i iii 1 ZFC Skolem
|
|
|
- ゆずさ のじま
- 7 years ago
- Views:
Transcription
1
2
3 i iii 1 ZFC Skolem Yet Another Walk Tutorial Minimal walks, colorings and lines Walks and Trees Trees and Lines Basis theorem G is for Girl 61
4
5 iii Gainax Panty & Stocking with Garterbelt OCaml J Garrigue
6 iv scheme C ocaml turtle graphics GUI Java Smalltalk Department of Polymathematics
7 v Science of Philosophy of Science
8
9 1 1 ZFC 1963, Paul Cohen, ZFC(Zermelo-Fraenkel ). Cohen, ZFC Forcing. Cohen, ZFC,..,.,, ZFC. ZFC Skolem,, 1.,. 1. (, ) (,. Löwenheim-Skolem )., [2]..,. [5], [3], [1].
10 2 1 ZFC, [4], [6]. K.,. Y.,. K. 1.1 Y,. *1,, K,, ZFC Y, K., Y ZFC, Cohen K., ZFC Gödel 1940, Cohen, ZFC..,, φ ZFC, Y K ZFC φ φ, ZFC + φ. Y,. ZFC φ *2., ZFC + φ ZFC, ZFC + φ φ., φ ZFC + φ 1, ZFC + φ φ., ZFC + φ φ,., ZFC φ ZFC + φ *1. 2 ℵ 0 = ℵ 1. *2 T φ, T φ, T φ.
11 1.1 3., ZFC + φ ZFC φ. ZFC + φ, ZFC φ K,. φ CH(Continuum Hypothesis), ZFC CH, ZFC + CH Y.. K *3,. 1. ( ) Y. K.., *4.., *5. T M, T φ φ, M φ φ., T φ, T φ,.. φ, φ x(x x = e) ( e ). φ, Y K Y φ φ, Z + ( 0), = 2 0, φ. φ. φ. {e} φ.. φ. K.,,, ZFC., φ φ, φ φ Y,,, K *3. *4,,. *5.
12 4 1 ZFC 1.1 Y. ZFC + CH, ZFC + CH,, CH ZFC.. CH ZFC K., φ ZFC, φ ZFC ZFC φ, φ ZFC ZFC φ,., Gödel, Cohen 1.2 Y, ZFC K, V Y. (= 0), ( ) K. V. ( 1). V α, α. x P(x) x, V 1 =P( ) = { } = {0}, V 2 = P({0}) = {0, {0}} = {0, 1} Y K, V ZFC *6, *6 (V, ), V,,.
13 1.2 5., V, (ℵ 2 ). ℵ 1 Y V K Y V. K, Y K. V, ZFC,, *7.,, Y, ZFC Löwenheim-Skolem *8 Skolem *9 K. ZFC, Löwenheim-Skolem, ZFC.,, ZFC., ZFC, M M E (M, E), E V M -., x(x M x M), M (transitive). -. * 10. * 11,, ZFC - * 12. ( 2) Y V M, V ω. K V ω,.., ZFC *7, V. *8 Löwenheim-Skolem,. *9 ZFC, ZFC., ZFC..,. *10 Mostowski. [5] III,IV. *11 Gödel, ZFC - ZFC, ZFC - ZFC.. [5] VII 1. *12, -
14 6 1 ZFC 1.2 ZFC. Y ω 1 (= ℵ 1 ) M. K ω 1 M Y K M. ω 1 M Y, M K., M ZFC. ZFC ω 1. ω 1 M. Y, Skolem. K M ω 1 V ω 1. ZFC,., ZFC,. (absoluteness) 1.3 Skolem K ω 1,. {1, 2} N., 0 =, 1 = {0}, 2 = {0, 1}. N ZFC., N, N. Y, N K, Y, x(x y) y K N. x N(x y) N, N, N * 13 *13 N N.
15 1.3 Skolem 7 N 1 2 = {0, 1}, 2 1 = {0}. N N 1 K. V N. = N = 1., N., N Y, 1 N, 1 N K.,., M ZFC * 14., M = Y, M M M M. a, a M a M. M M, M. a, M = K., M. 1,2,..., ω ω = ω M,., α M M, V, V α M M. ZFC.,,,.. ZFC, Y,, K [5] [2], ω 1. Skolem, M ZFC M ω 1, M, Y M ω 1, ω M 1 M, V ω 1 K. ( 3). ω1 M ωm 5 ωm ω, V ω 1 Y, ω1 M M ω 1, M ω(= ω M ) ω1 M. V ω ω M 1, K. V M, M V Y Skolem, [5] IV. *14 ZFC, ZFC.
16 8 1 ZFC 1.3 M V 1.4 Y ZFC. M, OK., K M M M., G. G. M[G]. G M. M[G] M, G ZFC Y M[G] M G K R x R[x],. R {x} R[x]. M {G} ZFC M[G]. ( 4). G M, M M Y,? K M M[G]. On, M On = M[G] On. M[G] Y, M[G] ZFC., G K. (poset), (dense subset), (filter).
17 1.4 ジェネリック拡大と基数の保存 9 ふ[G 図 1.4 ジェネリック拡大 図 1.5 M の基数と M [G] の基数 だそこに関してはテクニカルだけど概念自体が難解ということはないので教科書を読み進 めるのにそれほど苦労はないと思う. 定義も言ってないからもう雰囲気だけ感じてほしい んだけど, ジェネリックというのは poset のフィルターで, その poset の全ての稠密部分 集合と交わるようなもののこと. どのような poset を考えるかによって M[G] で何が成り 立つようになるかが変わってくる. G はたとえば実数を ω2m 個なり ω7m 個なりコーディ ングした集合だけど, 別の poset を用いることで実数以外にも色んなジェネリックを付け 加えることができる. たとえば無限ツリー構造における無限長のパス (path) とか. ま, そ のへんもおいおいね. さて, 一つ言っておきたいのは, 単に実数をたくさん加えただけじゃ必ずしも M [G] で 連続体仮説の否定が成り立つとは保証されないということかな. 難しいのはそこ. どうし てだかわかる Y いえ. そうなんですか K なぜかというと, M と M [G] でどの順序数が ω1 かが変わってしまうかもしれないか ら. たとえば図 5 を見て. この図では, ω1m が M [G] では基数ではなくただの可算順序数 M [G] に 崩壊 してしまっている. あと ω2m =ω1 になったりしてるね Y ω1m が V にとっては可算順序数になってしまうのと同じですよね K うん. ジェネリック拡大の際, 何が起こるとこういうことになるかわかる
18 Y ω M 1 M[G], M[G] ωm 1 ω. M K. ω2 M, M[G] ωm[g] 1, M, M[G] Y K Cohen, M M[G]..., poset ccc(countable chain condition, )., M[G]. Y K,,. M, M[G]
19 11 [1] [2] [3] [4] [5],./ [6]..
