untitled

Similar documents
UWB a) Accuracy of Relative Distance Measurement with Ultra Wideband System Yuichiro SHIMIZU a) and Yukitoshi SANADA (Ultra Wideband; UWB) UWB GHz DLL

スライド タイトルなし

1 s(t) ( ) f c : A cos(2πf c t + ϕ) (AM, Amplitude Modulation) (FM, Frequency Modulation) (PM, Phase Modulation) 2

Microsoft Word - 信号処理3.doc

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

main.dvi

( ) : 1997

<4D F736F F D B B BB2D834A836F815B82D082C88C602E646F63>

1 7 ω ω ω 7.1 0, ( ) Q, 7.2 ( Q ) 7.1 ω Z = R +jx Z 1/ Z 7.2 ω 7.2 Abs. admittance (x10-3 S) RLC Series Circuit Y R = 20 Ω L = 100


LD

CDMA (high-compaciton multicarrier codedivision multiple access: HC/MC-CDMA),., HC/MC-CDMA,., 32.,, 64. HC/MC-CDMA, HC-MCM, i

impulse_response.dvi


[1] 1.1 x(t) t x(t + n ) = x(t) (n = 1,, 3, ) { x(t) : : 1 [ /, /] 1 x(t) = a + a 1 cos πt + a cos 4πt + + a n cos nπt + + b 1 sin πt + b sin 4πt = a

Z: Q: R: C: sin 6 5 ζ a, b

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

V s d d 2 d n d n 2 n R 2 n V s q n 2 n Output q 2 q Decoder 2 R 2 2R 2R 2R 2R A R R R 2R A A n A n 2R R f R (a) 0 (b) 7.4 D-A (a) (b) FET n H ON p H

Microsoft PowerPoint - 山形大高野send ppt [互換モード]

main.dvi

GPS GPS GPS GPS GPS

CWContinuous Wave CW XCT(Computed Tomography) MRI Magnetic Resonance Imaging)PET(Positron Emission Tomography) XCT 2

情報通信工学2-ocw.dvi

報告書

さくらの個別指導 ( さくら教育研究所 ) A a 1 a 2 a 3 a n {a n } a 1 a n n n 1 n n 0 a n = 1 n 1 n n O n {a n } n a n α {a n } α {a

1

note4.dvi

完成卒論.PDF

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

sikepuri.dvi

p03.dvi

ds2.dvi

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =

ver.1 / c /(13)

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

news

2005年度卒業論文

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )


振動工学に基礎

main.dvi

main.dvi

P361


φ s i = m j=1 f x j ξ j s i (1)? φ i = φ s i f j = f x j x ji = ξ j s i (1) φ 1 φ 2. φ n = m j=1 f jx j1 m j=1 f jx j2. m


24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( )

35

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h


画像工学特論

LT 低コスト、シャットダウン機能付き デュアルおよびトリプル300MHz 電流帰還アンプ

KENZOU

デジタル通信を支える無線技術

TOP URL 1

Mott散乱によるParity対称性の破れを検証

IEEE ZigBee 2.4GHz 250kbps O-QPSK DSSS Bluetooth IEEE GHz 3Mbps G-FSK FHSS PC LAN IEEE b 2.4GHz 11Mbps CCK DSSS LAN LAN IEE

TOP URL 1

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

v_-3_+2_1.eps


( ) ( )

F S S S S S S S 32 S S S 32: S S rot F ds = F d l (63) S S S 0 F rot F ds = 0 S (63) S rot F S S S S S rot F F (63)

[ ] [ ] [ ] [ ] [ ] [ ] ADC

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K

橡実験IIINMR.PDF

untitled

[1.1] r 1 =10e j(ωt+π/4), r 2 =5e j(ωt+π/3), r 3 =3e j(ωt+π/6) ~r = ~r 1 + ~r 2 + ~r 3 = re j(ωt+φ) =(10e π 4 j +5e π 3 j +3e π 6 j )e jωt

untitled

() (, y) E(, y) () E(, y) (3) q ( ) () E(, y) = k q q (, y) () E(, y) = k r r (3).3 [.7 ] f y = f y () f(, y) = y () f(, y) = tan y y ( ) () f y = f y


AC Modeling and Control of AC Motors Seiji Kondo, Member 1. q q (1) PM (a) N d q Dept. of E&E, Nagaoka Unive

