρ 0 (, β) α F β fin α + 1 ρ 0 ρ 0 ρ-function (maximal weight function). α β maximal weight ρ 1 (α, β) β α walk lower traces C βi α max (number of steps function). α β number of steps ρ 2 (α, β) β α walk (last step function). α β last step ρ 3 (α, β) walk last step lower trace weight maximal weight β α walk β i (i n) ρ 3 (α, β) = { 1, if C βn 1 α = ρ 2 (α, β) 0, otherwise. ρ-function a : [ω 1 ] 2 X X ω 1 finite-to-one property coherency ρ [ω 1 ] 2 1. ρ finite-to-one x β < ω 1 {α < β ρ (α, β) = x} 2. ρ coherent β γ {ξ β ρ (ξ, β) ρ (ξ, γ)} ρ 0 coherent Proof. β < γ C γ β order type n C β n + 1 α α < β α C β α order type n + 1 α < β C γ α order type n α α < β ρ 0 (α, β) ρ 0 (α, γ) coherency ρ 1 finite-to-one coherent Proof. β γ

38 30 3 Yet Another Walk Tutorial finite-to-one n < ω A β ρ 1 (η, β) > n η A α β cofinal α = β first step lower trace η A C β η > n α < β β 1 = min(c β \ α) β 1 ρ 1 (ξ, β 1 ) > n ξ A ρ 1 ρ 1 (ξ, β) ρ 1 (ξ, β 1 ) > n coherency A = {ξ < β ρ 1 (ξ, β) ρ 1 (ξ, γ)} otp(a) = ω α = sup A γ 1 = min(c γ \ α) n = C γ α finite-to-one B = {ξ A ξ > max(c γ α) and ρ 1 (ξ, γ 1 ) > n} B A ξ B ρ 1 (ξ, γ) = max{n, ρ 1 (ξ, γ 1 )} = ρ 1 (ξ, γ 1 ) γ 1 β ξ B ρ 1 (ξ, γ 1 ) = ρ 1 (ξ, β) ρ 1 (ξ, β) = ρ 1 (ξ, γ 1 ) = ρ 1 (ξ, γ) ξ B A ρ 3 coherent (coloring line). (X, < X ) ρ : [ω 1 ] 2 X ω 1 < α < β ρ (δ αβ, α) < X ρ (δ αβ, β), δ αβ = min{η min(α, β) ρ (η, α) ρ (η, β)} (ω 1, < ) C(ρ ) (Todorcevic). X = 2, 3,..., or ω X ρ finite-to-one coherent C(ρ ) 2 chain Proof. α β γ δ ρ (, α) : α + 1 X ρ α diff(α, β) = {ξ α ρ (ξ, α) ρ (ξ, β)} coherency diff(α, β) finite n αβ = max{ρ (ξ, α), ρ (ξ, β) ξ diff(α, β)},

39 3.1 Minimal walks, colorings and lines 31 F αβ = {ξ α max{ρ (ξ, α), ρ (ξ, β)} n αβ } finite-to-one property F αβ finite diff(α, β) F αβ C(ρ ) 2 c : C(ρ ) 2 ω ω <ω ω <ω c(α, β) = (n αβ, ρ α [F αβ ], ρ β [F αβ ]) ρ α [{ξ 0 < ξ 1 <... < ξ n }] ρ α (ξ 0 ),..., ρ α (ξ n ) c C(ρ ) 2 c 1 (n, σ, τ) ( chain ) Claim α < γ n αβ = n γδ = n ρ α [F αβ ] = ρ γ [F γδ ] ρ β [F αβ ] = ρ δ [F γδ ] β < δ ξ αγ = min{ξ α ρ (ξ, α) ρ (ξ, γ)} ξ = min{ξ αγ, ξ βδ } Claim ξ αγ = ξ βδ = ξ F αβ ξ αγ = F γδ ξ αγ η Fαβ c ξ αγ (η α, β diff )ρ (η, α) = ρ (η, β) > n η < ξ αγ ρ (η, α) = ρ (η, γ) ρ (η, γ) > n η Fγδ c ξ F αβ ξ βδ = F γδ ξ βδ F αβ ξ αγ = F γδ ξ αγ ξ αγ ξ βδ η < ξ αγ F αβ ρ α ρ γ F ρ β (η) = ρ α (η) = ρ γ (η) = ρ δ (η). η < ξ αγ F αβ diff(α, β) diff(γ, δ) ρ β (η) = ρ δ (η) ρ β ξ αγ = ρ δ ξ αγ ξ βδ ξ αγ ξ βδ ξ βδ ξ αγ ρ (ξ, β) < ρ (ξ, δ) Case 1: ξ F αβ F γδ F αβ ξ = F γδ ξ ρ α (ξ) = ρ γ (ξ) α < γ Case 2: ξ F αβ \ F γδ ξ / F γδ ρ γ (ξ) = ρ δ (ξ) > n ξ F αβ ρ β (ξ) n ρ β (ξ) n < ρ δ (ξ) Case 3: ξ F γδ \ F αβ Case 2 ρ α (ξ) > ρ γ (ξ) Case 4: ξ / F αβ F γδ ξ diff(α, β) diff(γ, δ) ρ β (ξ) = ρ α (ξ) < ρ γ (ξ) = ρ δ (ξ)

40 32 3 Yet Another Walk Tutorial 3.2 Walks and Trees walk theory walk (Trees). T = (T, T ) T x T pred(x) = {y T y < T x} < T order type x ht(x) α node α T α T T α = α T ω 1 - ω 1 node ω <ω (Aronszajn ). T Aronszajn T cofinal chain ω 1 - C chain x, y C x y y x T α chain C T cofinal {ht(x) x C} α cofinal König cofinal chain cofinal chain x α T α x β (β < α) node x α (T 2 ) step cofinal chain ω 1 Aronszajn ω ω (Aronszajn). Aronszajn Aronszajn minimal walk Aronszajn ρ-function (coloring tree). ρ : [ω 1 ] 2 X T (ρ ) = {ρ β α α β < ω 1 } T (ρ ) T T (ρ 0 ) Aronszajn Proof. T (ρ 0 ) t T dom(t) T (ρ 0 ) ω 1 T (ρ 0 ) ω 1 - ( level )

41 3.3 Trees and Lines 33 T (ρ 0 ) cofinal branch *4 ρ 0α ω <ω T (ρ 0 ) cofinal branch b : ω 1 ω <ω α < ω 1 β > α ρ 0β α = b α b ρ 0β b ω 1 ω <ω ρ 0α ω 1 - T X a : T X x, y T x y a T (ρ 0 ) Aronszajn Remark Aronszajn Aronszajn ( ZFC ) MA ℵ1 Aronszajn 3.3 Trees and Lines L = (L, ) L L reverse order(l, ) L. L Aronszajn, ω 1 ω (tree line). T <α *5 2 T 2 <α lex x < lex y x y or x( (x, y)) < y( (x, y)) (x, y) = min{ξ x(ξ) y(ξ)} (T, lex ) (line tree). L L binary partition tree T 1. T node L convex set T 0 = {L} 2. I T α immediate successor I I 0, I 1 2 I 0 I left partition I 1 right partition I = 1 I T maximal node *4 branch chain *5 2 <α