20
21 f(x) = { 0 (x 1) 1 (x > 1) ε δ *1 *1
22 14 2 *2 7 * 3 *4 *2 *3 *4
23 *5 20 *6 * *5 *6 *7
24 16 2 *8 P P x P x P *8 ZFC
25 RCA 0 RCA 0 D = {(x, y) R 2 x 2 + y 2 1} f : D D f(p) = p p D f RCA 0 * 9 * 10 1, 5, 7, 3, 5, 9, 2, 0, 5, 5, 5, 7, 3, 8, 9, 4, 5, 3, 7, 8, 3, 5, 6, *9 *10
26 18 2 * 11 { 0 (x 1) f(x) = 1 (x > 1) ( ) n 10 n r n 0 r > 1 f(r) = 1 r < 1 f(r) = r = 1 r r r * 12 k {a n } k K {b n } *11 *12 r 0 1
27 * forcing semantics sheaf semantics * 14 poset pull back forcing Grothendieck *13 *14 δ : C Ĉ = SetsCop aĉ Sh(C J) J C limit colimit
28 sheaf semantics SGL poset forcing coq intros coq ε δ
29 21 [1] Saunders MacLane Ieke Moerdijk Sheaves in Geometry and Logic: A First Introduction to Topos Theory Springer; 1st ed 1992 Corr 2nd printing 1994 (1992/04)
30
31 23 3 Yet Another Walk Tutorial Todorcevic minimal walk walk walk constructivity *1 coherency *2 walk Todorcevic Todorcevic expository (Todorcevic [7] [8] ) minimal walk walk walk walk J.T. Moore 2 work five element basis([6]) L-space problem ([5]) walk walk Moore walk five element basis Todorcevic [7] Moore [6] walk Aronszajn Countryman Shelah walk ( [4] Todorcevic ) walk theory *1 ω ω 2 ω ω ω ωω... = ϵ 0 recursive *2 (coherent)
32 24 3 Yet Another Walk Tutorial Aronszajn Specker Baumgartner Countryman walk ZFC combinatorics Erdös Rado Galvin(Shelah pcf ) combinatorics walk Todorcevic Todorcevic dis Todorcevic self-contained walk T walk explicit ZFC α β γ otp(x) X L X L cofinal y L x X y x ω ω 1 ω 2 index ω = N ω 1 x 0, x 1,..., x n x i σ τ σ τ σ τ σ τ = [X] n X n X <ω X α X <α α X C-sequence C α α < ω 1 fix 1. C α+1 = {α}. 2. α C α α cofinal otp(c α ) = ω. 3. α C α * 3 *3
33 3.1 Minimal walks, colorings and lines β α minimal walk 1 walk 2 walk interaction 3 interaction 4 walk Basis Problem 3.1 Minimal walks, colorings and lines (step). α < β < ω 1 β α step min(c β \ α)(< β) (walk). α β < ω 1 β α walk( minimal walk) β α step β 0 = β; β i+1 = min(c βi \ α); (unless β i = α), ordinal β i i n last step β n = α (full code). α β < ω 1 ρ 0 (α, β) ω <ω ρ 0 (α, β) = otp(c β0 α),..., otp(c βn 1 α) β i (i n) β α walk n = 0 α = β ρ 0 (α, α) =
34 26 3 Yet Another Walk Tutorial α β β i walk i walk β α β i walk β i α walk α β γ β γ α walk ρ 0 (β, γ) ρ 0 (α, γ) Proof. walk α < α β < ω 1 β i (i n), β j(j m) β α, α walk j = min{j β j+1 < α β j } 1. β i = β i( i j) 2. β j = β j = α β β proper 3. β j = β j > α C βj α C βj α proper initial segment Proof. (1). By induction. β 0 = β = β 0. β i = β i = η, β i+1 α β i+1 C η \ α β i+1 = min(c η \ α ) = min(c η \ α) = β i+1. (2). (3). β j+1 C βj α β j+1 α C βj α C βj α proper initial segment ρ 0 (α, β) ρ 0 (α, β) ( α < α β < ω 1 ) α < β γ β α walk γ α walk walk α β γ β γ α walk gcw α (β, γ) β α walk γ α walk Remark α β γ ξ = gcw α (β, γ) ρ 0 (α, β) = ρ 0 (ξ, β) ρ 0 (α, ξ), ρ 0 (α, γ) = ρ 0 (ξ, γ) ρ 0 (α, ξ) gcw Todorcevic full lower trace gcw full lower trace gcw gcw gcd gcd gcw gcw α (β, γ) β γ α walk walk γ walk β
35 3.1 Minimal walks, colorings and lines gcw α (β, γ) γ β walk γ β γ walk gcw α (β, γ) gcw α γ i (i n) γ α walk i = min{j γ j+1 < β γ j } gcw α (β, γ) = { β, if β = γ i, gcw α (γ i+1, β), if β > γ i (full lower trace). α β β α full lower trace F (α, β) β i (i n) β α walk n 1 F (α, β) = {α} i=0 ξ C βi α F (ξ, β). F (α, β) α {α} gcw α full lower trace α gcw α full lower trace β γ α < β gcw α (β, γ) F (β, γ) full lower trace common walk ρ 0 (α, β) = ρ 0 (min(f (β, γ) \ α), β) ρ 0 (α, min(f (β, γ) \ α)),
