Sturm-Liouville Green KEN ZOU Hermite Legendre Laguerre L L [p(x) d2 dx 2 + q(x) d ] dx + r(x) u(x) = Lu(x) = 0 (1) L = p(x) d2 dx

Similar documents

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

DVIOUT


9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

構造と連続体の力学基礎

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

phs.dvi

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

( ) ( )

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

Note.tex 2008/09/19( )

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =


meiji_resume_1.PDF

untitled

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

webkaitou.dvi

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

08-Note2-web

v er.1/ c /(21)

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d


K E N Z OU

5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E

chap1.dvi

1 θ i (1) A B θ ( ) A = B = sin 3θ = sin θ (A B sin 2 θ) ( ) 1 2 π 3 < = θ < = 2 π 3 Ax Bx3 = 1 2 θ = π sin θ (2) a b c θ sin 5θ = sin θ f(sin 2 θ) 2

1 nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

: 1g99p038-8

9 5 ( α+ ) = (α + ) α (log ) = α d = α C d = log + C C 5. () d = 4 d = C = C = 3 + C 3 () d = d = C = C = 3 + C 3 =

Radiation from moving charges#1 Liénard-Wiechert potential Yuji Chinone 1 Maxwell Maxwell MKS E (x, t) + B (x, t) t = 0 (1) B (x, t) = 0 (2) B (x, t)


1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 1.1 / Fik Γ= D n x / Newton Γ= µ vx y / Fouie Q = κ T x 1. fx, tdx t x x + dx f t = D f x 1 fx, t = 1 exp x 4πDt 4Dt lim fx, t =δx 3 t + dxfx, t = 1

第1章 微分方程式と近似解法

Korteweg-de Vries


() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

A

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

= π2 6, ( ) = π 4, ( ). 1 ( ( 5) ) ( 9 1 ( ( ) ) (

Introduction to Numerical Analysis of Differential Equations Naoya Enomoto (Kyoto.univ.Dept.Science(math))

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

Untitled

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

−g”U›ß™ö‡Æ…X…y…N…g…‰


x i [, b], (i 0, 1, 2,, n),, [, b], [, b] [x 0, x 1 ] [x 1, x 2 ] [x n 1, x n ] ( 2 ). x 0 x 1 x 2 x 3 x n 1 x n b 2: [, b].,, (1) x 0, x 1, x 2,, x n

Z: Q: R: C:

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1)

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p

Gmech08.dvi

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2



Chap11.dvi

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

1 yousuke.itoh/lecture-notes.html [0, π) f(x) = x π 2. [0, π) f(x) = x 2π 3. [0, π) f(x) = x 2π 1.2. Euler α

30

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)


Microsoft Word - 信号処理3.doc

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)


2011de.dvi

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

2.2 ( y = y(x ( (x 0, y 0 y (x 0 (y 0 = y(x 0 y = y(x ( y (x 0 = F (x 0, y(x 0 = F (x 0, y 0 (x 0, y 0 ( (x 0, y 0 F (x 0, y 0 xy (x, y (, F (x, y ( (

Part () () Γ Part ,

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

73

DE-resume

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA appointment Cafe D

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

( ) 2.1. C. (1) x 4 dx = 1 5 x5 + C 1 (2) x dx = x 2 dx = x 1 + C = 1 2 x + C xdx (3) = x dx = 3 x C (4) (x + 1) 3 dx = (x 3 + 3x 2 + 3x +

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

Transcription:

Sturm-Liouville Green KEN ZOU 2006 4 23 1 Hermite Legendre Lguerre 1 1.1 2 L L p(x) d2 2 + q(x) d + r(x) u(x) = Lu(x) = 0 (1) L = p(x) d2 2 + q(x) d + r(x) (2) L = d2 2 p(x) d q(x) + r(x) (3) 2 (Self-Adjoint opertor) L = L Lu(x) = Lu(x) = d p(x) du(x) + q(x)u(x) = 0 (4) p (x) = q(x) L Lu(x) = d2 2 p(x)u(x) d q(x)u(x) + r(x)u(x) = d p (x)u(x) + p(x) d u(x) q (x)u(x) q(x) d u(x) + r(x)u(x) = p (x)u(x) + 2p (x) d d2 u(x) + p(x) 2 u(x) q (x)u(x) q d u(x) + r(x)u(x) = p(x) d2 2 u(x) + { 2p (x) q(x) } d u(x) + { p (x) q (x) + r(x) } u(x) 1 J.C.F.Sturm 1803-1855 Switzerlnd, J.Liouville 1809-1882) Frnce Sturm-Liouville 1836-1837 2 1

