Hidetaka Okada Department of Cosmosciences, Graduate School of Science, Hokkaido University

Similar documents
Formation process of regular satellites on the circumplanetary disk Hidetaka Okada Department of Earth Sciences, Undergraduate school of Scie

( ) ,

1: : Voyager 1 : Keck 1) : 2) 10 1( ) 15 1/3 50% 3) 1990 adaptive optics ( )

Contents 1 Jeans (

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

The Physics of Atmospheres CAPTER :


1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

vol5-honma (LSR: Local Standard of Rest) 2.1 LSR R 0 LSR Θ 0 (Galactic Constant) 1985 (IAU: International Astronomical Union) R 0 =8.5

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

SFN

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

Formation of hot jupiters by slingshot model Naoya Okazawa Department of Earth Sciences, Undergraduate school of Science, Hokkaido University

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

PDF


5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

総研大恒星進化概要.dvi

8 300 mm 2.50 m/s L/s ( ) 1.13 kg/m MPa 240 C 5.00mm 120 kpa ( ) kg/s c p = 1.02kJ/kgK, R = 287J/kgK kPa, 17.0 C 118 C 870m 3 R = 287J

A

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

pdf

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds


18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

TOP URL 1

g µν g µν G µν = 8πG c 4 T µν (1) G µν T µν G c µ ν 0 3 (1) T µν T µν (1) G µν g µν 2 (1) g µν 1 1 描

Note.tex 2008/09/19( )

修士論文

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat

Standard Model for Formation of the Solar System ADACHI Toshitaka Department of Earth Sciences, Undergraduate school of Science, Hokkaido University P

廃棄物処理施設生活環境影響調査指針

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

Microsoft Word - 11問題表紙(選択).docx

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq


Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

Mott散乱によるParity対称性の破れを検証

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

i


森羅万象2018のコピー

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

all.dvi

23 1 Section ( ) ( ) ( 46 ) , 238( 235,238 U) 232( 232 Th) 40( 40 K, % ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

i 18 2H 2 + O 2 2H 2 + ( ) 3K

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

放射線化学, 92, 39 (2011)

Gmech08.dvi

本文/目次(裏白)


TOP URL 1

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2

第5章 偏微分方程式の境界値問題

BH BH BH BH Typeset by FoilTEX 2

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

Gmech08.dvi

LLG-R8.Nisus.pdf

I ( ) 2019

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

1 1. x 1 (1) x 2 + 2x + 5 dx d dx (x2 + 2x + 5) = 2(x + 1) x 1 x 2 + 2x + 5 = x + 1 x 2 + 2x x 2 + 2x + 5 y = x 2 + 2x + 5 dy = 2(x + 1)dx x + 1

白山羊さんの宿題.PDF

B


H22環境地球化学4_化学平衡III_ ppt

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n


03J_sources.key

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

E 1/2 3/ () +3/2 +3/ () +1/2 +1/ / E [1] B (3.2) F E 4.1 y x E = (E x,, ) j y 4.1 E int = (, E y, ) j y = (Hall ef

(Blackbody Radiation) (Stefan-Boltzmann s Law) (Wien s Displacement Law)

Undulator.dvi

l µ l µ l 0 (1, x r, y r, z r ) 1 r (1, x r, y r, z r ) l µ g µν η µν 2ml µ l ν 1 2m r 2mx r 2 2my r 2 2mz r 2 2mx r 2 1 2mx2 2mxy 2mxz 2my r 2mz 2 r

nsg02-13/ky045059301600033210

chap9.dvi

Untitled

液晶の物理1:連続体理論(弾性,粘性)

m d2 x = kx αẋ α > 0 (3.5 dt2 ( de dt = d dt ( 1 2 mẋ kx2 = mẍẋ + kxẋ = (mẍ + kxẋ = αẋẋ = αẋ 2 < 0 (3.6 Joule Joule 1843 Joule ( A B (> A ( 3-2

(5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b)

sec13.dvi

TOP URL 1

Q = va = kia (1.2) 1.2 ( ) 2 ( 1.2) 1.2(a) (1.2) k = Q/iA = Q L/h A (1.3) 1.2(b) t 1 t 2 h 1 h 2 a