36 28 3 Yet Another Walk Tutorial ρ 0 (α, γ) = ρ 0 (min(f (β, γ) \ α), γ) ρ 0 (α, min(f (β, γ) \ α)), Proof. full lower trace gcw α ( 1.3 full lower trace γ α walk γ β walk walk γ β!) Todorcevic γ 1 = min(c γ \α) γ 1 = min(c γ \β) α 1 = min(f (β, γ)\α) α 1 F (ξ, β) ξ C γ β α 1 F (β, γ 1) ρ 0 (α, β) = ρ 0 (α 1, β) ρ 0 (α, α 1 ) α ξ β ρ 0 (α, β) = ρ 0 (min(f (ξ, β) \ α), β) ρ 0 (α, min(f (ξ, β) \ α)). α 1 = min(f (ξ, β) \ α) α β ξ ρ 0 (α, γ) = ρ 0 (α 1, γ) ρ 0 (α, α 1 ) α γ 1 < β γ 1 C γ β F (γ 1, β) F (β, γ) α 2 = min(f (γ 1, β) \ α) α 2 α 1 ρ 0 (α, γ 1 ) = ρ 0 (α 2, γ 1 ) ρ 0 (α, α 1 ). walk: γ α γ γ 1 α 2 α 1 α walk: γ α 1 α α β γ α β γ F β = F (α, β) F γ = F (α, γ) F β = F γ ρ 0 (, β) F β = ρ 0 (, γ) F γ ρ 0 (, β) α = ρ 0 (, γ) α Proof. ϵ < α ξ ϵβ = min(f β \ ϵ) ξ ϵγ = min(f γ \ ϵ) ξ ϵβ = ξ ϵγ ξ ϵ ρ 0 (ϵ, β) = ρ 0 (ξ ϵ, β) ρ 0 (ϵ, ξ ϵ ), ρ 0 (ϵ, γ) = ρ 0 (ξ ϵ, γ) ρ 0 (ϵ, ξ ϵ ). ξ ϵ F β = F γ ρ 0 (ϵ, β) = ρ 0 (ϵ, γ)
37 3.1 Minimal walks, colorings and lines 29 ρ 0 (, β) α α fix ρ 0 (, β) α F β fin α + 1 ρ 0 ρ 0 ρ-function (maximal weight function). α β maximal weight ρ 1 (α, β) β α walk lower traces C βi α max (number of steps function). α β number of steps ρ 2 (α, β) β α walk (last step function). α β last step ρ 3 (α, β) walk last step lower trace weight maximal weight β α walk β i (i n) ρ 3 (α, β) = { 1, if C βn 1 α = ρ 2 (α, β) 0, otherwise. ρ-function a : [ω 1 ] 2 X X ω 1 finite-to-one property coherency ρ [ω 1 ] 2 1. ρ finite-to-one x β < ω 1 {α < β ρ (α, β) = x} 2. ρ coherent β γ {ξ β ρ (ξ, β) ρ (ξ, γ)} ρ 0 coherent Proof. β < γ C γ β order type n C β n + 1 α α < β α C β α order type n + 1 α < β C γ α order type n α α < β ρ 0 (α, β) ρ 0 (α, γ) coherency ρ 1 finite-to-one coherent Proof. β γ
38 30 3 Yet Another Walk Tutorial finite-to-one n < ω A β ρ 1 (η, β) > n η A α β cofinal α = β first step lower trace η A C β η > n α < β β 1 = min(c β \ α) β 1 ρ 1 (ξ, β 1 ) > n ξ A ρ 1 ρ 1 (ξ, β) ρ 1 (ξ, β 1 ) > n coherency A = {ξ < β ρ 1 (ξ, β) ρ 1 (ξ, γ)} otp(a) = ω α = sup A γ 1 = min(c γ \ α) n = C γ α finite-to-one B = {ξ A ξ > max(c γ α) and ρ 1 (ξ, γ 1 ) > n} B A ξ B ρ 1 (ξ, γ) = max{n, ρ 1 (ξ, γ 1 )} = ρ 1 (ξ, γ 1 ) γ 1 β ξ B ρ 1 (ξ, γ 1 ) = ρ 1 (ξ, β) ρ 1 (ξ, β) = ρ 1 (ξ, γ 1 ) = ρ 1 (ξ, γ) ξ B A ρ 3 coherent (coloring line). (X, < X ) ρ : [ω 1 ] 2 X ω 1 < α < β ρ (δ αβ, α) < X ρ (δ αβ, β), δ αβ = min{η min(α, β) ρ (η, α) ρ (η, β)} (ω 1, < ) C(ρ ) (Todorcevic). X = 2, 3,..., or ω X ρ finite-to-one coherent C(ρ ) 2 chain Proof. α β γ δ ρ (, α) : α + 1 X ρ α diff(α, β) = {ξ α ρ (ξ, α) ρ (ξ, β)} coherency diff(α, β) finite n αβ = max{ρ (ξ, α), ρ (ξ, β) ξ diff(α, β)},
39 3.1 Minimal walks, colorings and lines 31 F αβ = {ξ α max{ρ (ξ, α), ρ (ξ, β)} n αβ } finite-to-one property F αβ finite diff(α, β) F αβ C(ρ ) 2 c : C(ρ ) 2 ω ω <ω ω <ω c(α, β) = (n αβ, ρ α [F αβ ], ρ β [F αβ ]) ρ α [{ξ 0 < ξ 1 <... < ξ n }] ρ α (ξ 0 ),..., ρ α (ξ n ) c C(ρ ) 2 c 1 (n, σ, τ) ( chain ) Claim α < γ n αβ = n γδ = n ρ α [F αβ ] = ρ γ [F γδ ] ρ β [F αβ ] = ρ δ [F γδ ] β < δ ξ αγ = min{ξ α ρ (ξ, α) ρ (ξ, γ)} ξ = min{ξ αγ, ξ βδ } Claim ξ αγ = ξ βδ = ξ F αβ ξ αγ = F γδ ξ αγ η Fαβ c ξ αγ (η α, β diff )ρ (η, α) = ρ (η, β) > n η < ξ αγ ρ (η, α) = ρ (η, γ) ρ (η, γ) > n η Fγδ c ξ F αβ ξ βδ = F γδ ξ βδ F αβ ξ αγ = F γδ ξ αγ ξ αγ ξ βδ η < ξ αγ F αβ ρ α ρ γ F ρ β (η) = ρ α (η) = ρ γ (η) = ρ δ (η). η < ξ αγ F αβ diff(α, β) diff(γ, δ) ρ β (η) = ρ δ (η) ρ β ξ αγ = ρ δ ξ αγ ξ βδ ξ αγ ξ βδ ξ βδ ξ αγ ρ (ξ, β) < ρ (ξ, δ) Case 1: ξ F αβ F γδ F αβ ξ = F γδ ξ ρ α (ξ) = ρ γ (ξ) α < γ Case 2: ξ F αβ \ F γδ ξ / F γδ ρ γ (ξ) = ρ δ (ξ) > n ξ F αβ ρ β (ξ) n ρ β (ξ) n < ρ δ (ξ) Case 3: ξ F γδ \ F αβ Case 2 ρ α (ξ) > ρ γ (ξ) Case 4: ξ / F αβ F γδ ξ diff(α, β) diff(γ, δ) ρ β (ξ) = ρ α (ξ) < ρ γ (ξ) = ρ δ (ξ)