(1) (1.1) 2p (x) q(x) = q(x) p (x) = q(x) p (x) q (x) + r(x) = r(x) p (x) = q (x) Lu(x) = Lu(x) L = L p(x) d2 2 + q(x) d + r(x) u(x) = Lu(x) = 0 1/p(x)exp x q(t)/p(t)dt 1 x p(x) exp q(t) p(t) dt Lu(x) = 1 x q(t) = exp p(t) dt u (x) + q(x) p(x) exp x p(x) exp q(t) x q(t) p(t) dt p(x) p(t) dt d2 2 + q(x) d u (x) + r(x) p(x) exp + r(x) x q(t) p(t) dt d x q(t) x exp p(t) dt u q(t) (x) = exp p(t) dt u (x) + q(x) x p(x) exp q(t) p(t) dt u (x) 1 x p(x) exp q(t) p(t) dt Lu(x) = d = d { x } q(t) du(x) exp p(t) dt P (x) du(x) + Q(x)u(x) u(x) u(x) + r(x) { x } p(x) exp q(t) p(t) dt u(x) x 3 y xy + 2y = 0 x 3 x exp x 3 = exp 1 x y x x 3 y + 2 x 3 y = 0 e 1 x y e 1/x x 2 y + 2e 1/x x 3 y = 0 d e d e 1/x = e 1/x x 2 1/x dy + 2e 1/x x 3 y = 0 2

1.2 L Lu(x) = d p(x) du(x) q(x)u(x) = λρ(x)u(x) (5) ρ(x) (weighting function) 3 ρ(x) > 0 4 ρ(x) = 1 λ Lu i (x) = λ i ρ(x)u i (x) (i = 1, 2,, ) (6) λ i L u i (x) λ i 2 A. ( ) b u(t) u() = 0, u(b) = 0 B. ( ) b 5 u () = 0, u (b) = 0 C. ( ) u() = 0, u (b) = 0 (5) MEMO ( ) 1 u() + 2 u () = 0 b 1 u(b) + b 2 u (7) (b) = 0 1, 2, b 1, b 2 2 = b 2 = 0 1 = b 1 = 0 2 = b 1 = 0 3 2.1 4 1.4 3

Lu, v = u, Lv Lu, v + u, Lv = + d ( p(x) dv(x) ) u(x) d ( p(x) du(x) ) v(x) ( q(x)u(x)v(x) + u(x)q(x)v(x)) = p(x) dv b ( du u(x) p(x)du v(x) dv + p(x) dv ) du (8) = p(x) dv b u(x) p(x)du v(x) = p(b)v (b)u(b) v(b)u (b) p()v ()u() v()u () αv() + βv () = 0 αu() + βu () = 0 (9) (7) (non-trivil solution) v() v () u() u () = 0 v()u () v ()u() = 0 v()u () v ()u() = 0 (8) Lu, v = u, Lv 1.3 (Sturm-Liouville) p(x) q(x) r(x) (Legendre) (Bessel) (Hermite) (Lguerre) L Lu(x) = d p(x) du(x) q(x)u(x) = λρ(x)u(x) (10) 4

(1) p(x) = 1, q(x) = 0, ρ(x) = 1 ( ) d d u(x) = λu(x) d 2 u(x) = λu(x) 2 (11) (2) (Legendre) p(x) = 1 x 2, q(x) = 0, ρ(x) = 1, ( 1 x 1) d (1 x 2 ) du(x) + λu(x) = 0 (1 x 2 ) d2 u(x) 2 2x du(x) + λu(x) = 0 (12) λ = n(n + 1) (3) (Bessel) p(x) = x, q(x) = x, ρ(x) = 1/x, (x 0) d x du(x) + xu(x) = λ x u(x) d 2 u(x) 2 + 1 du(x) x + (1 + λx 2 ) u(x) = 0 (13) λ = n 2 (4) (Hermitel) p(x) = e x2, q(x) = 0, ρ(x) = e x2 x, λ = 2n, (n = 0, 1, 2, ) d e d 2 u(x) 2 (5) (Lguerre) x2 du(x) + 2ne x2 u(x) = 0 2x du(x) + 2nu(x) = 0 p(x) = xe x, q(x) = 0, ρ(x) = e x, λ = n, (n = 0, 1, 2, ) d xe x d2 u(x) 2 x du(x) + ne x u(x) = 0 + (1 x) du(x) + nu(x) = 0 (14) (15) (6) Chrbyshev) 5