42 34 3 Yet Another Walk Tutorial 3. α I T α I = b cofinal branch b T α 4. I T maximal node I = 1 binary partition tree T Aronszajn (T, lex ) Aronszajn 2. L Aronszajn binary partition tree Aronszajn Proof([4] ). (1 2): L T = (T, lex ) Case 1. L T ω 1 isomorphic copy X L T ω 1 α < ω 1 {y X y > T x} x T α 2 x, x x < lex x X (, x ) ( ) X ω 1 ω 1 proper initial segment ω 1 proper initial segment x α T α x X x α {x α α < ω 1 } T chain T Aronszajn L T ω 1 Case 2. L T X L T dense set D X D α = sup{ht(x) x X} X T α x T α {y X y > T x} x x X 2 node y 0, y 1 y 0 < lex y 1 y 0 node L T (x, y 1 ) height D D density (2 1): L binary partition tree T L 1 2 Claim T L 2. α < ω 1 Tα L ω L T L (1) ω 1 ω 1 T L B T L B α < ω 1 B Tα L = {I α } I α T L node L convex set α I α+1 I α left partition right partition (a) J 0 = {α < ω 1 I α+1 left part. } (b) J 1 = {α < ω 1 I α+1 right part. }

43 3.4 Basis theorem 35 (i = 0, 1) α J i x α I α \I α+1 X i = {x α α J i } Case (a) X 0 ω 1 Case (b) X 1 ω 1 L Aronszajn (b) (b) α Tα L α T L α L I T α x I I x I I T L α L Aronszajn I coinitial cofinal K I I K I T L α K = I K I X = {x I I T L α } K X T L α I T L α disjoint K X x I, x J X (x I < x J ) (x I, x J ) X (x I, x J ) K x I I x J J binary partition tree I, J T L α cofinal branch branch I T L α I J I left partition I0 J disjoint right partition I 1 I disjoint I (x I, x J ) (x I, ) I0 (, x J) I1 K I coinitiality cofinality (x I, x J ) K X L Aronszajn (b) L T L L T L maximal node binary partition tree node I T L maximal I L T L maximal node Aronszajn ad-hoc Aronszajn walk Aronszajn Aronszajn C(ρ ) Aronszajn 3.4 Basis theorem walk theory basis problem

44 36 3 Yet Another Walk Tutorial Sorgenfrey long line βn ω ω Q ω ω *6 basis C D C D C basis L C K D L isomorphic copy basis C {ω 1 } C basis well-order one element basis L L { ω 1 } one element basis X σ-dense X ℵ C (R, ) D R σ-dense D C basis D basis PFA Baumgartner [2] σ-dense C one element basis Proof. X R ℵ 1 x X X condensation point x V X V X condensation point X X \ X ω X X σ-dense Remark R copy X condensation point X X X X σ-dense X X dense *6 Ramsey ( ) Ramsey ω 1 Ramsey walk Ramsey

45 3.4 Basis theorem 37 subset D X D Cantor D Q X R x X L x = {p D p < x} L x D = Q Q Dedekind cut : x L x R X R R basis basis canonical basis ω 1 ω 1 X [R] ℵ1 basis irreducibility L K L K L K L C minimal K L L K K C ω 1, ω 1 mininal PFA σ-dense set X R minimal Proof([4] ). ω 1 ω 1 X ω 1 f : X ω 1 f X X ω 1 increasing order ω 1 X ω 1 X = ω 1 PFA σ-dense set Y Y X σ-dense X Y ( subspace ) Y σ-dense X X X Y X Y 4 decompose WO AWO SEP Aronszajn A 3 basis Aronszajn Countryman ( Countryman [3] Coutryman ) L Countryman Cartesian square L 2 ( (x, y) (z, w) iff x z y w ) chain chain Countryman Aronszajn

46 38 3 Yet Another Walk Tutorial Proof. ω 1 ω 1 X Countryman Case 1. ω 1 Countryman ω1 2 = n C n C n chain α < ω 1 y- α X α X α X α = n<ω C n X α C n X α n = n α < ω f : ω 1 ω α n α α < β n α = n β chain C n x- C n chain (δ, β) C n X β (γ, α) C n X α γ δ α < β γ δ (γ, α) (δ, β) Case 2. ω 1 Countryman Case 1 Case 3. X Countryman X 2 = n C n X D X y- y X C ny X y n y C ny X y x- projection X d y D C ny (, d y ), C ny (d y, ) f : ω 1 ω D α (n y, d y ) y 0 < y 1 f f(y 0 ) = f(y 1 ) = (n, d) C n chain (x 0, y 0 ) C n (d, ) (x 1, y 1 ) C n (, d) (Shelah). Countryman Proof. Section 1 C(ρ 1 ) Countryman ( C(ρ 0 ) Countryman ) Remark Aronszajn T Countryman T coherent (T, lex ) Countryman T (ρ 3 ) Countryman MA ℵ1 basis (MA ℵ1 ). C(ρ 1 ) minimal MA ℵ1 (Martin s Axiom) Baire MA ℵ1 ccc compact Hausdorff ℵ 1 ccc(countable chain condition) Remark MA ℵ1 MA ℵ1

47 39 H(ℵ 2 ) Σ 1 ϕ ϕ ccc H(ℵ 2 ) Bagaria [1] (MA ℵ1 ). {C(ρ 1 ), C(ρ 1 )} Countryman basis Countryman set-theoretic MA ℵ1 canonical basis MA ℵ1 PFA basis (Shelah 30 )Moore (five element basis). PFA {C(ρ 1 ), C(ρ 1 )} Aronszajn two element basis five element basis [1] J. Bagaria, Axioms of generic absoluteness, Logic Colloquium, 2002 [2] J. Baumgartner, All ℵ 1 dense sets of reals can be isomorphic, Fund. Math, 1973 [3] R.S. Countryman, Spaces having a σ-monotone basis, preprint, 1970 [4] K. Kunen, J. Vaughan, Handbook Of Set-Theoretic Topology, North-Holland, 1985 [5] J.T. Moore, A solution to the L space problem, J. Amer. Math. Soc. 19, 2006 [6] J.T. Moore, A five element basis for the uncountable linear orders, Ann. Math., Vol. 163, 2006 [7] S. Todorcevic, Walks On Ordinals And Their Characteristics, Birkhaeuser, 2007 [8] S. Todorcevic, Coherent sequences, Handbook of set theory, 2010

48

49 41 4 G R E : (2012/12) ISBN-10: ISBN-13: /12

50 * *1 subitize subitus

51 in on under above - -

52 44 4 * *2

53 * 3 ε δ ε - - x sin( 1 x ) x jump jump into fly land BMI Basic Metaphor of Infinity *3

54 46 4 [7] *4 * 5 *4 *5

55 *6 [6] *6

56 48 4 [3] *7 * 8 *7 := [< 1/2, 1/2, 1/3,... >] *8

57 Q R R *9 R Q *9

58 50 4 N R R 4.3 e iπ = 1 [4] 0 +

59 4.3 51

60 52 4

61 * 10 * 11 *10 *11 [1] p. 143

62 54 4 * 12 non-standard 4.4 *12

63 * 13 *13

64 56 4 * 14 * 15 *14 [3] *15

65 x {x} x 1 * 16 * 17 *16 [5] n + 1 K {x 0,..., x n } K n f(x) {x 0,..., x n} {f(x 0 ),..., f(x n)} n V F : V K n+1 f (f(x 0 ),..., f(x n)) V F *17

66 1 + 2 = 3 =

67 59 [1] S. Shapiro (1997), Philosophy of Mathematics: Structure and Ontology, Oxford [2] G R E [3] A W [4] [5] [6] G [7] E

68

69 61 G is for Girl actress act act L L

70 62 G is for Girl G G G Girl G G mono Ω

71

72

73

74 . 2 6 forcing Free! The dark side of Forcing

75

( ) 7 29 ( ) meager (forcing) [12] Sabine Koppelberg 1995 [10] [15], [2], [3] [15] [2] [3] [11]

( ) 7 29 ( ) meager (forcing) [12] Sabine Koppelberg 1995 [10] [15], [2], [3] [15] [2] [3] [11] (Sakaé Fuchino) fuchino@isc.chubu.ac.jp 2002 8 24 2002 11 11 2002 11 23 2002 11 29 2003 10 30 footnote 0 2 1 3 1.1...................... 3 1.2....................... 5 1.3.......................... 6 1.4..........................