40 32 3 Yet Another Walk Tutorial 3.2 Walks and Trees walk theory walk (Trees). T = (T, T ) T x T pred(x) = {y T y < T x} < T order type x ht(x) α node α T α T T α = α T ω 1 - ω 1 node ω <ω (Aronszajn ). T Aronszajn T cofinal chain ω 1 - C chain x, y C x y y x T α chain C T cofinal {ht(x) x C} α cofinal König cofinal chain cofinal chain x α T α x β (β < α) node x α (T 2 ) step cofinal chain ω 1 Aronszajn ω ω (Aronszajn). Aronszajn Aronszajn minimal walk Aronszajn ρ-function (coloring tree). ρ : [ω 1 ] 2 X T (ρ ) = {ρ β α α β < ω 1 } T (ρ ) T T (ρ 0 ) Aronszajn Proof. T (ρ 0 ) t T dom(t) T (ρ 0 ) ω 1 T (ρ 0 ) ω 1 - ( level )
41 3.3 Trees and Lines 33 T (ρ 0 ) cofinal branch *4 ρ 0α ω <ω T (ρ 0 ) cofinal branch b : ω 1 ω <ω α < ω 1 β > α ρ 0β α = b α b ρ 0β b ω 1 ω <ω ρ 0α ω 1 - T X a : T X x, y T x y a T (ρ 0 ) Aronszajn Remark Aronszajn Aronszajn ( ZFC ) MA ℵ1 Aronszajn 3.3 Trees and Lines L = (L, ) L L reverse order(l, ) L. L Aronszajn, ω 1 ω (tree line). T <α *5 2 T 2 <α lex x < lex y x y or x( (x, y)) < y( (x, y)) (x, y) = min{ξ x(ξ) y(ξ)} (T, lex ) (line tree). L L binary partition tree T 1. T node L convex set T 0 = {L} 2. I T α immediate successor I I 0, I 1 2 I 0 I left partition I 1 right partition I = 1 I T maximal node *4 branch chain *5 2 <α
42 34 3 Yet Another Walk Tutorial 3. α I T α I = b cofinal branch b T α 4. I T maximal node I = 1 binary partition tree T Aronszajn (T, lex ) Aronszajn 2. L Aronszajn binary partition tree Aronszajn Proof([4] ). (1 2): L T = (T, lex ) Case 1. L T ω 1 isomorphic copy X L T ω 1 α < ω 1 {y X y > T x} x T α 2 x, x x < lex x X (, x ) ( ) X ω 1 ω 1 proper initial segment ω 1 proper initial segment x α T α x X x α {x α α < ω 1 } T chain T Aronszajn L T ω 1 Case 2. L T X L T dense set D X D α = sup{ht(x) x X} X T α x T α {y X y > T x} x x X 2 node y 0, y 1 y 0 < lex y 1 y 0 node L T (x, y 1 ) height D D density (2 1): L binary partition tree T L 1 2 Claim T L 2. α < ω 1 Tα L ω L T L (1) ω 1 ω 1 T L B T L B α < ω 1 B Tα L = {I α } I α T L node L convex set α I α+1 I α left partition right partition (a) J 0 = {α < ω 1 I α+1 left part. } (b) J 1 = {α < ω 1 I α+1 right part. }
43 3.4 Basis theorem 35 (i = 0, 1) α J i x α I α \I α+1 X i = {x α α J i } Case (a) X 0 ω 1 Case (b) X 1 ω 1 L Aronszajn (b) (b) α Tα L α T L α L I T α x I I x I I T L α L Aronszajn I coinitial cofinal K I I K I T L α K = I K I X = {x I I T L α } K X T L α I T L α disjoint K X x I, x J X (x I < x J ) (x I, x J ) X (x I, x J ) K x I I x J J binary partition tree I, J T L α cofinal branch branch I T L α I J I left partition I0 J disjoint right partition I 1 I disjoint I (x I, x J ) (x I, ) I0 (, x J) I1 K I coinitiality cofinality (x I, x J ) K X L Aronszajn (b) L T L L T L maximal node binary partition tree node I T L maximal I L T L maximal node Aronszajn ad-hoc Aronszajn walk Aronszajn Aronszajn C(ρ ) Aronszajn 3.4 Basis theorem walk theory basis problem
44 36 3 Yet Another Walk Tutorial Sorgenfrey long line βn ω ω Q ω ω *6 basis C D C D C basis L C K D L isomorphic copy basis C {ω 1 } C basis well-order one element basis L L { ω 1 } one element basis X σ-dense X ℵ C (R, ) D R σ-dense D C basis D basis PFA Baumgartner [2] σ-dense C one element basis Proof. X R ℵ 1 x X X condensation point x V X V X condensation point X X \ X ω X X σ-dense Remark R copy X condensation point X X X X σ-dense X X dense *6 Ramsey ( ) Ramsey ω 1 Ramsey walk Ramsey
45 3.4 Basis theorem 37 subset D X D Cantor D Q X R x X L x = {p D p < x} L x D = Q Q Dedekind cut : x L x R X R R basis basis canonical basis ω 1 ω 1 X [R] ℵ1 basis irreducibility L K L K L K L C minimal K L L K K C ω 1, ω 1 mininal PFA σ-dense set X R minimal Proof([4] ). ω 1 ω 1 X ω 1 f : X ω 1 f X X ω 1 increasing order ω 1 X ω 1 X = ω 1 PFA σ-dense set Y Y X σ-dense X Y ( subspace ) Y σ-dense X X X Y X Y 4 decompose WO AWO SEP Aronszajn A 3 basis Aronszajn Countryman ( Countryman [3] Coutryman ) L Countryman Cartesian square L 2 ( (x, y) (z, w) iff x z y w ) chain chain Countryman Aronszajn