p(x) = 1 x 2, q(x) = 0, ρ(x) = 1/ 1 x 2, λ = n 2 d 1 x 2 du(x) + (1 x 2 ) d2 u(x) 2 n 2 1 x 2 u(x) = 0 x du(x) + n2 u(x) = 0 (16) 1.3.1 d 2 u(x) = λu(x) 2 2 u(x) = e tx 6 t 2 + λ = 0, t = ±i λ u(x) = C 1 e i λx + C 2 e i λx λ u(x) C 1 e αx + C 2 e αx λ < 0, λ = α 2 (α > 0) u(x) = C 1 x + C 2 λ = 0 C 1 cosβx + C 2 sinβx (λ > 0, λ = β 2 (β > 0) (17) (1) u(0) = 0, u(l) = 0 λ 0 C 1 = C 2 = 0 u(x) 0 λ > 0 u(0) = 0 C 1 = 0 u(l) = 0 C 2 sinβl = 0 C 2 0 β = nπ n λ L λ n λ n = β 2 = n2 π 2 ( nπ ) L 2, u n(x) = sin L x (2) u(0) = u(l), u (0) = u (L) λ < 0 C 1 = C 2 = 0 u(x) 0 λ = 0 u(0) = u(l)0 C 1 = 0. u(x) = C 2 C 2 C 2 = 1 λ = 0, u(x) = 1 λ > 0 (C 2 1 + C2 2 )sinβl = 0 β = nπ L 6 ( ) 6

( nπ λ n = β 2 = L ) 2 ( nπ ) 2 ( nπ ) 2, un (x) = C 1 cos L x + C2 sin L x (n = 1, 2, ) 1.4 L Lu(x) = d p(x) du(x) q(x)u(x) = λρ(x)u(x) (18) Lu i (x) = λ i ρ(x)u i (x) (i = 1, 2,, ) (19) ρ(x) λ i 7 u i (x) λ i 1. (20) {u n (x)}(n = 1, 2, ) λ i λ j u i (x) u j (x) ρ(x) ρ(x)u i (x)u j (x) = 0 (i j) (20) 2. ui (x)u i (x) = 1 u i (x) {u n (x)} {u n (x)} 3. {u i (x)} δ(x ξ) = u i (x)u i (ξ) (21) i=1 {u i (x)} 4. EPILOG Sturm Liouville 7 λ i 7

2 2.1 b Lu(t) = d dt p(t) du(t) q(t)u(t) = f(t) (22) dt p(t) > 0 p(t) q(t) b (22) α 1 u() + α 2 u () = 0 β 1 u() + β 2 u () = 0 (23) L G(t, ξ) = δ(t ξ) (24) G(t, ξ) (23) (24) f(ξ) b ξ L G(t, ξ)f(ξ)dξ = L G(t, ξ)f(ξ)dξ = f(ξ)δ(t ξ)dξ = f(t) (25) L (25) (22) u(t) u(t) = G(t, ξ)f(ξ)dξ (26) L L 1 G(t, ξ) = L 1 δ(t ξ) t = ξ δ(t ξ) L 1 G(t, ξ) δ(t ξ) f(t) L 1 G(t, ξ) u(t) = G(t, ξ)f(ξ)dξ (26) f(ξ) (24) G(t, ξ) 8

2.2 - Lu(x) = d p(x) du(x) q(x)u(x) = f(x) (27) b 4 8 ( ) ( ) 1 2 (1) 2.2.1 Lu(x) = 0 LG(x, ξ) = δ(x ξ) G(x, ξ) u(x) G(x, ξ) + u(x) LG(x, ξ) = δ(x ξ) 9-1 L = d 2 / 2 G(x, ξ) d 2 G(x, ξ) = δ(x ξ) 2 1 d G(x, ξ) = θ(x ξ) = 0 x < ξ 1 x > ξ 8 ( 9 9