More information

Basic Math. 1 0 [ N Z Q Q c R C] 1, 2, 3,... natural numbers, N Def.(Definition) N (1) 1 N, (2) n N = n +1 N, (3) N (1), (2), n N n N (element). n/ N.

Basic Math. 1 0 [ N Z Q Q c R C] 1, 2, 3,... natural numbers, N Def.(Definition) N (1) 1 N, (2) n N = n +1 N, (3) N (1), (2), n N n N (element). n/ N. Basic Mathematics 16 4 16 3-4 (10:40-12:10) 0 1 1 2 2 2 3 (mapping) 5 4 ε-δ (ε-δ Logic) 6 5 (Potency) 9 6 (Equivalence Relation and Order) 13 7 Zorn (Axiom of Choice, Zorn s Lemma) 14 8 (Set and Topology)

More information

page: 1 1 Club guessing sequence , 1). M. Foreman ([ 7 ], [ 8 ] ). 1960,,,, ZFC,,.,,., ZFC,, 20.. G. Cantor.., Zermelo ZFC 2).,., ZFC,., ZFC

page: 1 1 Club guessing sequence , 1). M. Foreman ([ 7 ], [ 8 ] ). 1960,,,, ZFC,,.,,., ZFC,, 20.. G. Cantor.., Zermelo ZFC 2).,., ZFC,., ZFC page: 1 1 Club guessing sequence 1 1.1 1980, 1). M. Foreman ([ 7 ], [ 8 ] ). 1960,,,, ZFC,,.,,., ZFC,, 20.. G. Cantor.., Zermelo ZFC 2).,., ZFC,., ZFC ZFC, ZFC., K. Gödel [19] L P. Cohen [ 4 ], [ 5 ].,

More information

Akito Tsuboi June 22, T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1

Akito Tsuboi June 22, T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1 Akito Tsuboi June 22, 2006 1 T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1 1. X, Y, Z,... 2. A, B (A), (A) (B), (A) (B), (A) (B) Exercise 2 1. (X) (Y ) 2. ((X) (Y )) (Z) 3. (((X) (Y )) (Z)) Exercise

More information

Mathematical Logic I 12 Contents I Zorn

Mathematical Logic I 12 Contents I Zorn Mathematical Logic I 12 Contents I 2 1 3 1.1............................. 3 1.2.......................... 5 1.3 Zorn.................. 5 2 6 2.1.............................. 6 2.2..............................

More information

Lebesgue可測性に関するSoloayの定理と実数の集合の正則性=1This slide is available on ` `%%%`#`&12_`__~~~ౡ氀猀e

Lebesgue可測性に関するSoloayの定理と実数の集合の正則性=1This slide is available on ` `%%%`#`&12_`__~~~ౡ氀猀e Khomskii Lebesgue Soloay 1 Friday 27 th November 2015 1 This slide is available on http://slideshare.net/konn/lebesguesoloay 1 / 34 Khomskii 1 2 3 4 Khomskii 2 / 34 Khomskii Solovay 3 / 34 Khomskii Lebesgue

More information

Exercise in Mathematics IIB IIB (Seiji HIRABA) 0.1, =,,,. n R n, B(a; δ) = B δ (a) or U δ (a) = U(a;, δ) δ-. R n,,,, ;,,, ;,,. (S, O),,,,,,,, 1 C I 2

Exercise in Mathematics IIB IIB (Seiji HIRABA) 0.1, =,,,. n R n, B(a; δ) = B δ (a) or U δ (a) = U(a;, δ) δ-. R n,,,, ;,,, ;,,. (S, O),,,,,,,, 1 C I 2 Exercise in Mathematics IIB IIB (Seiji HIRABA) 0.1, =,,,. n R n, B(a; δ) = B δ (a) or U δ (a) = U(a;, δ) δ-. R n,,,, ;,,, ;,,. (S, O),,,,,,,, 1 C I 2 C II,,,,,,,,,,, 0.2. 1 (Connectivity) 3 2 (Compactness)

More information

1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition) A = {x; P (x)} P (x) x x a A a A Remark. (i) {2, 0, 0,

1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition) A = {x; P (x)} P (x) x x a A a A Remark. (i) {2, 0, 0, 2005 4 1 1 2 2 6 3 8 4 11 5 14 6 18 7 20 8 22 9 24 10 26 11 27 http://matcmadison.edu/alehnen/weblogic/logset.htm 1 1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition)

More information

set element a A A a A a A 1 extensional definition, { } A = {1, 2, 3, 4, 5, 6, 7, 8, 9} 9 1, 2, 3, 4, 5, 6, 7, 8, 9..

set element a A A a A a A 1 extensional definition, { } A = {1, 2, 3, 4, 5, 6, 7, 8, 9} 9 1, 2, 3, 4, 5, 6, 7, 8, 9.. 12 -- 2 1 2009 5,,.,.,.. 1, 2, 3,., 4),, 4, 5),. 4, 6, 7).,, R A B, 8, (a) A, B 9), (b) {a (a, b) R b B }, {b (a, b) R a A } 10, 11, 12) 2. (a). 11, 13, R S {(a, c) (a, b) R, (b, c) S } (c) R S 14), 1,

More information

1 I

1 I 1 I 3 1 1.1 R x, y R x + y R x y R x, y, z, a, b R (1.1) (x + y) + z = x + (y + z) (1.2) x + y = y + x (1.3) 0 R : 0 + x = x x R (1.4) x R, 1 ( x) R : x + ( x) = 0 (1.5) (x y) z = x (y z) (1.6) x y =

More information

n 2 + π2 6 x [10 n x] x = lim n 10 n n 10 k x 1.1. a 1, a 2,, a n, (a n ) n=1 {a n } n=1 1.2 ( ). {a n } n=1 Q ε > 0 N N m, n N a m

n 2 + π2 6 x [10 n x] x = lim n 10 n n 10 k x 1.1. a 1, a 2,, a n, (a n ) n=1 {a n } n=1 1.2 ( ). {a n } n=1 Q ε > 0 N N m, n N a m 1 1 1 + 1 4 + + 1 n 2 + π2 6 x [10 n x] x = lim n 10 n n 10 k x 1.1. a 1, a 2,, a n, (a n ) n=1 {a n } n=1 1.2 ( ). {a n } n=1 Q ε > 0 N N m, n N a m a n < ε 1 1. ε = 10 1 N m, n N a m a n < ε = 10 1 N