46 38 3 Yet Another Walk Tutorial Proof. ω 1 ω 1 X Countryman Case 1. ω 1 Countryman ω1 2 = n C n C n chain α < ω 1 y- α X α X α X α = n<ω C n X α C n X α n = n α < ω f : ω 1 ω α n α α < β n α = n β chain C n x- C n chain (δ, β) C n X β (γ, α) C n X α γ δ α < β γ δ (γ, α) (δ, β) Case 2. ω 1 Countryman Case 1 Case 3. X Countryman X 2 = n C n X D X y- y X C ny X y n y C ny X y x- projection X d y D C ny (, d y ), C ny (d y, ) f : ω 1 ω D α (n y, d y ) y 0 < y 1 f f(y 0 ) = f(y 1 ) = (n, d) C n chain (x 0, y 0 ) C n (d, ) (x 1, y 1 ) C n (, d) (Shelah). Countryman Proof. Section 1 C(ρ 1 ) Countryman ( C(ρ 0 ) Countryman ) Remark Aronszajn T Countryman T coherent (T, lex ) Countryman T (ρ 3 ) Countryman MA ℵ1 basis (MA ℵ1 ). C(ρ 1 ) minimal MA ℵ1 (Martin s Axiom) Baire MA ℵ1 ccc compact Hausdorff ℵ 1 ccc(countable chain condition) Remark MA ℵ1 MA ℵ1
47 39 H(ℵ 2 ) Σ 1 ϕ ϕ ccc H(ℵ 2 ) Bagaria [1] (MA ℵ1 ). {C(ρ 1 ), C(ρ 1 )} Countryman basis Countryman set-theoretic MA ℵ1 canonical basis MA ℵ1 PFA basis (Shelah 30 )Moore (five element basis). PFA {C(ρ 1 ), C(ρ 1 )} Aronszajn two element basis five element basis [1] J. Bagaria, Axioms of generic absoluteness, Logic Colloquium, 2002 [2] J. Baumgartner, All ℵ 1 dense sets of reals can be isomorphic, Fund. Math, 1973 [3] R.S. Countryman, Spaces having a σ-monotone basis, preprint, 1970 [4] K. Kunen, J. Vaughan, Handbook Of Set-Theoretic Topology, North-Holland, 1985 [5] J.T. Moore, A solution to the L space problem, J. Amer. Math. Soc. 19, 2006 [6] J.T. Moore, A five element basis for the uncountable linear orders, Ann. Math., Vol. 163, 2006 [7] S. Todorcevic, Walks On Ordinals And Their Characteristics, Birkhaeuser, 2007 [8] S. Todorcevic, Coherent sequences, Handbook of set theory, 2010
48
49 41 4 G R E : (2012/12) ISBN-10: ISBN-13: /12
50 * *1 subitize subitus
51 in on under above - -
52 44 4 * *2
53 * 3 ε δ ε - - x sin( 1 x ) x jump jump into fly land BMI Basic Metaphor of Infinity *3
54 46 4 [7] *4 * 5 *4 *5
55 *6 [6] *6
56 48 4 [3] *7 * 8 *7 := [< 1/2, 1/2, 1/3,... >] *8
57 Q R R *9 R Q *9
58 50 4 N R R 4.3 e iπ = 1 [4] 0 +
59 4.3 51
60 52 4
61 * 10 * 11 *10 *11 [1] p. 143
62 54 4 * 12 non-standard 4.4 *12
63 * 13 *13
64 56 4 * 14 * 15 *14 [3] *15
65 x {x} x 1 * 16 * 17 *16 [5] n + 1 K {x 0,..., x n } K n f(x) {x 0,..., x n} {f(x 0 ),..., f(x n)} n V F : V K n+1 f (f(x 0 ),..., f(x n)) V F *17
66 1 + 2 = 3 =
67 59 [1] S. Shapiro (1997), Philosophy of Mathematics: Structure and Ontology, Oxford [2] G R E [3] A W [4] [5] [6] G [7] E
68
69 61 G is for Girl actress act act L L
70 62 G is for Girl G G G Girl G G mono Ω
71
72
73
74 . 2 6 forcing Free! The dark side of Forcing
75
Basic Math. 1 0 [ N Z Q Q c R C] 1, 2, 3,... natural numbers, N Def.(Definition) N (1) 1 N, (2) n N = n +1 N, (3) N (1), (2), n N n N (element). n/ N.
Basic Mathematics 16 4 16 3-4 (10:40-12:10) 0 1 1 2 2 2 3 (mapping) 5 4 ε-δ (ε-δ Logic) 6 5 (Potency) 9 6 (Equivalence Relation and Order) 13 7 Zorn (Axiom of Choice, Zorn s Lemma) 14 8 (Set and Topology)
Lebesgue可測性に関するSoloayの定理と実数の集合の正則性=1This slide is available on ` `%%%`#`&12_`__~~~ౡ氀猀e
Khomskii Lebesgue Soloay 1 Friday 27 th November 2015 1 This slide is available on http://slideshare.net/konn/lebesguesoloay 1 / 34 Khomskii 1 2 3 4 Khomskii 2 / 34 Khomskii Solovay 3 / 34 Khomskii Lebesgue
1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition) A = {x; P (x)} P (x) x x a A a A Remark. (i) {2, 0, 0,
2005 4 1 1 2 2 6 3 8 4 11 5 14 6 18 7 20 8 22 9 24 10 26 11 27 http://matcmadison.edu/alehnen/weblogic/logset.htm 1 1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition)
set element a A A a A a A 1 extensional definition, { } A = {1, 2, 3, 4, 5, 6, 7, 8, 9} 9 1, 2, 3, 4, 5, 6, 7, 8, 9..