I

1/2 ( ) 1 * 1 2/3 *2 up charm top -1/3 down strange bottom 6 (ν e, ν µ, ν τ ) -1 (e) (µ) (τ) 6 ( 2 ) 6 6 I II III u d ν e e c s ν µ µ t b ν τ τ (2a) (

OHO.dvi

36 th IChO : - 3 ( ) , G O O D L U C K final 1

(1) D = [0, 1] [1, 2], (2x y)dxdy = D = = (2) D = [1, 2] [2, 3], (x 2 y + y 2 )dxdy = D = = (3) D = [0, 1] [ 1, 2], 1 {

ライトカーブ観測から何がわかるか

JKR Point loading of an elastic half-space 2 3 Pressure applied to a circular region Boussinesq, n =

2 X-ray 6 gamma-ray :38m 0:77m nm 17.2 Hz Hz 1 E p E E = h = ch= (17.2) p = E=c = h=c = h= (17.3) continuum continuous spectrum line spectru

(Jackson model) Ziman) (fluidity) (viscosity) (Free v

Microsoft PowerPoint - 科学ワインバー#2

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz

2 Chapter 4 (f4a). 2. (f4cone) ( θ) () g M. 2. (f4b) T M L P a θ (f4eki) ρ H A a g. v ( ) 2. H(t) ( )

Transcription:

Hidetaka Okada 21372 Department of Cosmosciences, Graduate School of Science, Hokkaido University 212 2 28

, N 2.,.,.,. N 2, Ar. Ar, N 2, NH 3 N 2.. Kuramoto and Matsui (1994),,., 1 5, 5 K,,., Ar, Ar.,, (Canup and Ward, 22, 26).,,,,., H 2 He, H 2, ( ) ( ) ( ).,

2.,.,.,,,. 3 K,,,.,. 4 W/m 2, 4.,.,.,.,., H 2, He, H 2 O, NH 3. NH 3,., Ar.,, NH 3, N 2 (Atreya et al., 1978). N 2, Ar.

i 1 1 1.1......................... 1 1.2....................... 2 1.3........ 2 1.4................................. 3 2 5 2.1..................................... 5 2.2............................... 5 2.2.1......................... 5 2.2.2......................... 6 2.3..................... 6 2.3.1.................................. 6 2.3.2..................... 8 2.4......................... 12 2.5...................... 12

ii 2.6............................... 16 3 17 3.1............................ 17 3.2............................... 18 3.3............................... 2 4 23 4.1......................... 23 4.2....................... 23 4.3......................... 25 5 27 6 3 6.1 1,.................... 3 6.1.1............................. 3 6.1.2............................ 32

タイタンの原始大気 1 背景と目的 1 背景と目的 1 1.1 タイタンの大気と内部構造 タイタンは 1655 年にホイヘンスによって発見された土星の衛星で, その直径は約 515 km と, 木星の衛星のガニメデに次いで太陽系で二番目に大きい. タイタンの最大の特徴 は, N2 を主成分とする非常に厚い大気をもっていることである. 地表面での大気圧は地球 のおよそ 1.5 倍であり, その主成分は N2 と CH4 である (地表面で N2 95, CH4 5, Niemann et al., 25). これほど厚い大気を持っている衛星は太陽系のなかではタイタン だけである. またカッシーニにより得られた データによると, 慣性能率因子 (慣 性能率を天体の質量と半径の二乗の 積で割ったもの) は.342 であった (Iess et al., 21). この値は, 内部が 完全に分化し金属コアをもつガニメ デの.311 (Anderson, 1996) よりも 大きいが, 一様な球体の慣性能率因 子の値 (.4) よりも小さいため, タイ タンの内部は完全ではないが, 部分 的に分化していると考えられている (図 1). さらにタイタンの自転に関す る観測から液体の海の存在も示唆さ 図1 タイタンの内部構造の想像図 (NASA) れており (Baland et al., 211), タイ タンはその熱史の中で氷が融解する温度を経験したと考えられる. 212 年 2 月 28 日 (岡田英誉)

1 2 1.2 N 2., H 2, He.,.,.,,., H 2, He,.,.,, (Matsui and Abe, 1986).,,.,. N 2,.,, N 2 Ar. 36 Ar/N 2 2.8 1 7 (Niemann, 25), ( 1 1-1 2 ) (Lunine et al., 29), Ar., N 2, N 2 Ar., NH 3 N 2. (Atreya et al., 1978),, (> 15 K). 1.3,,.