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2

PDF



positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

[I486S] 暗号プロトコル理論

power.tex


9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

高速データ変換

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

数値計算:フーリエ変換

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π

LLG-R8.Nisus.pdf



S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

QMII_10.dvi

春期講座 ~ 極限 1 1, 1 2, 1 3, 1 4,, 1 n, n n {a n } n a n α {a n } α {a n } α lim n an = α n a n α α {a n } {a n } {a n } 1. a n = 2 n {a n } 2, 4, 8, 16,

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2


9 5 ( α+ ) = (α + ) α (log ) = α d = α C d = log + C C 5. () d = 4 d = C = C = 3 + C 3 () d = d = C = C = 3 + C 3 =

( ) ) AGD 2) 7) 1

Black-Scholes [1] Nelson [2] Schrödinger 1 Black Scholes [1] Black-Scholes Nelson [2][3][4] Schrödinger Nelson Parisi Wu [5] Nelson Parisi-W

untitled

Transcription:

1 SS 2 2 (DS) 3 2.1 DS................................ 3 2.2 DS................................ 4 2.3.................................. 4 2.4 (channel papacity)............................ 6 2.5........................................ 7 2.6 E b /N.................................... 9 3 M 11 3.1................................... 11 3.2 M......................... 11 3.3 M........................... 13 3.4 M............................... 14 3.5 M.............................. 15 4 19 4.1................................ 19 4.2.................................... 19 4.3.................................... 21 5 23 23 C 25 1

1 SS, 1,, SS, SN, SS a) (Direct Spread: DS) SS (Pseudo Noise: PN) PN PN ( ) BPF b) (Frequency Hopping: FH) PN FSK FSK 2 FH c) (Time Hopping:TH) PN FH TFH d) 2 FH/DS TFH TH/DS 2

d(t) d(t)p(t) 1-1 Data d(t) PN sequence p(t) 1: DS 2 (DS),, BPF Shannon, SS, DS 2.1 DS DS, 2. (Peseudo Noise: PN). DS 1. PN, SS ( ). B, B p PN, 2 SS. 3

2B 2B p f SS f 2.2 DS 2: 1 3 SS PN Ad(t) p(t) (1) PN p(t) p(t) 1 1 p(t) 2 =1 Ad(t) p(t) 2 = Ad(t) (2) 2.3 I(t) (BPF) 4(A) PN SS SS SS 4(B) 4

BPF p(t) LPF d(t) PN 3: DS F [I(t)] F [d(t)] 2B p SS F [d(t)p(t)] f F [I(t)p(t)] 2B f F []: 4:. B PN B p. 5

2.4 (channel papacity) [[1] ] 6

2.5 [[2] ] P S = N W, (3) W (4.212) 7

8

Fig 5.2-17 Comparison of several modulation methods at 1 5 symbol error probability.[3] 2.6 E b /N n(t), 5 G(f)., G(f) N 2 f 5: G(f) 2. n(t) =x 9

S... T b t p W (x) ([4] p.29). 6: 1 E b p W (x) = 1 σ 2π e (x mx) 2 2σ (4) σ 2, m x n(t), m x =. ψ(t), n(t) ˆn, ˆn = Ts. σ 2 N, [4] pp.744 745 n(t)ψ(t)dt (5) σ 2 = E{ˆn} m x = N 2 (6) E{ }., 1 E b., E b., E b = Tb ( S) 2 dt = ST b (7) T b : S :, E b /N S/N, ([4] p.158). E b N = ST b N = S RN = SW RN W = S R 1 N/W (8) R = 1 T b ( ) W : (Hz) N :, N = N W 1

h =1 h 1 h 2 h 3 h k 1 h k =1 SR 1 SR 2 SR 3 SR k o 3 M 3.1 7: M SS,. 1),. 2),. 3),., SS (M )., M. 3.2 M M, 2 (Linear Feedback Shift Register : LFSR) n LFSR N =2 n 1. h(x) =h k X k + + h 3 X 3 + h 2 X 2 + h 1 X 1 + h, GF(2). LFSR h i (i =, 1, 2,,k), 7, h i 1., h(x) =X 4 + X +1 8, N =2 4 1=15 M., 1. M,, Peterson [5]. Peterson GF(2 9 ) 2. Peterson 8, 2 (45) ( ) 8 1 11 2, X 4 + X +1. 4 5 ( a) 8 X 4 + X +1. 1. 11