12 -- 2 1 2009 5,,.,.,.. 1, 2, 3,., 4),, 4, 5),. 4, 6, 7).,, R A B, 8, (a) A, B 9), (b) {a (a, b) R b B }, {b (a, b) R a A } 10, 11, 12) 2. (a). 11, 13, R S {(a, c) (a, b) R, (b, c) S } (c) R S 14), 1,
n 2 + π2 6 x [10 n x] x = lim n 10 n n 10 k x 1.1. a 1, a 2,, a n, (a n ) n=1 {a n } n=1 1.2 ( ). {a n } n=1 Q ε > 0 N N m, n N a m
1 1 1 + 1 4 + + 1 n 2 + π2 6 x [10 n x] x = lim n 10 n n 10 k x 1.1. a 1, a 2,, a n, (a n ) n=1 {a n } n=1 1.2 ( ). {a n } n=1 Q ε > 0 N N m, n N a m a n < ε 1 1. ε = 10 1 N m, n N a m a n < ε = 10 1 N
I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )
I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17
I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%
1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: [email protected], http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n
1. R n Ω ε G ε 0 Ω ε B n 2 Ωε = with Bu = 0 on Ω ε i=1 x 2 i ε +0 B Bu = u (Dirichlet, D Ω ε ), Bu = u ν (Neumann, N Ω ε ), Ω ε G ( ) / 25
.. IV 2012 10 4 ( ) 2012 10 4 1 / 25 1. R n Ω ε G ε 0 Ω ε B n 2 Ωε = with Bu = 0 on Ω ε i=1 x 2 i ε +0 B Bu = u (Dirichlet, D Ω ε ), Bu = u ν (Neumann, N Ω ε ), Ω ε G ( ) 2012 10 4 2 / 25 1. Ω ε B ε t
2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =
9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x
2009 9 6 16 7 1 7.1 1 1 1 9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x(cos y y sin y) y dy 1 sin
医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.
医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987
四変数基本対称式の解放
The second-thought of the Galois-style way to solve a quartic equation Oomori, Yasuhiro in Himeji City, Japan Jan.6, 013 Abstract v ρ (v) Step1.5 l 3 1 6. l 3 7. Step - V v - 3 8. Step1.3 - - groupe groupe
A S hara/lectures/lectures-j.html ϵ-n 1 ϵ-n lim n a n = α n a n α 2 lim a n = 0 1 n a k n n k= ϵ
A S1-20 http://www2.mth.kyushu-u.c.jp/ hr/lectures/lectures-j.html 1 1 1.1 ϵ-n 1 ϵ-n lim n n = α n n α 2 lim n = 0 1 n k n n k=1 0 1.1.7 ϵ-n 1.1.1 n α n n α lim n n = α ϵ N(ϵ) n > N(ϵ) n α < ϵ (1.1.1)
¿ô³Ø³Ø½øÏÀ¥Î¡¼¥È
2011 i N Z Q R C A def B, A B. ii..,.,.. (, ), ( ),.?????????,. iii 04-13 04-20 04-27 05-04 [ ] 05-11 05-18 05-25 06-01 06-08 06-15 06-22 06-29 07-06 07-13 07-20 07-27 08-03 10-05 10-12 10-19 [ ] 10-26
IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + (
IA 2013 : :10722 : 2 : :2 :761 :1 23-27) : : 1 1.1 / ) 1 /, ) / e.g. Taylar ) e x = 1 + x + x2 2 +... + xn n! +... sin x = x x3 6 + x5 x2n+1 + 1)n 5! 2n + 1)! 2 2.1 = 1 e.g. 0 = 0.00..., π = 3.14..., 1
inkiso.dvi
Ken Urai May 19, 2004 5 27 date-event uncertainty risk 51 ordering preordering X X X (preordering) reflexivity x X x x transitivity x, y, z X x y y z x z asymmetric x y y x x = y X (ordering) completeness
,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.
9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,
x 3 a (mod p) ( ). a, b, m Z a b m a b (mod m) a b m 2.2 (Z/mZ). a = {x x a (mod m)} a Z m 0, 1... m 1 Z/mZ = {0, 1... m 1} a + b = a +
1 1 22 1 x 3 (mod ) 2 2.1 ( )., b, m Z b m b (mod m) b m 2.2 (Z/mZ). = {x x (mod m)} Z m 0, 1... m 1 Z/mZ = {0, 1... m 1} + b = + b, b = b Z/mZ 1 1 Z Q R Z/Z 2.3 ( ). m {x 0, x 1,..., x m 1 } modm 2.4
(Basic of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Weak Law
I (Radom Walks ad Percolatios) 3 4 7 ( -2 ) (Preface),.,,,...,,.,,,,.,.,,.,,. (,.) (Basic of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios, Meas).............................
微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.
微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)
Dynkin Serre Weyl
Dynkin Naoya Enomoto 2003.3. paper Dynkin Introduction Dynkin Lie Lie paper 1 0 Introduction 3 I ( ) Lie Dynkin 4 1 ( ) Lie 4 1.1 Lie ( )................................ 4 1.2 Killing form...........................................
量子力学 問題
3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,
Perturbation method for determining the group of invariance of hierarchical models
Perturbation method for determining the group of invariance of hierarchical models 1 2 1 1 2 2009/11/27 ( ) 2009/11/27 1 / 31 2 3 p 11 p 12 p 13 p 21 p 22 p 23 (p ij 0, i;j p ij = 1). p ij = a i b j log
第86回日本感染症学会総会学術集会後抄録(I)
κ κ κ κ κ κ μ μ β β β γ α α β β γ α β α α α γ α β β γ μ β β μ μ α ββ β β β β β β β β β β β β β β β β β β γ β μ μ μ μμ μ μ μ μ β β μ μ μ μ μ μ μ μ μ μ μ μ μ μ β
1980年代半ば,米国中西部のモデル 理論,そして未来-モデル理論賛歌
2016 9 27 RIMS 1 2 3 1983 9-1989 6 University of Illinois at Chicago (UIC) John T Baldwin 1983 9-1989 6 University of Illinois at Chicago (UIC) John T Baldwin Y N Moschovakis, Descriptive Set Theory North
1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =
1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A
koji07-01.dvi
2007 I II III 1, 2, 3, 4, 5, 6, 7 5 10 19 (!) 1938 70 21? 1 1 2 1 2 2 1! 4, 5 1? 50 1 2 1 1 2 2 1?? 2 1 1, 2 1, 2 1, 2, 3,... 3 1, 2 1, 3? 2 1 3 1 2 1 1, 2 2, 3? 2 1 3 2 3 2 k,l m, n k,l m, n kn > ml...?