1 3,,,. Kuramoto and Matsui (1994),,,.,., 1 5, 5 K.,,., Ar, Ar.,, (Canup and Ward, 22, 26).,..,.,.,. 1.4,,,,,., Canup and Ward (22, 26),.,.,.,

1 4.

2 5 2. 2.1.,. H 2, He (H 2 75 wt, He 25 wt ),..,.,, 3.,. 2.2 2.2.1, (Lunine and Stevenson, 1982). [ 4 dt dr = 3 πg ρr 1 + L vm vap e (P e)r B T C pg eɛ 1 + C pg (P e) ] ( ) 1 + eɛ P e [ C pw L v T + L2 v M rvp (P e)r B T 2 ]. (1), ρ, L v, M rv, C pg, C pw. e,,

2 6 (Weast,1967). 2214 2+(8.771 e = 1.33 1 T ). (2),,. P r = ρ gasg(r) (3) ρ gas.. M gas = P nebm neb + em vap P neb + e, P neb, M neb. (4) 2.2.2,.,,.,,. (3). 2.3 2.3.1,,,.,,

2 7,.,,, κ gas. ( ) 2 ( ) ( ) 1ρH2 1ρH2 1ρHe κ gas ρ gas = α H2 H 2 + α H2He + κ H2 Oρ H2 O (5) µm H2 n µm H2 n m He n, α H2 H 2, α H2 H e Borysow(1985, 1992, 22).,,. 2 Borysow(22) α H2 H 2, α H2 H e. α H2 H2, α H2 H e. α H2 H 2 = 1.328 1 6 + 3.657 1 8 T 1.194 1 1 T 2 + 1.211 1 13 T 3 α H2 He = 1.817 1 8 + 7.95 1 1 T 2.3862 1 11 T 2 + 2.331 1 14 T 3 2.5e-6 alpha coeficient [cm-1 amagat-1] 2e-6 1.5e-6 1e-6 5e-7 5 1 15 2 25 3 35 4 Temperature [K] 2 Borysow(1985), Borysow(1992).. α H2 H 2, α H2 H e.

2 8 2.3.2,,.,,. ν I ν, B ν (T ),,. di ν = κ ν ρ gas (I ν B ν )ds (6) ds, κ ν., r up,,. r up, θ. xy, (,1). (sin θ, cos θ). (, r up )., s (, r up ) + s(sin θ, cos θ). r s. r = (s + r up cos θ) 2 + rup 2 sin 2 θ s = r up cos θ ± r 2 rup 2 sin 2 θ r ds = ± dr r 2 rup 2 sin 2 θ r min = r up sin θ R S,.,,., r min r s (sin θ r S /r up ),

2 9 τ up, I ν,up. RS r τ up = κ ν ρ gas dr r up r 2 rup 2 sin 2 θ I ν,up (r, θ) = B ν (T s )e τ up + τup B ν e τ dτ, r min R S (sin θ R S /r up ), τ up = rmin r κ ν ρ gas dr + r 2 rup 2 sin 2 θ I ν,up (r, θ) = B ν (T )e τ up + rup r κ ν ρ gas dr r min r 2 rup 2 sin 2 θ τup B ν e τ dτ, T s. T, T Hill.. B ν = σt 4 /π, ν. r min R S (sin θ R S /r up ), RS r τ up = κ ν ρ gas dr (7) r up r 2 rup 2 sin 2 θ I up (r, θ) = σt s 4 τup π e τ up + σt 4 (r) e τ dτ (8) π r min R S (sin θ R S /r up ), rmin τ up = r κ ν ρ gas dr + r 2 rup 2 sin 2 θ I up (r, θ) = σt 4 τup π e τ up + rup,. r κ ν ρ gas dr r min r 2 rup 2 sin 2 θ σt 4 (r) e τ dτ π π/2 F up = 2π I up sin θ cos θdθ (9)

2 1. r up τ down, I down, F down. τ down = rup I down (r, θ) = σt 4 τup π e τ down + r κ ν ρ gas dr (1) r 2 rup 2 sin 2 θ σt 4 (r) e τ τ down dτ (11) π π/2 F down = 2π I down sin θ cos θdθ (12), F net. F net = F up F down (13), (τ 1),,., τ > 1. (6), I ν (s) = I ν (s )e τ + ds = τ dz cos θ. 2 B ν τ, B ν (τ ) B ν (τ = τ) + db dτ (τ τ) B ν e τ τ dτ (14)