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

1. R n Ω ε G ε 0 Ω ε B n 2 Ωε = with Bu = 0 on Ω ε i=1 x 2 i ε +0 B Bu = u (Dirichlet, D Ω ε ), Bu = u ν (Neumann, N Ω ε ), Ω ε G ( ) / 25

1. R n Ω ε G ε 0 Ω ε B n 2 Ωε = with Bu = 0 on Ω ε i=1 x 2 i ε +0 B Bu = u (Dirichlet, D Ω ε ), Bu = u ν (Neumann, N Ω ε ), Ω ε G ( ) / 25 .. IV 2012 10 4 ( ) 2012 10 4 1 / 25 1. R n Ω ε G ε 0 Ω ε B n 2 Ωε = with Bu = 0 on Ω ε i=1 x 2 i ε +0 B Bu = u (Dirichlet, D Ω ε ), Bu = u ν (Neumann, N Ω ε ), Ω ε G ( ) 2012 10 4 2 / 25 1. Ω ε B ε t

More information

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1) 1. 1.1...,. 1.1.1 V, V x, y, x y x + y x + y V,, V x α, αx αx V,, (i) (viii) : x, y, z V, α, β C, (i) x + y = y + x. (ii) (x + y) + z = x + (y + z). 1 (iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y

More information

2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =

More information

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x 2009 9 6 16 7 1 7.1 1 1 1 9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x(cos y y sin y) y dy 1 sin

More information

Feynman Encounter with Mathematics 52, [1] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull

Feynman Encounter with Mathematics 52, [1] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull Feynman Encounter with Mathematics 52, 200 9 [] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull. Sci. Math. vol. 28 (2004) 97 25. [2] D. Fujiwara and

More information

III ϵ-n ϵ-n lim n a n = α n a n α 1 lim a n = 0 1 n a k n n k= ϵ-n 1.1

III ϵ-n ϵ-n lim n a n = α n a n α 1 lim a n = 0 1 n a k n n k= ϵ-n 1.1 III http://www2.mth.kyushu-u.c.jp/~hr/lectures/lectures-j.html 1 1 1.1 ϵ-n ϵ-n lim n = α n n α 1 lim n = 0 1 n k n k=1 0 1.1.7 ϵ-n 1.1.1 n α n n α lim n = α ϵ Nϵ n > Nϵ n α < ϵ 1.1.1 ϵ n > Nϵ n α < ϵ 1.1.2

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i 1. A. M. Turing [18] 60 Turing A. Gierer H. Meinhardt [1] : (GM) ) a t = D a a xx µa + ρ (c a2 h + ρ 0 (0 < x < l, t > 0) h t = D h h xx νh + c ρ a 2 (0 < x < l, t > 0) a x = h x = 0 (x = 0, l) a = a(x,

More information

: 1g99p038-8

: 1g99p038-8 16 17 : 1g99p038-8 1 3 1.1....................................... 4 1................................... 5 1.3.................................. 5 6.1..................................... 7....................................

More information

四変数基本対称式の解放

四変数基本対称式の解放 The second-thought of the Galois-style way to solve a quartic equation Oomori, Yasuhiro in Himeji City, Japan Jan.6, 013 Abstract v ρ (v) Step1.5 l 3 1 6. l 3 7. Step - V v - 3 8. Step1.3 - - groupe groupe

More information

A S hara/lectures/lectures-j.html ϵ-n 1 ϵ-n lim n a n = α n a n α 2 lim a n = 0 1 n a k n n k= ϵ

A S hara/lectures/lectures-j.html ϵ-n 1 ϵ-n lim n a n = α n a n α 2 lim a n = 0 1 n a k n n k= ϵ A S1-20 http://www2.mth.kyushu-u.c.jp/ hr/lectures/lectures-j.html 1 1 1.1 ϵ-n 1 ϵ-n lim n n = α n n α 2 lim n = 0 1 n k n n k=1 0 1.1.7 ϵ-n 1.1.1 n α n n α lim n n = α ϵ N(ϵ) n > N(ϵ) n α < ϵ (1.1.1)

More information

CVMに基づくNi-Al合金の

CVMに基づくNi-Al合金の CV N-A (-' by T.Koyama ennard-jones fcc α, β, γ, δ β α γ δ = or α, β. γ, δ α β γ ( αβγ w = = k k k ( αβγ w = ( αβγ ( αβγ w = w = ( αβγ w = ( αβγ w = ( αβγ w = ( αβγ w = ( αβγ w = ( βγδ w = = k k k ( αγδ

More information

Riemann-Stieltjes Poland S. Lojasiewicz [1] An introduction to the theory of real functions, John Wiley & Sons, Ltd., Chichester, 1988.,,,,. Riemann-S

Riemann-Stieltjes Poland S. Lojasiewicz [1] An introduction to the theory of real functions, John Wiley & Sons, Ltd., Chichester, 1988.,,,,. Riemann-S Riemnn-Stieltjes Polnd S. Lojsiewicz [1] An introduction to the theory of rel functions, John Wiley & Sons, Ltd., Chichester, 1988.,,,, Riemnn-Stieltjes 1 2 2 5 3 6 4 Jordn 13 5 Riemnn-Stieltjes 15 6 Riemnn-Stieltjes

More information

¿ô³Ø³Ø½øÏÀ¥Î¡¼¥È

¿ô³Ø³Ø½øÏÀ¥Î¡¼¥È 2011 i N Z Q R C A def B, A B. ii..,.,.. (, ), ( ),.?????????,. iii 04-13 04-20 04-27 05-04 [ ] 05-11 05-18 05-25 06-01 06-08 06-15 06-22 06-29 07-06 07-13 07-20 07-27 08-03 10-05 10-12 10-19 [ ] 10-26

More information

Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, P

Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, P Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, PC ( 4 5 )., 5, Milnor Milnor., ( 6 )., (I) Z modulo

More information

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + (

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + ( IA 2013 : :10722 : 2 : :2 :761 :1 23-27) : : 1 1.1 / ) 1 /, ) / e.g. Taylar ) e x = 1 + x + x2 2 +... + xn n! +... sin x = x x3 6 + x5 x2n+1 + 1)n 5! 2n + 1)! 2 2.1 = 1 e.g. 0 = 0.00..., π = 3.14..., 1

More information

1 X X A, B X = A B A B A B X 1.1 R R I I a, b(a < b) I a x b = x I 1.2 R A 1.3 X : (1)X (2)X X (3)X A, B X = A B A B = 1.4 f : X Y X Y ( ) A Y A Y A f

1 X X A, B X = A B A B A B X 1.1 R R I I a, b(a < b) I a x b = x I 1.2 R A 1.3 X : (1)X (2)X X (3)X A, B X = A B A B = 1.4 f : X Y X Y ( ) A Y A Y A f 1 X X A, B X = A B A B A B X 1.1 R R I I a, b(a < b) I a x b = x I 1. R A 1.3 X : (1)X ()X X (3)X A, B X = A B A B = 1.4 f : X Y X Y ( ) A Y A Y A f 1 (A) f X X f 1 (A) = X f 1 (A) = A a A f f(x) = a x

More information

inkiso.dvi

inkiso.dvi Ken Urai May 19, 2004 5 27 date-event uncertainty risk 51 ordering preordering X X X (preordering) reflexivity x X x x transitivity x, y, z X x y y z x z asymmetric x y y x x = y X (ordering) completeness

More information

1. (Naturau Deduction System, N-system) 1.1,,,,, n- R t 1,..., t n Rt 1... t n atomic formula : x, y, z, u, v, w,... : f, g, h,... : c, d,... : t, s,

1. (Naturau Deduction System, N-system) 1.1,,,,, n- R t 1,..., t n Rt 1... t n atomic formula : x, y, z, u, v, w,... : f, g, h,... : c, d,... : t, s, 1 (Naturau Deduction System, N-system) 11,,,,, n- R t 1,, t n Rt 1 t n atomic formula : x, y, z, u, v, w, : f, g, h, : c, d, : t, s, r, : P, Q, : R, : A, B, C, D, 12 A A A A N-system 1 1 N-system N-system

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

基礎数学I

基礎数学I I & II ii ii........... 22................. 25 12............... 28.................. 28.................... 31............. 32.................. 34 3 1 9.................... 1....................... 1............