(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi
I (Basics of Probability Theory ad Radom Walks) 25 4 5 ( 4 ) (Preface),.,,,.,,,...,,.,.,,.,,. (,.) (Basics of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios,
四変数基本対称式の解放
Solving the simultaneous equation of the symmetric tetravariate polynomials and The roots of a quartic equation Oomori, Yasuhiro in Himeji City, Japan Dec.1, 2011 Abstract 1. S 4 2. 1. {α, β, γ, δ} (1)
19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional
19 σ = P/A o σ B Maximum tensile strength σ 0. 0.% 0.% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional limit ε p = 0.% ε e = σ 0. /E plastic strain ε = ε e
ルベーグ積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.
ルベーグ積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/005431 このサンプルページの内容は, 初版 1 刷発行時のものです. Lebesgue 1 2 4 4 1 2 5 6 λ a
I: 2 : 3 +
I: 1 I: 2008 I: 2 : 3 + I: 3, 3700. (ISBN4-00-010352-0) H.P.Barendregt, The lambda calculus: its syntax and semantics, Studies in logic and the foundations of mathematics, v.103, North-Holland, 1984. (ISBN
ε ε x x + ε ε cos(ε) = 1, sin(ε) = ε [6] [5] nonstandard analysis 1974 [4] We shoud add that, to logical positivist, a discussion o
dif engine 2017/12/08 Math Advent Calendar 2017(https://adventar.org/calendars/2380) 12/8 IST(Internal Set Theory; ) 1 1.1 (nonstandard analysis, NSA) ε ε (a) ε 0. (b) r > 0 ε < r. (a)(b) ε sin(x) d sin(x)
QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1
QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1 (vierbein) QCD QCD 1 1: QCD QCD Γ ρ µν A µ R σ µνρ F µν g µν A µ Lagrangian gr TrFµν F µν No. Yes. Yes. No. No! Yes! [1] Nash & Sen [2] Riemann
(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi
II (Basics of Probability Theory ad Radom Walks) (Preface),.,,,.,,,...,,.,.,,.,,. (Basics of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios, Meas).............................
compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) a, Σ a {0} a 3 1
014 5 4 compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) 1 1.1. a, Σ a {0} a 3 1 (1) a = span(σ). () α, β Σ s α β := β α,β α α Σ. (3) α, β
.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T
NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977
I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google
I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59
1 α X (path) α I = [0, 1] X α(0) = α(1) = p α p (base point) loop α(1) = β(0) X α, β α β : I X (α β)(s) = ( )α β { α(2s) (0 s 1 2 ) β(2s 1) ( 1 2 s 1)
1 α X (path) α I = [0, 1] X α(0) = α(1) = p α p (base point) loop α(1) = β(0) X α, β α β : I X (α β)(s) = ( )α β { α(2s) (0 s 1 2 ) β(2s 1) ( 1 2 s 1) X α α 1 : I X α 1 (s) = α(1 s) ( )α 1 1.1 X p X Ω(p)
2 2 1?? 2 1 1, 2 1, 2 1, 2, 3,... 1, 2 1, 3? , 2 2, 3? k, l m, n k, l m, n kn > ml...? 2 m, n n m
2009 IA I 22, 23, 24, 25, 26, 27 4 21 1 1 2 1! 4, 5 1? 50 1 2 1 1 2 1 4 2 2 2 1?? 2 1 1, 2 1, 2 1, 2, 3,... 1, 2 1, 3? 2 1 3 1 2 1 1, 2 2, 3? 2 1 3 2 3 2 k, l m, n k, l m, n kn > ml...? 2 m, n n m 3 2
T rank A max{rank Q[R Q, J] t-rank T [R T, C \ J] J C} 2 ([1, p.138, Theorem 4.2.5]) A = ( ) Q rank A = min{ρ(j) γ(j) J J C} C, (5) ρ(j) = rank Q[R Q,
(ver. 4:. 2005-07-27) 1 1.1 (mixed matrix) (layered mixed matrix, LM-matrix) m n A = Q T (2m) (m n) ( ) ( ) Q I m Q à = = (1) T diag [t 1,, t m ] T rank à = m rank A (2) 1.2 [ ] B rank [B C] rank B rank
1 X X T T X (topology) T X (open set) (X, T ) (topological space) ( ) T1 T, X T T2 T T T3 T T ( ) ( ) T1 X T2 T3 1 X T = {, X} X (X, T ) indiscrete sp
1 X X T T X (topology) T X (open set) (X, T ) (topological space) ( ) T1 T, X T T2 T T T3 T T ( ) ( ) T1 X T2 T3 1 X T = {, X} X (X, T ) indiscrete space T1 T2 =, X = X, X X = X T3 =, X =, X X = X 2 X
B [ 0.1 ] x > 0 x 6= 1 f(x) µ 1 1 xn 1 + sin sin x 1 x 1 f(x) := lim. n x n (1) lim inf f(x) (2) lim sup f(x) x 1 0 x 1 0 (
. 28 4 14 [.1 ] x > x 6= 1 f(x) µ 1 1 xn 1 + sin + 2 + sin x 1 x 1 f(x) := lim. 1 + x n (1) lim inf f(x) (2) lim sup f(x) x 1 x 1 (3) lim inf x 1+ f(x) (4) lim sup f(x) x 1+ [.2 ] [, 1] Ω æ x (1) (2) nx(1
I. (CREMONA ) : Cremona [C],., modular form f E f. 1., modular X H 1 (X, Q). modular symbol M-symbol, ( ) modular symbol., notation. H = { z = x