2 11 e τ, I ν (s), B ν db ν dτ τ = B ν [ e τ τ ] τ B ν (τ = τ)e τ τ dτ + db dτ + db ν dτ [ = B ν B ν e τ + τe τ db ν dτ τ (τ τ)e τ τ ] τ (τ τ)e τ τ dτ db ν dτ db [ ] ν dτ e τ τ τ = B ν Bνe τ + db ν dτ ( τe τ 1 + e τ ) I ν = B ν (T ) cos θ db ν (T ) κρ gas dz. F ν,net = I ν cos θdω τ e τ τ dτ (15) (16) =, 2π π = 2π π I ν cos θ sin θdθdφ B ν cos θ sin θdθ = π 2 [ B ν cos 2θ] π 2π B ν 3κρ gas dz = 4π db ν 3κρ gas dz F net = = 4π 3 2π db ν κρ gas dz π [ cos 3 θ ] 1 1 cos 2 θ sin θdθ (17) F ν dν 1 db ν dν κρ gas dz (18) κ,,., 1 κ R ρ gas = 1 κρ F net = 16σT 3 3ρκ R db ν dt dν dbν dt dν (19) dt dz (2)

2 12 dbν dt dν = 4σT 3 π (21) 2.4 m. U = GM Sm r R S, (22) m = 4/3πr 3 ρ.,, E acc. E acc = GM s r 4 3 πr3 ρ 1 4πr 2 τ acc = GρM s 3τ acc (22) 2.5,.,,,., T disk. σ SB Tdisk 4 = 1 [( 1 + 3 2 16 τ R + 1 ) 2τ P E ν + ( 1 + 1 ) ( E 2τ in + P ] E P ) + σ SB Tneb 4, σ SB, τ R, τ P, T neb. E ν, E in, E P,,,. E ν = 9 4 σ GνΩ 2, E in = GM P 2r F πrc 2, E P = 9 ( ) 2 4 σ SBTP 4 RP ( cs ) r rω (23) (24)

2 13, r, G, Ω, M P, F, r c, T P, R P, c s (= γr B T disk /µ mol, γ γ = 1.4), σ G. ν α (Shakura and Sunyaev, 1973), ν = αc s H = αc 2 s/ω. (25), α, H. σ G, 2.,,. σ G t = 1 Ṁ 2πr r + F in = (26), Ṁ r, Ṁ = 2πrσ G v r. v r., g vis. g vis Ṁ. g vis r = Ṁ h r. (27) g vis = 3πσ G hν (28), h, h = r 2 Ω. (26), (27),. σ G = 4F 15πν [ 5 4 ( rc r d ) 2 1 ( ) ] 2 r 4 r c (29), r d. σ G, P disk, ρ disk. P disk = ρ disk µ mol R B T disk ρ disk = σ G 2H.

2 14 3 (Canup and Ward, 22) F,., α (1 4 α 1 2 )., D ( 2.11 R saturn, R saturn ) F, α. α 5. 1 3, 1 3, 1 4 3, F., (r = 2.273R saturn ),., H 2 O, 99 wt, : 1 wt. 4, 5,. F, α.,.,. 4, 5 5-9 K,.1 -.1 Pa.,,., 5 K,.1 Pa 1 Pa.

2 15 35 3 Disk temperature [K] 25 2 15 1 5 5 1 15 2 25 3 Distance from Saturn [Saturn radius] 4.. T P = 4K (Burrows et al., 1997), κ P (= τ P /σ G ) κ R (= τ R /σ G ).1 m 2 /kg (Semenov, 23). F, α,,,, α = 5 1 3 (F = 3.5 1 1 M saturn ), 1 3 (4.1 1 1 M saturn ), 1 4 (1.9 1 1 M saturn ). 1 1 1 Disk pressure [Pa] 1.1.1.1.1 5 5 1 15 2 25 3 Distance from Saturn [Saturn radius]. 4.