0 x < ξ G(x, ξ) = 1 x > ξ G(x, ξ) = x ξ + x ξ 2 2 x G(x, ξ) = x ξ 2 10 y y = x ξ y 1 ξ x ξ 1 x -2 u(0) = u(1) d2 G(x, ξ) = δ(x ξ) 2 1 2 d 2 u(x)/ 2 = 0 u = x + b b 0 ξ 1 G(x, ξ) = 1 x ξ + x + b 2 G(0, ξ) = 1 2 ξ + b = 0, G(1, ξ) = 1 1 ξ + = 0 2 G(x, ξ) = 1 ( 2 x ξ + ξ 1 ) x 1 2 2 ξ ξ(x 1) x > ξ = x(ξ 1) x < ξ 10 δ(x) = d θ(x) 10

-3 u(0) = u(1) d2 u(x) 2 + x 2 = 0 (26) u(x) = = 1 0 x 0 = (x 1) G(x, ξ)f(ξ)dξ ξ(x 1)f(ξ)dξ + x 0 = 1 12 x(x3 1) ξ 3 dξ + x 1 x 1 x x(ξ 1)f(ξ)dξ (ξ 1)ξ 2 dξ 1 0 = x 0 + 1 x -2 x < ξ x > ξ x 0 ξ 0 < ξ < x G(x, ξ) = ξ(x 1) 2.2.2 2 x = Lu 1 (x) = 0, x = b Lu 2 (x) = 0 2 A(ξ)u 1 (x) ( x < ξ) G(x, ξ) = (28) B(ξ)u 2 (x) (ξ < x b) G(x, ξ) G(x, ξ) x = ξ 11 A(ξ)u 1 (ξ) = B(ξ)u 2 (ξ) (29) LG(x, ξ) = δ(x ξ) x = ξ 0 x = ξ + 0 ξ+0 ξ 0 d dt p(x) du(x) ξ+0 ξ 0 q(x)u(x) = ξ+0 ξ 0 δ(x ξ) (30) p(x) d ξ+0 G(x, ξ) = 1 ξ 0 ( ) dg x=ξ+0 ( ) dg = 1 x=ξ 0 p(ξ) 11 b 11

A(ξ) B(ξ) A(ξ)u 1(ξ) B(ξ)u 2(ξ) = 1 p(ξ) (29) (31) A(ξ) B(ξ) (28) A(ξ) B(ξ) (31) u 2 (ξ) A(ξ) = p(ξ)(u 2 (ξ)u 1 (ξ) u 1(ξ)u 2 (ξ)) = u 2(ξ) p(ξ) (ξ) u 1 (ξ) B(ξ) = p(ξ)(u 2 (ξ)u 1 (ξ) u 1(ξ)u 2 (ξ)) = u 1(ξ) p(ξ) (ξ) (32) (ξ) ( ) u 1 (ξ) (ξ) = u 1 (ξ) u 2 (ξ) u 2 (ξ) = u 1(ξ)u 2(ξ) u 2 (ξ)u 1(ξ) (33) u 1 (ξ) u 2 (ξ) (ξ) 0 u 1 u 2 Lu = 0 (pu 1) qu 1 = 0 (pu 2) qu 2 = 0 1 u 2 2 u 1 u 1 (pu 2) u 2 (pu 1) = 0 ( 1 2 6 ) u 1 (pu 2) u 2 (pu 1) = p u 1 u 2 + p u 1u 2 + p u 1 u 2 (p u 1u 2 + pu 1u 2 + pu 1u 2) = p u 1 u 2 p u 1u 2 = d p(u1 u 2 u 1u 2 ) = 0 p(u 1 u 2 u 1u 2 ) = p(x) (x) = 0 (32) p(x) (x) = p(ξ) (ξ) = = p(0) (0) A(ξ) = u 2(ξ) p(0) (0) B(ξ) = u 1(ξ) p(0) (0) (34) 12

A(ξ)u 1 (x) ( x < ξ) G(x, ξ) = B(ξ)u 2 (x) (ξ < x b) (35) (34)(35) G(x, ξ) = G(ξ, x) -4 0, l d2 u = f(x) u(0) = u(l) = 0 2 p(x) = 1 u = 0 c 1 c 2 u(x) = c 1 x + c 2 u(0) = 0 u 1 (x) = c 1 x u(l) = 0 u 2 = c 1 (x l) A(ξ)u 1 (x) ( x < ξ) G(x, ξ) = B(ξ)u 2 (x) (ξ < x b) (36) (0) u 1 (0) u 2 (0) (0) = u 1 (0) u 2 (0) = u 1(0)u 2(0) u 2 (0)u 1(0) = c 2 1l (37) A(ξ) B(ξ) (34) A(ξ) = u 2(ξ) p(0) (0) = ξ l c 1 l B(ξ) = u 1(ξ) p(0) (0) = ξ c 1 l (38) (36) x(ξ l) G(x, ξ) = l ξ(x l) l (0 x < ξ) (ξ < x l) (39) 13