More information

x 3 a (mod p) ( ). a, b, m Z a b m a b (mod m) a b m 2.2 (Z/mZ). a = {x x a (mod m)} a Z m 0, 1... m 1 Z/mZ = {0, 1... m 1} a + b = a +

x 3 a (mod p) ( ). a, b, m Z a b m a b (mod m) a b m 2.2 (Z/mZ). a = {x x a (mod m)} a Z m 0, 1... m 1 Z/mZ = {0, 1... m 1} a + b = a + 1 1 22 1 x 3 (mod ) 2 2.1 ( )., b, m Z b m b (mod m) b m 2.2 (Z/mZ). = {x x (mod m)} Z m 0, 1... m 1 Z/mZ = {0, 1... m 1} + b = + b, b = b Z/mZ 1 1 Z Q R Z/Z 2.3 ( ). m {x 0, x 1,..., x m 1 } modm 2.4

More information

(Basic of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Weak Law

(Basic of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Weak Law I (Radom Walks ad Percolatios) 3 4 7 ( -2 ) (Preface),.,,,...,,.,,,,.,.,,.,,. (,.) (Basic of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios, Meas).............................

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

Dynkin Serre Weyl

Dynkin Serre Weyl Dynkin Naoya Enomoto 2003.3. paper Dynkin Introduction Dynkin Lie Lie paper 1 0 Introduction 3 I ( ) Lie Dynkin 4 1 ( ) Lie 4 1.1 Lie ( )................................ 4 1.2 Killing form...........................................

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

Perturbation method for determining the group of invariance of hierarchical models

Perturbation method for determining the group of invariance of hierarchical models Perturbation method for determining the group of invariance of hierarchical models 1 2 1 1 2 2009/11/27 ( ) 2009/11/27 1 / 31 2 3 p 11 p 12 p 13 p 21 p 22 p 23 (p ij 0, i;j p ij = 1). p ij = a i b j log

More information

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10 1 2007.4.13. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 0. 1. 1. 2. 3. 2. ɛ-δ 1. ɛ-n

More information

1 M = (M, g) m Riemann N = (N, h) n Riemann M N C f : M N f df : T M T N M T M f N T N M f 1 T N T M f 1 T N C X, Y Γ(T M) M C T M f 1 T N M Levi-Civi

1 M = (M, g) m Riemann N = (N, h) n Riemann M N C f : M N f df : T M T N M T M f N T N M f 1 T N T M f 1 T N C X, Y Γ(T M) M C T M f 1 T N M Levi-Civi 1 Surveys in Geometry 1980 2 6, 7 Harmonic Map Plateau Eells-Sampson [5] Siu [19, 20] Kähler 6 Reports on Global Analysis [15] Sacks- Uhlenbeck [18] Siu-Yau [21] Frankel Siu Yau Frankel [13] 1 Surveys

More information

第86回日本感染症学会総会学術集会後抄録(I)

第86回日本感染症学会総会学術集会後抄録(I) κ κ κ κ κ κ μ μ β β β γ α α β β γ α β α α α γ α β β γ μ β β μ μ α ββ β β β β β β β β β β β β β β β β β β γ β μ μ μ μμ μ μ μ μ β β μ μ μ μ μ μ μ μ μ μ μ μ μ μ β

More information

1980年代半ば,米国中西部のモデル 理論,そして未来-モデル理論賛歌

1980年代半ば,米国中西部のモデル 理論,そして未来-モデル理論賛歌 2016 9 27 RIMS 1 2 3 1983 9-1989 6 University of Illinois at Chicago (UIC) John T Baldwin 1983 9-1989 6 University of Illinois at Chicago (UIC) John T Baldwin Y N Moschovakis, Descriptive Set Theory North

More information

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ = 1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A

More information

koji07-01.dvi

koji07-01.dvi 2007 I II III 1, 2, 3, 4, 5, 6, 7 5 10 19 (!) 1938 70 21? 1 1 2 1 2 2 1! 4, 5 1? 50 1 2 1 1 2 2 1?? 2 1 1, 2 1, 2 1, 2, 3,... 3 1, 2 1, 3? 2 1 3 1 2 1 1, 2 2, 3? 2 1 3 2 3 2 k,l m, n k,l m, n kn > ml...?

More information

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi I (Basics of Probability Theory ad Radom Walks) 25 4 5 ( 4 ) (Preface),.,,,.,,,...,,.,.,,.,,. (,.) (Basics of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios,

More information

四変数基本対称式の解放

四変数基本対称式の解放 Solving the simultaneous equation of the symmetric tetravariate polynomials and The roots of a quartic equation Oomori, Yasuhiro in Himeji City, Japan Dec.1, 2011 Abstract 1. S 4 2. 1. {α, β, γ, δ} (1)

More information

応用数学特論.dvi

応用数学特論.dvi 1 1 1.1.1 ( ). P,Q,R,.... 2+3=5 2 1.1.2 ( ). P T (true) F (false) T F P P T P. T 2 F 1.1.3 ( ). 2 P Q P Q P Q P Q P or Q P Q P Q P Q T T T T F T F T T F F F. P = 5 4 Q = 3 2 P Q = 5 4 3 2 P F Q T P Q T

More information

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional 19 σ = P/A o σ B Maximum tensile strength σ 0. 0.% 0.% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional limit ε p = 0.% ε e = σ 0. /E plastic strain ε = ε e

More information

ルベーグ積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

ルベーグ積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. ルベーグ積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/005431 このサンプルページの内容は, 初版 1 刷発行時のものです. Lebesgue 1 2 4 4 1 2 5 6 λ a

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

I: 2 : 3 +

I: 2 : 3 + I: 1 I: 2008 I: 2 : 3 + I: 3, 3700. (ISBN4-00-010352-0) H.P.Barendregt, The lambda calculus: its syntax and semantics, Studies in logic and the foundations of mathematics, v.103, North-Holland, 1984. (ISBN

More information

ε ε x x + ε ε cos(ε) = 1, sin(ε) = ε [6] [5] nonstandard analysis 1974 [4] We shoud add that, to logical positivist, a discussion o

ε ε x x + ε ε cos(ε) = 1, sin(ε) = ε [6] [5] nonstandard analysis 1974 [4] We shoud add that, to logical positivist, a discussion o dif engine 2017/12/08 Math Advent Calendar 2017(https://adventar.org/calendars/2380) 12/8 IST(Internal Set Theory; ) 1 1.1 (nonstandard analysis, NSA) ε ε (a) ε 0. (b) r > 0 ε < r. (a)(b) ε sin(x) d sin(x)

More information

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1 QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1 (vierbein) QCD QCD 1 1: QCD QCD Γ ρ µν A µ R σ µνρ F µν g µν A µ Lagrangian gr TrFµν F µν No. Yes. Yes. No. No! Yes! [1] Nash & Sen [2] Riemann

More information

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi II (Basics of Probability Theory ad Radom Walks) (Preface),.,,,.,,,...,,.,.,,.,,. (Basics of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios, Meas).............................