2 16 2.6.,. 1 ρ 1.88 1 3 [kg m 3 ] C pn H-He 1.2 1 4 [J kg 1 K 1 ] L v 2.26 1 6 [J kg 1 ] C pv 2.5 1 3 [J kg 1 K 1 ] C pw 4.3 1 3 [J kg 1 K 1 ] κ neb 1 4 ρ neb [m 2 kg 1 ] κ vap 1 5 e [m 2 kg 1 ] M neb 2.5 1 3 [kg mol 1 ]

3 17 3 3.1, ( ), ( 6).,,.,,.,,., 5 K,. 1e+25 1e+2 1e+15 Optical depth 1e+1 1 1 1e-5 1e-1 5 1 15 2 25 3 Disk Temperature [K] 6..,,,, 1 Pa, 1 Pa, 1 Pa,.1 Pa.

3 18 3.2 7, 8, 9 1 Pa,,..,,,.,,.,,,. 22 Distance from center of satellite [satellite radius] 2 18 16 14 12 1 8 6 4 2 5 1 15 2 25 3 Temperature [K] 7... 1 Pa.,,,,,, 1 Pa

3 19 22 Distance from center of satellite [satellite radius] 2 18 16 14 12 1 8 6 4 2 1 1 1 1 1 1 1e+6 1e+7 Pressure [Pa] 8. 7 11 Distance from center of satellite [satellite radius] 1 9 8 7 6 5 4 3 2 1 1e-6 1e-5.1.1.1.1 1 1 1 1 1 Optical depth 9. 7

3 2 3.3 1..,,.,.,.,,,. 33 3 Temperature of satellite surface [K] 27 24 21 18 15 12 9 6 3 5 1 15 2 height of tropopause [satellite radius] 1...,,,, 1 Pa, 1 Pa, 1 Pa,.1 Pa. 11 1 Pa..,.,.,,.,

3 21.,,. 22 Distance from centr of satellite [satellite radius 2 18 16 14 12 1 8 6 4 2 11.1.1 1 1 1 1 Net radiation flux [W m-2]. 7 12..,,.,,,., 1,, 2 K., 1 Pa.,,,., 1 Pa 4 W/m 2, 4.,., 1. Ar. Ar, Ar.

3 22 12 Net radiation flux from upper of atmosphere [W m-2] 5 4 3 2 1 5 1 15 2 25 3 Suraface Temperature [K].,. 1.,., 4, 5, 1.

4 23 4 4.1,,,.,,..,.,,. 6,.,. 4.2, F, α., (9.384 R Jupiter, R Jupiter ). 13, 14,.,.,, 12 K,.1 Pa - 1 Pa.

4 24 35 3 Disk temperature [K] 25 2 15 1 5 5 1 15 2 25 3 Distance from Jupiter [Jupiter radius] 13.. T P = 5K (Burrows et al., 1997), 4. 1 1 Disk pressure [Pa] 1 1 1.1.1 14 5 1 15 2 25 3 Distance from Jupiter [Jupiter radius]. 13.

4 25 4.3 15., 3 K. 35 Temperature of satellite surface [K] 3 25 2 15 1 5 2 4 6 8 1 12 height of tropopause [satellite radius] 15... 1. 16.,.,.,.,.,,,,.

4 26,. Net radiation flux from upper of atmosphere [W m-2] 8 7 6 5 4 3 2 1 15 2 25 3 Suraface Temperature [K] 16.., 3, 5, 1. 12.

5 27 5,,.,.,,,,.,,,., 1, 2 K., 1 Pa.,., 1 Pa, 5 K 4 W/m 2, 4.,,..,., H 2, He, H 2 O, NH 3. NH 3,.,, Kuramoto and Matsui (1994), Ar.,, NH 3, N 2 (Atreya et al., 1978). N 2, Ar.

5 28,.,..,.

5 29,..,,.,..,,,.,.,,,,,..,,,,,.,,..,,.

6 3 6 6.1 1, 6.1.1 Nakamoto and Nakagawa (1994)..,,,, T s. σ SB Ts 4 = 1 ( E ν + E 2 s + E ) P + σ SB Tcloud 4 (3), Ėν, (2). E ν,, h E ν = 2 F (z)dz = 32σ SB (Tm 4 Ts 4 ) 3τ R T 4 s = T 4 m 3τ R 32σ SB E ν, σ SB T 4 m = 1 2 ( ) 3 16 τ RE ν + E ν + E s + E P + σ SB Tcloud 4 (31)., dτ = κ ν ρds, ds = dz/ cos θ,, cos θ di ν dτ ν = I ν + B ν. I ν (τ ν, θ) = I ν (, θ)e τ ν/ cos θ + (1 e τ ν/ cos θ )B ν.