SR 1 SR 2 SR 3 SR 4 8: M ( 15 ) 1: M ( 15 ) SR 1 SR 2 SR 3 SR 4 1 1 2 1 3 1 1 4 1 1 1 5 1 1 1 1 6 1 1 1 7 1 1 1 8 1 1 9 1 1 1 1 1 1 11 1 1 12 1 1 13 1 1 14 1 15 1 1 1 12

M 2: (8 ) 2 3 1 (7) 8 3 7 2 (13) 8 4 15 2 (23) 8 5 31 6 (45) 8, (75) 8, (67) 8 6 63 6 (13) 8, (147) 8, (155) 8 7 127 18 (211) 8, (217) 8, (235) 8, (367) 8, (277) 8, (325) 8, (23) 8, (313) 8, (345) 8 8 255 16 (435) 8, (551) 8, (747) 8, (453) 8, (545) 8, (543) 8, (537) 8, (73) 8 9 511 48 (121) 8, (1131) 8, (1461) 8, (1423) 8, (155) 8, (1167) 8, (1541) 8, (1333) 8, (165) 8, (1751) 8, (1743) 8, (1617) 8, (1553) 8, (1157) 8, (1715) 8, (1563) 8, (1713) 8, (1175) 8, (1725) 8, (1225) 8, (1275) 8, (1773) 8, (1425) 8, (1267) 8 3.3 M M h(x) α. u i = Tr(θα i ) i =, 1,,N 1 (9) u,u 1,,u i,,u N 1 : M {, 1} Tr(α) =α + α 2 + α 22 +,, +α 2n 1 : GF(2 n ) GF(2) θ : GF(2 n ) (1, 2,, 2 n 1 ), θ =1,. u i = Tr(α i ) (1), N =2 n 1 M u =(u,u 1,,u N 1 ), q, (Decimation: ), v =(v,v 1,,v N 1 )..,, v = u[q] (11) v i = Tr(θα iq )=Tr(θ(α q ) i )=Tr(θβ i ) (i =, 1,,N 1) (12)., β = α q, v M, GF(2 n ) α q (q:gcd(n,q)=1 q), M u, N M 13

3: M (15 2 ) 1 1 11111111 7 8-1 15 2 11111111., M, u = u[2]. Tr(α 2i )=Tr((α i ) 2 )=Tr(α i ) (13) ( b)? 3.4 M, n M, 1 (2 n 1 1), 1 2 n 1., 1, 1 1/2,,.,, SS,,.,, M, 2. M,., p(t), t p(t) τ p(t + τ),. R pp (τ) = 1 T p(t)p(t + τ)dt (14) T T : p(t) 1,, 2. 1,,., 1 15 2 3. M, 1, 1 1/N. M 1 N +1 τ R pp (τ) = N T b 1 N lt T b τ lt + T b (l 1)T + T b τ lt T b (15) 14

1 R pp (τ) T b 1/N T τ 9: M T : p(t) 1 T b :1 N : N = T /T b l =, ±1, ±2,. M 9., M,., M 1., M,.,, M,., SS. 1, L =7 M., M,., T, 1., M. M,., M 2,,. 3.5 M Wiener-Khintchine, F (ω) 2 R pp (τ). F (ω) 2 = R pp (τ)e jωτ dτ (16) R pp (τ) =2π F (ω) 2 e jωτ dω (17) M. (15) R pp (τ) = C n e jnω τ n= (18) 15

(1) (2) M (3) (1) (2) (4) M (5) (3) (4) (1) (6) (2) 1 (7) (3) (6) (1) (8) (3) (2) = (1) 1: M SS. (L=7) 16

Correlator Channel (1) Received signal (3) (2) Local PN-sequence generator Low-pass filter Decision stage Output data +1 (1) Received signal -1 (a) (2.a) PN sequence (correctly synchronized) +1-1 +1 (3.a) Product signal of (1) and (2.a) -1 (b) (2.b) PN sequence (not synchronized) (3.b) Product signal of (1) and (2.b) +1-1 +1-1 (c) (2.c) PN sequence (different sequence) (3.c) Product signal of (1) and (2.c) +1-1 +1-1 11: DS/SS demodulator. 17