More information

compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) a, Σ a {0} a 3 1

compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) a, Σ a {0} a 3 1 014 5 4 compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) 1 1.1. a, Σ a {0} a 3 1 (1) a = span(σ). () α, β Σ s α β := β α,β α α Σ. (3) α, β

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T SAMA- SUKU-RU Contents 1. 1 2. 7.1. p-adic families of Eisenstein series 3 2.1. modular form Hecke 3 2.2. Eisenstein 5 2.3. Eisenstein p 7 3. 7.2. The projection to the ordinary part 9 3.1. The ordinary

More information

画像工学特論

画像工学特論 .? (x i, y i )? (x(t), y(t))? (x(t)) (X(ω)) Wiener-Khintchine 35/97 . : x(t) = X(ω)e jωt dω () π X(ω) = x(t)e jωt dt () X(ω) S(ω) = lim (3) ω S(ω)dω X(ω) : F of x : [X] [ = ] [x t] Power spectral density

More information

第8章 位相最適化問題

第8章 位相最適化問題 8 February 25, 2009 1 (topology optimizaiton problem) ( ) H 1 2 2.1 ( ) V S χ S : V {0, 1} S (characteristic function) (indicator function) 1 (x S ) χ S (x) = 0 (x S ) 2.1 ( ) Lipschitz D R d χ Ω (Ω D)

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

1 α X (path) α I = [0, 1] X α(0) = α(1) = p α p (base point) loop α(1) = β(0) X α, β α β : I X (α β)(s) = ( )α β { α(2s) (0 s 1 2 ) β(2s 1) ( 1 2 s 1)

1 α X (path) α I = [0, 1] X α(0) = α(1) = p α p (base point) loop α(1) = β(0) X α, β α β : I X (α β)(s) = ( )α β { α(2s) (0 s 1 2 ) β(2s 1) ( 1 2 s 1) 1 α X (path) α I = [0, 1] X α(0) = α(1) = p α p (base point) loop α(1) = β(0) X α, β α β : I X (α β)(s) = ( )α β { α(2s) (0 s 1 2 ) β(2s 1) ( 1 2 s 1) X α α 1 : I X α 1 (s) = α(1 s) ( )α 1 1.1 X p X Ω(p)

More information

2 2 1?? 2 1 1, 2 1, 2 1, 2, 3,... 1, 2 1, 3? , 2 2, 3? k, l m, n k, l m, n kn > ml...? 2 m, n n m

2 2 1?? 2 1 1, 2 1, 2 1, 2, 3,... 1, 2 1, 3? , 2 2, 3? k, l m, n k, l m, n kn > ml...? 2 m, n n m 2009 IA I 22, 23, 24, 25, 26, 27 4 21 1 1 2 1! 4, 5 1? 50 1 2 1 1 2 1 4 2 2 2 1?? 2 1 1, 2 1, 2 1, 2, 3,... 1, 2 1, 3? 2 1 3 1 2 1 1, 2 2, 3? 2 1 3 2 3 2 k, l m, n k, l m, n kn > ml...? 2 m, n n m 3 2

More information

T rank A max{rank Q[R Q, J] t-rank T [R T, C \ J] J C} 2 ([1, p.138, Theorem 4.2.5]) A = ( ) Q rank A = min{ρ(j) γ(j) J J C} C, (5) ρ(j) = rank Q[R Q,

T rank A max{rank Q[R Q, J] t-rank T [R T, C \ J] J C} 2 ([1, p.138, Theorem 4.2.5]) A = ( ) Q rank A = min{ρ(j) γ(j) J J C} C, (5) ρ(j) = rank Q[R Q, (ver. 4:. 2005-07-27) 1 1.1 (mixed matrix) (layered mixed matrix, LM-matrix) m n A = Q T (2m) (m n) ( ) ( ) Q I m Q à = = (1) T diag [t 1,, t m ] T rank à = m rank A (2) 1.2 [ ] B rank [B C] rank B rank

More information

2018/10/04 IV/ IV 2/12. A, f, g A. (1) D(0 A ) =, D(1 A ) = Spec(A), D(f) D(g) = D(fg). (2) {f l A l Λ} A I D(I) = l Λ D(f l ). (3) I, J A D(I) D(J) =

2018/10/04 IV/ IV 2/12. A, f, g A. (1) D(0 A ) =, D(1 A ) = Spec(A), D(f) D(g) = D(fg). (2) {f l A l Λ} A I D(I) = l Λ D(f l ). (3) I, J A D(I) D(J) = 2018/10/04 IV/ IV 1/12 2018 IV/ IV 10 04 * 1 : ( A 441 ) yanagida[at]math.nagoya-u.ac.jp https://www.math.nagoya-u.ac.jp/~yanagida 1 I: (ring)., A 0 A, 1 A. (ring homomorphism).. 1.1 A (ideal) I, ( ) I

More information

1 X X T T X (topology) T X (open set) (X, T ) (topological space) ( ) T1 T, X T T2 T T T3 T T ( ) ( ) T1 X T2 T3 1 X T = {, X} X (X, T ) indiscrete sp

1 X X T T X (topology) T X (open set) (X, T ) (topological space) ( ) T1 T, X T T2 T T T3 T T ( ) ( ) T1 X T2 T3 1 X T = {, X} X (X, T ) indiscrete sp 1 X X T T X (topology) T X (open set) (X, T ) (topological space) ( ) T1 T, X T T2 T T T3 T T ( ) ( ) T1 X T2 T3 1 X T = {, X} X (X, T ) indiscrete space T1 T2 =, X = X, X X = X T3 =, X =, X X = X 2 X

More information

B [ 0.1 ] x > 0 x 6= 1 f(x) µ 1 1 xn 1 + sin sin x 1 x 1 f(x) := lim. n x n (1) lim inf f(x) (2) lim sup f(x) x 1 0 x 1 0 (

B [ 0.1 ] x > 0 x 6= 1 f(x) µ 1 1 xn 1 + sin sin x 1 x 1 f(x) := lim. n x n (1) lim inf f(x) (2) lim sup f(x) x 1 0 x 1 0 ( . 28 4 14 [.1 ] x > x 6= 1 f(x) µ 1 1 xn 1 + sin + 2 + sin x 1 x 1 f(x) := lim. 1 + x n (1) lim inf f(x) (2) lim sup f(x) x 1 x 1 (3) lim inf x 1+ f(x) (4) lim sup f(x) x 1+ [.2 ] [, 1] Ω æ x (1) (2) nx(1

More information

I. (CREMONA ) : Cremona [C],., modular form f E f. 1., modular X H 1 (X, Q). modular symbol M-symbol, ( ) modular symbol., notation. H = { z = x