6 31 τ ν / cos θ 1,, ( I ν (τ ν, θ) 1 τ ν cos θ ) I ν (, ν) + I. I(τ ν, θ) = = I(, θ) I ν (τ ν, θ)dν [( 1 τ ν cos θ ) I ν (, θ) + τ ν cos θ I ν(, θ)dν + τ ν cos θ B ν(t m ). τ ] ν cos θ B ν(t m ) dν τ ν cos θ B ν(t m )dν (32) z = h (τ ν = ) T cloud, I(, θ) = B ν (T cloud )dν = σ SB π T 4 cloud., (τ P = κ P σ g ), τ ν cos θ I ν(, ν)dν = τ ν cos θ B ν(t cloud )dν = τ ν cos θ B ν(t m )dν = τ P σ SB cos θ π T m 4 τ P σ SB cos θ π T cloud 4 τ P = τ ν B ν (T )dν B ν (T )dν (32), I ν (h, θ) = ( 1 τ ) P σt 4 cloud cos θ π + τ P σtm 4 cos θ π. z = h, F + = I cos θdω π/2 = 2π I(h, θ) cos θ sin θdθ dω = sin θdθdφ = 2π sin θdθ

6 32, π/2 F + = 2π = σt 4 cloud = σt 4 cloud [ (cos θ τ p ) σ π T 4 cloud + τ p σ π/2 sin 2θdθ 2τ p σt 4 cloud [ 1 cos 2θ 2 ] π/2 = σt 4 cloud 2τ p σt 4 cloud + 2τ p σt 4 m π T 4 m π/2 ] sin θdθ sin θdθ + 2τ p σt 4 m π/2 + 2τ p σtcloud 4 [cos θ] π/2 2τ p σtm 4 [cos θ] π/2 sin θdθ z = h F (h) = σt 4 cloud,, z = h F (h) = 2τ p σ(t 4 m T 4 cloud)., 2F (h) = Ėν + Ės σ SB T 4 m = 4τ p σ SB (T 4 m T 4 cloud) = Ėν + Ės 1 ( T 4 4τ p σ m T 4 ) cloud + σsb Tcloud 4 (33) SB (31), (33), σ SB T 4 m = 1 [( 1 + 3 2 16 τ R + 1 ) ( Ė ν + 1 + 1 ) ( E s + 2τ p 2τ ) ] E J + σ SB Tcloud 4 (34) p 6.1.2, (26), (27),. g vis (r = r P ) (r = r d ) (g vis,d = g vis,p = ). r c < r < r d,, F in =. (26), Ṁ r (Ṁ = Ṁ = const). (27) r c r d, Ṁ (h h d ) = (g vis g vis,d ) = g vis. (35)

6 33 r < r c. (27) hdṁ/dr,, Ṁdh/dr = d(ṁh)/dr hṁ(r) + g(r) = 4 5 πf in(r 2 ch c r 2 ph p ) + Ṁph p 4 5 πf inr 2 ph p. (36), h c = r c 2 Ω c, h d = r d 2 Ω d, r P. r = r c., Ṁ = Ṁ, r = r c, h c Ṁ + Ṁ(h d h c ) = 4 5 πr c 2 h c F in + Ṁph p 4 5 πf inr p 2 h p, (37) Ṁ h d Ṁph p = 4 5 πf in(r c 2 h c r p 2 h p ). (38),,,., Ṁp, r d Ṁ,., (38), (39), Ṁp + Ṁ = Ṁ πf inr p 2. (39) Ṁ h d (πf in r c 2 πf in r p 2 + Ṁ)h p = 4 5 πf in(r c 2 h c r p 2 h p ). (4), h p = r p 2 Ω p,, Ω d =, GM GM r 3 d, Ω c = r 3 c, Ω p = GM r 3 p, Ṁ (r 1/2 d r 1/2 p ) = πf in r 2 c r 1/2 p + 1 5 πf inr 5/2 p + 5 4 πf inr 5/2 c, (41) [ ( ) 1/2 2 4 rc Ṁ = πf in r c + 1 ( ) ] [ 2 (rd ) ] 1/2 1 rp 1 1. (42) 5 5 r p r c r p Ṁ(r > r c ) = Ṁ, = πf in r c 2 [ 4 5 ( rc r p ) 1/2 + 1 5 ( rp r c ) ] [ 2 (rd ) ] 1/2 1 1 1. r p (43) rc Ṁ(r < r c) = 2πrF in dr Ṁ, (44) r [ ( ) ] 2 2 r = πf in r c 1 (4/5)(r c/r p ) 1/2 + (1/5)(r p /r c ) 2 1.(45) (r d /r p ) 1/2 1 r c