(26) u(x) = l 0 G(x, ξ)f(ξ)dξ l ξ(x l) = dξ + l 0 l 0 (40) x(ξ l) dξ l -5 G(0, ξ) = G(1, ξ) = 0 ( ) d 2 2 + k2 G(x, ξ) = δ(x ξ) u + k 2 u = 0 u(0) = 0 u 1 (x) = c 1 sinkx u(1) = 0 u 2 = c 2 seck sink(1 x) (0) u 1 (0) u 2 (0) (0) = u 1 (0) u 2 (0) = u 1(0)u 2(0) u 2 (0)u 1(0) = c 1 c 2 k tn k (41) A(ξ) B(ξ) (34) A(ξ) = u 2(ξ) p(0) (0) B(ξ) = u 1(ξ) p(0) (0) = sink(1 ξ) c 1 k sink = cotk sin kξ c 2 k (42) (36) sinkxsink(1 ξ) G(x, ξ) = ksink sink(1 x)sinkξ ksink (0 x < ξ) (43) (ξ < x 1) 1.2 0 u(x) 14

Lu(x) = f(x) LG(x, ξ) = δ(x ξ) (44) 1 G(x, ξ) 2 u(x) G(x, ξ)lu(x) u(x)lg(x, ξ) = G(x, ξ)f(x) u(x)δ(x ξ) x b MEMO -2 G(x, ξ)p(x) du(x) ξ) b u(x)p(x)dg(x, = dξ G(x, ξ)f(x) u(ξ) x ξ G(x, ξ) = G(ξ, x) u(x) = G(x, ξ)f(ξ)dξ + dg(x, ξ) u(x)p(x) G(x, ξ)p(x) du(x) b (45) dξ (26) (45) 2 u(x) 1.2 u(x) 12 A. b u(t) (45) u () u (b) G(x, ) = G(x, b) = 0 u () u (b) u(x) = G(x, ξ)f(ξ)dξ + dg(x, ξ) b u(ξ)p(ξ) (46) dξ B. u () u (b) ( ) (45) u() u(b) 2 G (x, ) = G (x, b) = 0 u() u(b) u(x) = G(x, ξ)f(ξ)dξ G(x, ξ)p(ξ) du(ξ) b (47) C. x = b Au + Bu = C 3 AG BG = 0 15

Gu G u = C B G u(x) = G(x, ξ)f(ξ)dξ + G(x, ξ) C(ξ) b B(ξ) p(ξ) (48) -6 u(0) = 1 u(1) = 1 d 2 u(x) 2 + k 2 u(x) + f(x) = 0 x = 0 1 1 5 (49) u(x) = 1 0 G(x, ξ)f(ξ)dξ + dg(x, ξ) ξ=1 u(ξ) (49) dξ ξ=0 (43) sinkxsink(1 ξ) G(x, ξ) = ksink sink(1 x)sinkξ ksink (0 x < ξ) (ξ < x 1) (50) ξ ξ = 0 1 sinkxcosk(1 ξ) dg(x, ξ) (0 x < ξ) ξ = 1 : sinkx sink sink = dξ sink(1 x)coskξ sink(1 x) (ξ < x 1) ξ = 0 : sink sink (51) sink(1 x) u(x) = ksink sinkx sink x 0 sinkξf(ξ)dξ + sinkx ksink sink(1 x) u(1) u(0) sink 1 x sink(ξ 1)f(ξ)dξ (52) 2.2.3 3. Lu(x) + λρu(x) = 0 (53) Lu(x) + kρ(x)u(x) = f(x) (54) 16

(53) λ n (n = 0, 1, 2, ) u n Lu n (x) + λ n ρ(x)u(x) = 0 (55) u(x) u(x) = η n u n (x) (56) η n η n = n=0 (54) u n (x) (55) u(x) u(x)u n (x)ρ(x) (57) Luu n + kρuu n (Lu n u + λ n ρu n u) = fu n Luu n Lu n u + (k λ n )ρuu n = fu n (58) b L (58) (57) (Luu n Lu n u) = 0 (k λ n ) (k λ n )η n = ρ(x)u(x)u n (x) = f(x)u n (x) f(x)u n (x) (59) λ n k η n η n = 1 k λ n f(ξ)u n (ξ)dξ (60) (56) u(x) = = = ( 1 b ) f(ξ)u n (ξ)dξ u n (x) k λ n ( ) 1 u n (ξ)u n (x) f(ξ)dξ k λ n n=0 n=0 G(x, ξ)f(ξ)dξ (61) G(x, ξ) = n=0 1 k λ n u n (ξ)u n (x) (62) 17