I. (CREMONA ) : Cremona [C],., modular form f E f. 1., modular X H 1 (X, Q). modular symbol M-symbol, ( ) modular symbol., notation. H = { z = x I. (CREMONA ) : Cremona [C],., modular form f E f. 1., modular X H 1 (X, Q). modular symbol M-symbol, ( ). 1.1. modular symbol., notation. H = z = x iy C y > 0, cusp H = H Q., Γ = PSL 2 (Z), G Γ [Γ : G]

More information

Gelfand 3 L 2 () ix M : ϕ(x) ixϕ(x) M : σ(m) = i (λ M) λ (L 2 () ) ( 0 ) L 2 () ϕ, ψ L 2 () ((λ M) ϕ, ψ) ((λ M) ϕ, ψ) = λ ix ϕ(x)ψ(x)dx. λ /(λ ix) ϕ,

Gelfand 3 L 2 () ix M : ϕ(x) ixϕ(x) M : σ(m) = i (λ M) λ (L 2 () ) ( 0 ) L 2 () ϕ, ψ L 2 () ((λ M) ϕ, ψ) ((λ M) ϕ, ψ) = λ ix ϕ(x)ψ(x)dx. λ /(λ ix) ϕ, A spectral theory of linear operators on Gelfand triplets MI (Institute of Mathematics for Industry, Kyushu University) (Hayato CHIBA) chiba@imi.kyushu-u.ac.jp Dec 2, 20 du dt = Tu. (.) u X T X X T 0 X

More information

平成 28 年度 ( 第 38 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 ~8 28 月年 48 日開催月 1 日 semantics FB 1 x, y, z,... FB 1. FB (Boolean) Functional

平成 28 年度 ( 第 38 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 ~8 28 月年 48 日開催月 1 日 semantics FB 1 x, y, z,... FB 1. FB (Boolean) Functional 1 1.1 semantics F 1 x, y, z,... F 1. F 38 2016 9 1 (oolean) Functional 2. T F F 3. P F (not P ) F 4. P 1 P 2 F (P 1 and P 2 ) F 5. x P 1 P 2 F (let x be P 1 in P 2 ) F 6. F syntax F (let x be (T and y)

More information

鉄鋼協会プレゼン

鉄鋼協会プレゼン NN :~:, 8 Nov., Adaptive H Control for Linear Slider with Friction Compensation positioning mechanism moving table stand manipulator Point to Point Control [G] Continuous Path Control ground Fig. Positoining

More information

1 2 X X X X X X X X X X Russel (1) (2) (3) X = {A A A} 1.1.1

1 2 X X X X X X X X X X Russel (1) (2) (3) X = {A A A} 1.1.1 1 1 1.1 G.Cantor (1845 1918) 1874 Unter eines Menge verstehen wir jede Zusammenfassung M von bestimmten wohlunterschiedenen Objekten in unserer Anschauung oder unserers Denkens (welche die Elemente von

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

JKR Point loading of an elastic half-space 2 3 Pressure applied to a circular region Boussinesq, n =

JKR Point loading of an elastic half-space 2 3 Pressure applied to a circular region Boussinesq, n = JKR 17 9 15 1 Point loading of an elastic half-space Pressure applied to a circular region 4.1 Boussinesq, n = 1.............................. 4. Hertz, n = 1.................................. 6 4 Hertz

More information

,,,,., = (),, (1) (4) :,,,, (1),. (2),, =. (3),,. (4),,,,.. (1) (3), (4).,,., () : = , ( ) : = F 1 + F 2 + F 3 + ( ) : = i Fj j=1 2

,,,,., = (),, (1) (4) :,,,, (1),. (2),, =. (3),,. (4),,,,.. (1) (3), (4).,,., () : = , ( ) : = F 1 + F 2 + F 3 + ( ) : = i Fj j=1 2 6 2 6.1 2 2, 2 5.2 R 2, 2 (R 2, B, µ)., R 2,,., 1, 2, 3,., 1, 2, 3,,. () : = 1 + 2 + 3 + (6.1.1).,,, 1 ,,,,., = (),, (1) (4) :,,,, (1),. (2),, =. (3),,. (4),,,,.. (1) (3), (4).,,., () : = 1 + 2 + 3 +,

More information

K 2 X = 4 MWG(f), X P 2 F, υ 0 : X P 2 2,, {f λ : X λ P 1 } λ Λ NS(X λ ), (υ 0 ) λ : X λ P 2 ( 1) X 6, f λ K X + F, f ( 1), n, n 1 (cf [10]) X, f : X

K 2 X = 4 MWG(f), X P 2 F, υ 0 : X P 2 2,, {f λ : X λ P 1 } λ Λ NS(X λ ), (υ 0 ) λ : X λ P 2 ( 1) X 6, f λ K X + F, f ( 1), n, n 1 (cf [10]) X, f : X 2 E 8 1, E 8, [6], II II, E 8, 2, E 8,,, 2 [14],, X/C, f : X P 1 2 3, f, (O), f X NS(X), (O) T ( 1), NS(X), T [15] : MWG(f) NS(X)/T, MWL(f) 0 (T ) NS(X), MWL(f) MWL(f) 0, : {f λ : X λ P 1 } λ Λ NS(X λ

More information

A bound of the number of reduced Arakelov divisors of a number field (joint work with Ryusuke Yoshimitsu) Takao Watanabe Department of Mathematics Osa

A bound of the number of reduced Arakelov divisors of a number field (joint work with Ryusuke Yoshimitsu) Takao Watanabe Department of Mathematics Osa A bound of the number of reduced Arakelov divisors of a number field (joint work with Ryusuke Yoshimitsu) Takao Watanabe Department of Mathematics Osaka University , Schoof Algorithmic Number Theory, MSRI

More information

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes ) ( 3 7 4 ) 2 2 ) 8 2 954 2) 955 3) 5) J = σe 2 6) 955 7) 9) 955 Statistical-Mechanical Theory of Irreversible Processes 957 ) 3 4 2 A B H (t) = Ae iωt B(t) = B(ω)e iωt B(ω) = [ Φ R (ω) Φ R () ] iω Φ R (t)

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

, = = 7 6 = 42, =

, = = 7 6 = 42, = http://www.ss.u-tokai.ac.jp/~mahoro/2016autumn/alg_intro/ 1 1 2016.9.26, http://www.ss.u-tokai.ac.jp/~mahoro/2016autumn/alg_intro/ 1.1 1 214 132 = 28258 2 + 1 + 4 1 + 3 + 2 = 7 6 = 42, 4 + 2 = 6 2 + 8

More information

III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). T

III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). T III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). Theorem 1.3 (Lebesgue ) lim n f n = f µ-a.e. g L 1 (µ)

More information

³ÎΨÏÀ

³ÎΨÏÀ 2017 12 12 Makoto Nakashima 2017 12 12 1 / 22 2.1. C, D π- C, D. A 1, A 2 C A 1 A 2 C A 3, A 4 D A 1 A 2 D Makoto Nakashima 2017 12 12 2 / 22 . (,, L p - ). Makoto Nakashima 2017 12 12 3 / 22 . (,, L p

More information

* 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) *

* 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) * * 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) *1 2004 1 1 ( ) ( ) 1.1 140 MeV 1.2 ( ) ( ) 1.3 2.6 10 8 s 7.6 10 17 s? Λ 2.5 10 10 s 6 10 24 s 1.4 ( m