6 34,,, (R p /r c ) 2 1, (r d /R p ) 1/2 1, [ 4 Ṁ(r > r c ) = Ṁ Ṁ 5 [ ( r Ṁ(r < r c ) Ṁ 1,. ( rc r c r d ) 1/2 ] ) 2 4 5, (46) ( rc r d ) 1/2 ]. (47) (r > r c ), (r < r c ), [ σ G (r) 4Ṁ rc 15πν r σ G (r) 4Ṁ 15πν rc r d ]. (48) [ 5 4 rc 1 ( ) ] 2 r. (49) r d 4 r c

6 35 Anderson et al., 1996, Gravitational constraints on the internal structure of Ganymede, Nature, Volume 384, Issue 669, p. 541-543 Baland et al., 211, Titan s obliquity as evidence of a subsurface ocean?, Astronomy and Astrophysics, Volume 53, id.a141 Borysow et al., 1985, Modeling of pressure-induced far-infrared absorption spectra. Molecular hydrogen pairs Astrophysical Journal, Volume 296, p. 644-654. Borysow et al., 1992, New model of collision-induced infrared absorption spectra of H2-He pairs in the 2-2.5 micrometer region at temperatures from 2 to 3K: An update, Icarus, Volume 96, p. 169-175. Canup, Robin M., Ward, William R., 22, Formation of the Galilean Satellites: Conditions of Accretion., The Astronomical Journal, Volume 124, Issue 6, p. 344-3423. Canup, Robin M., Ward, William R., 26, A common mass scaling for satellite systems of gaseous planets., Nature, Volume 441, Issue 795, p. 834-839. Gautier and Raulin, 1997, Chemical Composition of Titan s Atmosphere, Huygens: Science, Payload and Mission, Proceedings of an ESA conference. Edited by A. Wilson., p. 359 Houghton, 1977, The Physics of Atmosphere, Cambridge University Press, New York Kuramoto and Matsui, 1994, Formation of a hot proto-atmosphere on the accreting giant icy satellite: Implications for the origin and evolution of Titan, Ganymede, and Callisto, Journal of Geophysical Research, Volume 99, Nomber E1, p. 183-2

6 36 Luciano et al., 21, Gravity Field, Shape, and Moment of Inertia of Titan, Science, Volume 327, p. 1367 Lunine and Stevenson, 1982, Formation of the Galilean satellitres in a gaseous nebula, Icarus, Volume 52, p. 14-39 Lunine et al., 29, Titan from Cassini-Huygens 35-59 Mizuno, 198, Formation of the Giant Planets, Progress of Theoretical Phydics, Volume 64, Nomber 2, p. 544-557 Mosqueira, Ignacio., Estrada, Paul R., 23, Formation of the regular satellites of giant planets in an extended gaseous nebula I: subnebula model and accretion of satellites. Icarus, Volume 163, Issue 1, p. 198-231. Niemann et al., 25, The abundances of constituents of Titan s atmosphere from the GCMS instrument on the Huygens probe, Nature, Volume 438, issue 769, p. 779-784 Sohl et al., 22, Implications from Galileo Observations on the Interior Structure and Chemistry of the Galilean Satellites, Icarus, Volume 157, issue, 1, p. 14-119 Semenov et al., 23, Rosseland and Planck mean opacities for protoplanetary discs, Astronomy and Astrophysics, Volume 41, p.611-621. Sekine et al., 211, Replacement and late formation of atmospheric N 2 on undifferentiated Titan by impacts, Nature Geoscience Shakura, N. I., Sunyaev, R. A., 1973,Black holes in binary systems. Observational appearance. Astron. Astrophys., Volume 24, p. 337-355. Weast, 1967, Handbook of Chemistory and Physics, 48th ed. Chemical Rubber Co., Cleveland., 27,..