(54) f(x) = δ(x ξ) (61) Lu(x) + kρ(x)u(x) = δ(x ξ) u(x) = = G(x, ξ) G(x, α)f(α)dα = G(x, α)δ(α ξ)dα (63) G(x, ξ) k = 0 G(x, ξ) = n=0 1 λ n u n (ξ)u n (x) (64) -7 G(0, ξ) = G(l, ξ) = 0 ( ) d 2 2 + k2 G(x, ξ) = δ(x ξ) d2 u 2 + k2 = 0, u(0) = u(l) = 0 c 1 c 2 u(x) = c 1 coskx + c 2 sinkx u(0) = 0 : u(l) = 0 : u(0) = c 1 = 0 u(x) = c 2 sinkx u(l) = c 2 sinkl = 0 k n = nπ l (n = 1, 2, ) (65) 13 λ n sin nπ l x ( nπ λ n = k2 2 = l ) 2 l 0 sin nπ l x 2 = 2 u n 2 u n (x) = sinnπ l x u n (x) u n (x)u n (ξ) = δ(x ξ) 13 n = 0 sinnx 0 18 n

G(x, ξ) = = 2 n=1 u n (x)u n (ξ) k 2 λ n sin nπ x sinnπ ξ (66) ( nπ ) 2 k 2 l n=1 2.2.4 4 d 2 G s dt 2 µ 2 G s = δ(t ξ) (µ > 0) (67) G s G s g(ω) = G s (t, ξ) = 1 2π G s (t, ξ)e iω(t ξ) dt g(ω)e iω(t ξ) dω (68) G s dg s dt = 1 2π d 2 G s dt 2 = 1 2π iωg(ω)e iω(t ξ) dω ω 2 g(ω)e iω(t ξ) dω (69) δ 1 = δ(t ξ) = 1 2π δ(t ξ)e iω(t ξ) dt 1 e iω(t ξ) dω (70) (67) ( ω 2 µ 2 )g(ω)e iω(t ξ) dω = g(ω) = 1 ω 2 + µ 2 1 e iω(t ξ) dω (71) 19

(68) G s (t, ξ) = 1 2π = 1 2π 1 ω 2 + µ 2 eiω(t ξ) dω 1 (ω iµ)(ω + iµ) eiω(t ξ) dω (72) G s (t, ξ) ±iµ C 1 14 G s (t, ξ) = 2πiResG s, iµ = 2πi lim (ω iµ) 1 ω iµ (ω iµ)(ω + iµ) eiω(t ξ) dω = 1 (73) 2µ e µ(t ξ) C 2 G s (t, ξ) = 2πiResG s, iµ = 2πi lim (ω + iµ) 1 ω iµ (ω iµ)(ω + iµ) eiω(t ξ) dω = 1 2µ eµ(t ξ) 1 2µ e µ(t ξ) (t > ξ) G s (t, ξ) = 1 2µ eµ(t ξ) (t < ξ) (74) (75) Im R 0 iµ iµ C 1 R ω Re C 2 (67) 15 G(t, ξ) G s (t, ξ) d2 u 2 µ2 u = 0 G(t, ξ) = G s (t, ξ) + k 1 e µt + k 2 e µt (76) G(0, ξ) = G(l, ξ) = 0 (0 < ξ < l) (77) 14 15 L(y) = R(x) L(y) = R(x) L(y) = 0 20

0 = G s (0, ξ) + k 1 + k 2 0 = G s (l, ξ) + k 1 e µt + k 2 e µt (78) k 1 k 2 ( 1 k 1 = 2µ e µ(t+ξ) 1 )/ 2µ e µ(t ξ) ( 1 k 2 = 2µ e µ(t ξ) 1 )/ 2µ e µ(t ξ) (79) = e µt e µt G(t, ξ) = G s (t, ξ) + 1 { e µt e µ(ξ t) + e µ(tξ)} e µ(l ξ t) e µ( l+ξ+t) (80) 2µ ***************************** ********************************* See you gin nd Goo Luck!! 1 2000.11 ) 2 1978.06 ( 3 2005.6 21