ω, ω =2π/T. C n 1 T /2 R pp (τ)e jnωτ dτ (n =1, 2, ) C n = T T /2 1 T /2 R pp (τ)e jnωτ dτ (n = 1, 2, ) T T /2 (19). n =1, 2, C n C n = 1 T T /2 T /2 R pp (τ)e jnω τ dτ T /2 = 1 Tb (1 N +1 τ )e jnωτ dτ 1 T N T b NT T b + 1 (1 + N +1 τ )e jnωτ dτ 1 T T b N T b NT = 2 T /2 cosnω τdτ + 2 Tb (1 N +1 NT T b T N = 2 [ ] sinnω τ T /2 + 2 [ ] sinnω τ Tb NT nω T b T nω 2(N +1) NT Tb, 3, Tb τ T b cosnω τdτ =. (21). C n = 2sinnω T b NT nω + 2sinnω T b T nω Tb e jnω τ dτ T /2 e jnω τ dτ τ )cosnω τdτ (2) T b τ T b cosnω τdτ (21) [ τ Tb sinnω τ nω = sinnω T b nω ] Tb 1 T b [ Tb cosnω τ n 2 ω 2 1 sinnω τ dτ T b nω = sinnω T b 1 ( cosnω nω T b n 2 ω 2 T b +1) = sinnω T b 2 sin 2 (nω nω T b n 2 ω 2 T b /2) (22) { 2(N +1) NT ] Tb } sinnω T b 4(N +1) sin 2 (nω nω NT T b n 2 ω 2 T b /2) = (N +1)T b sin 2 (nω T b /2) NT (nω T b /2) 2 = N +1 Sa 2 (nω N 2 T b /2) (23) n = 1, 2, C n C n = N +1 N 2 Sa 2 (nω T b /2) (24). Sa(x) =(sinx)/x,. n = C = 1 T T /2 T /2 R pp (τ)dτ 18

., (15), T /2 = 2 Tb (1 N +1 τ )dτ 2 dτ T N T b NT T b = 2 (T b N +1 Tb 2 ) 2 ( T T N 2T b NT 2 T b) = 2 N N +1 1 N 2 N + 2 N 2 = 1 N 2 (25) R pp (τ) = 1 N + N +1 2 N 2 n= n Sa 2 (nω T b /2)e jnω τ (26) F (ω) 2 = F[ = = 2π n= n= n= C n e jnω τ ] C n F[e jnω τ ] C n δ(ω nω ) = 2π N +1 δ(ω)+2π N 2 N 2 n= n. 12, M. Sa 2 (nω T b /2)δ(ω nω ) (27) 4 4.1,,,.,,. 13.,, PN,, ±T c /2 (T c : )., (Delay Lock Loop ;DLL). 4.2, PN,... 19

F (ω) 2 2π/T b 2π/T b ω 2π/T 12: > < PN DLL 13: 2

,.., PN.,. 4.3, (delay lock loop : DLL). DLL, (voltage controlled oscillator : VCO), PN. 14. DLL,,,,. 14 DLL. 2, PN (early) (late) PN,, 2. ( ) τ,,. R pp (τ) = 1 T p(t)p(t + τ)dt (28) T p(t) t, p(t + τ) τ. T, p(t) 1., 2. 1,,. M, 1, 1 1 T. 15 (1), (2). T c, (< t c ). 2 15 (3). S. T, T. DC. DC. LPF, DC., DC 15 (3) τ, (V ). S, DC. DC VCO. VCO PN.,. 21

Late Code (1) (2) + (3) F(s) Early Code PN VCO 14: DLL 1 -T c -T c - (1) Early Code (2) Late Code T c 1 T c 1 t -T c T c t -1 t (3) S 15: S 22

K frequency 1,2,...,K: Channel time FDMA 1 2 TDMA FDMA: frequency-division multiple access ( ) TDMA: time-division multiple access ( ) CDMA: code-division multiple access ( ) K 2 1 CDMA frequency power code K code 2 code 1 frequency 16: Comparison of multiple access schemes. 5 [1] pp.165-167, 1988 [2],,, ( ), pp.7-9, ISBN 488552153X, 1998. [3] John Proakis, Digital Communications, 4th edition, McGrow Hill, ISBN 72321113, 2. [4] B.Sklar: Digital Communications, Prentice-Hall, p.29, p.158, pp744 745 (1988). [5] W.W.Peterson, Error Correcting Codes,M.I.T. Press, Cambridge, Mass., pp.251 254, 1965. [6],, :,, IN83-67, pp.25-3(1983-11). [7] :,, pp.3-24(1987). [8] :,, vol.15, No.1, pp.45-48(1985-1). 23

[9] :, 3. [1] : SS, 3. [11] :, 5. 24

C (1) DS,. PN PN = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1} ( 15 M ). (2) M. (3) (2) M. (4) M, DFT( FFT )., (27)., SS C. ((4) DFT ),. 25