I. (CREMONA ) : Cremona [C],., modular form f E f. 1., modular X H 1 (X, Q). modular symbol M-symbol, ( ). 1.1. modular symbol., notation. H = z = x iy C y > 0, cusp H = H Q., Γ = PSL 2 (Z), G Γ [Γ : G]
1 2 X X X X X X X X X X Russel (1) (2) (3) X = {A A A} 1.1.1
1 1 1.1 G.Cantor (1845 1918) 1874 Unter eines Menge verstehen wir jede Zusammenfassung M von bestimmten wohlunterschiedenen Objekten in unserer Anschauung oder unserers Denkens (welche die Elemente von
211 [email protected] 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,
JKR Point loading of an elastic half-space 2 3 Pressure applied to a circular region Boussinesq, n =
JKR 17 9 15 1 Point loading of an elastic half-space Pressure applied to a circular region 4.1 Boussinesq, n = 1.............................. 4. Hertz, n = 1.................................. 6 4 Hertz
( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )
( 3 7 4 ) 2 2 ) 8 2 954 2) 955 3) 5) J = σe 2 6) 955 7) 9) 955 Statistical-Mechanical Theory of Irreversible Processes 957 ) 3 4 2 A B H (t) = Ae iωt B(t) = B(ω)e iωt B(ω) = [ Φ R (ω) Φ R () ] iω Φ R (t)
1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2
2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6
III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). T
III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). Theorem 1.3 (Lebesgue ) lim n f n = f µ-a.e. g L 1 (µ)
³ÎΨÏÀ
2017 12 12 Makoto Nakashima 2017 12 12 1 / 22 2.1. C, D π- C, D. A 1, A 2 C A 1 A 2 C A 3, A 4 D A 1 A 2 D Makoto Nakashima 2017 12 12 2 / 22 . (,, L p - ). Makoto Nakashima 2017 12 12 3 / 22 . (,, L p
* 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) *
* 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) *1 2004 1 1 ( ) ( ) 1.1 140 MeV 1.2 ( ) ( ) 1.3 2.6 10 8 s 7.6 10 17 s? Λ 2.5 10 10 s 6 10 24 s 1.4 ( m
G (n) (x 1, x 2,..., x n ) = 1 Dφe is φ(x 1 )φ(x 2 ) φ(x n ) (5) N N = Dφe is (6) G (n) (generating functional) 1 Z[J] d 4 x 1 d 4 x n G (n) (x 1, x 2
6 Feynman (Green ) Feynman 6.1 Green generating functional Z[J] φ 4 L = 1 2 µφ µ φ m 2 φ2 λ 4! φ4 (1) ( 1 S[φ] = d 4 x 2 φkφ λ ) 4! φ4 (2) K = ( 2 + m 2 ) (3) n G (n) (x 1, x 2,..., x n ) = φ(x 1 )φ(x
II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3
II (Percolation) 12 9 27 ( 3-4 ) 1 [ ] 2 [ ] 3 [ ] 4 [ ] 1992 5 [ ] G Grimmett Percolation Springer-Verlag New-York 1989 6 [ ] 3 1 3 p H 2 3 2 FKG BK Russo 2 p H = p T (=: p c ) 3 2 Kesten p c =1/2 ( )
y = x x R = 0. 9, R = σ $ = y x w = x y x x w = x y α ε = + β + x x x y α ε = + β + γ x + x x x x' = / x y' = y/ x y' =
y x = α + β + ε =,, ε V( ε) = E( ε ) = σ α $ $ β w ( 0) σ = w σ σ y α x ε = + β + w w w w ε / w ( w y x α β ) = α$ $ W = yw βwxw $β = W ( W) ( W)( W) w x x w x x y y = = x W y W x y x y xw = y W = w w
第5章 偏微分方程式の境界値問題
October 5, 2018 1 / 113 4 ( ) 2 / 113 Poisson 5.1 Poisson ( A.7.1) Poisson Poisson 1 (A.6 ) Γ p p N u D Γ D b 5.1.1: = Γ D Γ N 3 / 113 Poisson 5.1.1 d {2, 3} Lipschitz (A.5 ) Γ D Γ N = \ Γ D Γ p Γ N Γ
Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence
Hanbury-Brown Twiss (ver. 2.) 25 4 4 1 2 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 4 3 Hanbury-Brown Twiss ( ) 5 3.1............................................
1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2
1 Abstract n 1 1.1 a ax + bx + c = 0 (a 0) (1) ( x + b ) = b 4ac a 4a D = b 4ac > 0 (1) D = 0 D < 0 x + b a = ± b 4ac a b ± b 4ac a b a b ± 4ac b i a D (1) ax + bx + c D 0 () () (015 8 1 ) 1. D = b 4ac
Trapezoidal Rule θ = 1/ x n x n 1 t = 1 [f(t n 1, x n 1 ) + f(t n, x n )] (6) 1. dx dt = f(t, x), x(t 0) = x 0 (7) t [t 0, t 1 ] f t [t 0, t 1 ], x x
University of Hyogo 8 8 1 d x(t) =f(t, x(t)), dt (1) x(t 0 ) =x 0 () t n = t 0 + n t x x n n x n x 0 x i i = 0,..., n 1 x n x(t) 1 1.1 1 1 1 0 θ 1 θ x n x n 1 t = θf(t n 1, x n 1 ) + (1 θ)f(t n, x n )
重力方向に基づくコントローラの向き決定方法
( ) 2/Sep 09 1 ( ) ( ) 3 2 X w, Y w, Z w +X w = +Y w = +Z w = 1 X c, Y c, Z c X c, Y c, Z c X w, Y w, Z w Y c Z c X c 1: X c, Y c, Z c Kentaro [email protected] 1 M M v 0, v 1, v 2 v 0 v
kokyuroku.dvi
On Applications of Rigorous Computing to Dynamical Systems (Zin ARAI) Department of Mathematics, Kyoto University email: [email protected] 1 [12, 13] Lorenz 2 Lorenz 3 4 2 Lorenz 2.1 Lorenz E. Lorenz