More information

°ÌÁê¿ô³ØII

°ÌÁê¿ô³ØII July 14, 2007 Brouwer f f(x) = x x f(z) = 0 2 f : S 2 R 2 f(x) = f( x) x S 2 3 3 2 - - - 1. X x X U(x) U(x) x U = {U(x) x X} X 1. U(x) A U(x) x 2. A U(x), A B B U(x) 3. A, B U(x) A B U(x) 4. A U(x),

More information

G (n) (x 1, x 2,..., x n ) = 1 Dφe is φ(x 1 )φ(x 2 ) φ(x n ) (5) N N = Dφe is (6) G (n) (generating functional) 1 Z[J] d 4 x 1 d 4 x n G (n) (x 1, x 2

G (n) (x 1, x 2,..., x n ) = 1 Dφe is φ(x 1 )φ(x 2 ) φ(x n ) (5) N N = Dφe is (6) G (n) (generating functional) 1 Z[J] d 4 x 1 d 4 x n G (n) (x 1, x 2 6 Feynman (Green ) Feynman 6.1 Green generating functional Z[J] φ 4 L = 1 2 µφ µ φ m 2 φ2 λ 4! φ4 (1) ( 1 S[φ] = d 4 x 2 φkφ λ ) 4! φ4 (2) K = ( 2 + m 2 ) (3) n G (n) (x 1, x 2,..., x n ) = φ(x 1 )φ(x

More information

u = u(t, x 1,..., x d ) : R R d C λ i = 1 := x 2 1 x 2 d d Euclid Laplace Schrödinger N := {1, 2, 3,... } Z := {..., 3, 2, 1,, 1, 2, 3

u = u(t, x 1,..., x d ) : R R d C λ i = 1 := x 2 1 x 2 d d Euclid Laplace Schrödinger N := {1, 2, 3,... } Z := {..., 3, 2, 1,, 1, 2, 3 2 2 1 5 5 Schrödinger i u t + u = λ u 2 u. u = u(t, x 1,..., x d ) : R R d C λ i = 1 := 2 + + 2 x 2 1 x 2 d d Euclid Laplace Schrödinger 3 1 1.1 N := {1, 2, 3,... } Z := {..., 3, 2, 1,, 1, 2, 3,... } Q

More information

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3 II (Percolation) 12 9 27 ( 3-4 ) 1 [ ] 2 [ ] 3 [ ] 4 [ ] 1992 5 [ ] G Grimmett Percolation Springer-Verlag New-York 1989 6 [ ] 3 1 3 p H 2 3 2 FKG BK Russo 2 p H = p T (=: p c ) 3 2 Kesten p c =1/2 ( )

More information

y = x x R = 0. 9, R = σ $ = y x w = x y x x w = x y α ε = + β + x x x y α ε = + β + γ x + x x x x' = / x y' = y/ x y' =

y = x x R = 0. 9, R = σ $ = y x w = x y x x w = x y α ε = + β + x x x y α ε = + β + γ x + x x x x' = / x y' = y/ x y' = y x = α + β + ε =,, ε V( ε) = E( ε ) = σ α $ $ β w ( 0) σ = w σ σ y α x ε = + β + w w w w ε / w ( w y x α β ) = α$ $ W = yw βwxw $β = W ( W) ( W)( W) w x x w x x y y = = x W y W x y x y xw = y W = w w

More information

untitled

untitled 1 kaiseki1.lec(tex) 19951228 19960131;0204 14;16 26;0329; 0410;0506;22;0603-05;08;20;0707;09;11-22;24-28;30;0807;12-24;27;28; 19970104(σ,F = µ);0212( ); 0429(σ- A n ); 1221( ); 20000529;30(L p ); 20050323(

More information

第5章 偏微分方程式の境界値問題

第5章 偏微分方程式の境界値問題 October 5, 2018 1 / 113 4 ( ) 2 / 113 Poisson 5.1 Poisson ( A.7.1) Poisson Poisson 1 (A.6 ) Γ p p N u D Γ D b 5.1.1: = Γ D Γ N 3 / 113 Poisson 5.1.1 d {2, 3} Lipschitz (A.5 ) Γ D Γ N = \ Γ D Γ p Γ N Γ

More information

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence Hanbury-Brown Twiss (ver. 2.) 25 4 4 1 2 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 4 3 Hanbury-Brown Twiss ( ) 5 3.1............................................

More information

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2 1 Abstract n 1 1.1 a ax + bx + c = 0 (a 0) (1) ( x + b ) = b 4ac a 4a D = b 4ac > 0 (1) D = 0 D < 0 x + b a = ± b 4ac a b ± b 4ac a b a b ± 4ac b i a D (1) ax + bx + c D 0 () () (015 8 1 ) 1. D = b 4ac

More information

Trapezoidal Rule θ = 1/ x n x n 1 t = 1 [f(t n 1, x n 1 ) + f(t n, x n )] (6) 1. dx dt = f(t, x), x(t 0) = x 0 (7) t [t 0, t 1 ] f t [t 0, t 1 ], x x

Trapezoidal Rule θ = 1/ x n x n 1 t = 1 [f(t n 1, x n 1 ) + f(t n, x n )] (6) 1. dx dt = f(t, x), x(t 0) = x 0 (7) t [t 0, t 1 ] f t [t 0, t 1 ], x x University of Hyogo 8 8 1 d x(t) =f(t, x(t)), dt (1) x(t 0 ) =x 0 () t n = t 0 + n t x x n n x n x 0 x i i = 0,..., n 1 x n x(t) 1 1.1 1 1 1 0 θ 1 θ x n x n 1 t = θf(t n 1, x n 1 ) + (1 θ)f(t n, x n )

More information

18 5 10 1 1 1.1 1.1.1 P Q P Q, P, Q P Q P Q P Q, P, Q 2 1 1.1.2 P.Q T F Z R 0 1 x, y x + y x y x y = y x x (y z) = (x y) z x + y = y + x x + (y + z) = (x + y) + z P.Q V = {T, F } V P.Q P.Q T F T F 1.1.3

More information

重力方向に基づくコントローラの向き決定方法

重力方向に基づくコントローラの向き決定方法 ( ) 2/Sep 09 1 ( ) ( ) 3 2 X w, Y w, Z w +X w = +Y w = +Z w = 1 X c, Y c, Z c X c, Y c, Z c X w, Y w, Z w Y c Z c X c 1: X c, Y c, Z c Kentaro Yamaguchi@bandainamcogames.co.jp 1 M M v 0, v 1, v 2 v 0 v

More information

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 p µ γ µ + mp ν γ ν + m 5.1 γ p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 1 2 p µp ν {γ µ, γ ν } + m 2 5.2 p m p p µ γ µ {, } 10 γ {γ µ, γ ν } 2η µν 5.3 p µ γ µ + mp

More information

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P 9 (Finite Element Method; FEM) 9. 9. P(0) P(x) u(x) (a) P(L) f P(0) P(x) (b) 9. P(L) 9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L)

More information

kokyuroku.dvi

kokyuroku.dvi On Applications of Rigorous Computing to Dynamical Systems (Zin ARAI) Department of Mathematics, Kyoto University email: arai@math.kyoto-u.ac.jp 1 [12, 13] Lorenz 2 Lorenz 3 4 2 Lorenz 2.1 Lorenz E. Lorenz

More information