SN 2007bi Yoshida, T. & Umeda, H., MNRAS 412, L78-L82 (2011)

Similar documents

超新星残骸Cassiopeia a と 非球対称爆発

総研大恒星進化概要.dvi

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

八代高校同窓会 関東支部

23 1 Section ( ) ( ) ( 46 ) , 238( 235,238 U) 232( 232 Th) 40( 40 K, % ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4


V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

( ) ,

GJG160842_O.QXD

untitled

36 th IChO : - 3 ( ) , G O O D L U C K final 1

untitled

技能継承に関するアンケートの結果概要

ρ ( ) sgv + ρwgv γ sv + γ wv γ s + γ w e e γ ρ g s s γ s ( ) + γ w( ) Vs + V Vs + V + e + e + e γ γ sa γ e e n( ) + e γ γ s ( n) + γ wn γ s, γ w γ γ +

Microsoft Word - 章末問題

Contents 1. Ia? 2. Ia 3. WISH Ia cosmology 4. WISH Ia + rate 5.

- 2 -


PR映画-1

II III I ~ 2 ~

中堅中小企業向け秘密保持マニュアル



1 (1) (2)

untitled

I ( ) ( ) (1) C z = a ρ. f(z) dz = C = = (z a) n dz C n= p 2π (ρe iθ ) n ρie iθ dθ 0 n= p { 2πiA 1 n = 1 0 n 1 (2) C f(z) n.. n f(z)dz = 2πi Re

Akira MIZUTA(KEK) AM, Nagataki, Aoi (ApJ, , 2011) AM + (in prep)

A 99% MS-Free Presentation

4‐E ) キュリー温度を利用した消磁:熱消磁

富山講義1601.ppt


19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional

BH BH BH BH Typeset by FoilTEX 2

2.1: n = N/V ( ) k F = ( 3π 2 N ) 1/3 = ( 3π 2 n ) 1/3 V (2.5) [ ] a = h2 2m k2 F h2 2ma (1 27 ) (1 8 ) erg, (2.6) /k B 1 11 / K

B

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100


6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

29


PowerPoint Presentation

CRA3689A

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

22 21

03J_sources.key

Microsoft PowerPoint - TominagaHokudai.ppt [互換モード]


空気の屈折率変調を光学的に検出する超指向性マイクロホン

Microsoft Word - 11問題表紙(選択).docx

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

Z: Q: R: C:

2 Zn Zn + MnO 2 () 2 O 2 2 H2 O + O 2 O 2 MnO 2 2 KClO 3 2 KCl + 3 O 2 O 3 or 3 O 2 2 O 3 N 2 () NH 4 NO 2 2 O + N 2 ( ) MnO HCl Mn O + CaCl(ClO

genron-3

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)


PowerPoint プレゼンテーション

1 r 8, , 238 N, Z 28, 50, 82, 126 r cm cm 3 1,000 1 s s slow s 8 s 2 2 s s * 1 * 2 * 3 1 N 50, 82, s * r

ito.dvi

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C602E646F63>

ニュートリノ駆動型 超新星爆発シミュレーション 3Dと2Dの比較

2/24

Formation process of regular satellites on the circumplanetary disk Hidetaka Okada Department of Earth Sciences, Undergraduate school of Scie


cm H.11.3 P

all.dvi

日本目録規則1987年版改訂2版第2章図書改定案

茨歯会報1403

茨歯会報1401

c 2009 i



Yuzo Nakamura, Kagoshima Univ., Dept Mech Engr. perfect crystal imperfect crystal point defect vacancy self-interstitial atom substitutional impurity

m d2 x = kx αẋ α > 0 (3.5 dt2 ( de dt = d dt ( 1 2 mẋ kx2 = mẍẋ + kxẋ = (mẍ + kxẋ = αẋẋ = αẋ 2 < 0 (3.6 Joule Joule 1843 Joule ( A B (> A ( 3-2

untitled

85 4

I

MF 型

JAJP

茨歯会報1605

茨歯会報1604

Contents 1. Ia cosmology 2. Ia / rate 3.

服用者向け_資料28_0623

CAT. No. 1154b 2008 C-9

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

-2-

放射線化学, 92, 39 (2011)



数学の基礎訓練I

2 1 1 α = a + bi(a, b R) α (conjugate) α = a bi α (absolute value) α = a 2 + b 2 α (norm) N(α) = a 2 + b 2 = αα = α 2 α (spure) (trace) 1 1. a R aα =

Outline I. Introduction: II. Pr 2 Ir 2 O 7 Like-charge attraction III.

Ando_JournalClub_160708

QMI_10.dvi

2007年08月号 022416/0812 会告

ε

茨歯会報1402

茨歯会報1502

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

Transcription:

SN 2007bi Yoshida, T. & Umeda, H., MNRAS 412, L78-L82 (2011)

SN 2007bi SN 2007bi (Gal-Yam et al. 2009) 2007 4 6.5 Type Ic subluminous dwarf galaxy Z ~ (0.2-0.4) Z (Young et al. 2010) 36 (Young et al. 2010)

SN2007bi SN2007bi Fλ (10-18 erg s -1 cm -2 A -1 ) Rest Wavelength (A ) (Gal-Yam et al. 2009) (Filippenko 1997) SN 2007bi Type Ic CO H,He Ia II Ic Ib

type Type Ia MS WD Type II H He O Si Fe Type Ib O He Si Fe Type Ic O Si Fe or binary

超新星typeと爆発機構 核燃焼型 Type Ia 未観測 Pair instability超新星 (II,Ib,Ic?) H MS He O WD 重力崩壊型 Type II H He O Fe Type Ib O Type Ic He O O Fe Si Fe Si Si 巨大質量 or binary 吉田敬 CPSセミナー 6月1日神戸大学CPS

SN 2007bi SN 2007bi (Gal-Yam et al. 2009) 2007 4 6.5 MR,max = -21.3 mag Absolute MR (mag) SN 2007bi SN 1987A c.f. M( 56 Ni) = 0.07 M Julian date - 2,450,000 (SN 1987A) (Gal-Yam et al. 2009) 56 Ni M( 56 Ni) ~ 3-10 M

SN 2007bi Absolute MR (mag) (Gal-Yam et al. 2009) (Moriya et al. 2010) Pair-instability SN (PISN) Core collapse SN (CCSN) Mf ~ 95-105 M Mf ~ 43 M Ni M( 56 Ni) ~ 3-10 M

Pair-Instability or Core Collapse? SN 2007bi Type Ic M( 56 Ni) ~ 3-10 M He Pair-instability (PISN) Mf ~ 95-105 M (CCSN) Mf ~ 43 M

SN 2007bi 100 M < MMS < 500 M, Z0 = 0.2 Z MMS Mf CO core MCO He M(He) SN 2007bi PISN CCSN

MMS > 100 M Saio, Nomoto, and Kato 1988 P Mr = GMr 4πr 4 r Mr = 1 4πr 2 ρ ln T ln P = min( ad, rad) Lr Mr = εnucl - ε ν + εgrav 100 M < MMS < 500 M, Z0 = 0.2 Z, n, H~Br(282 ) Opacity OPAL 1995, etc.

MMS > 100 M OB Vink et al. (2001); Z0.64-0.69 Radiation-driven wind de Jager et al. (1988) Z 0.64 Wolf-Rayet (WR) Nugis and Lamers (2000; NL00) wind

MMS > 100 M Case A Case B Case C WR 1.5 (Crowther et al. 2007) 1/2 (Hirschi 2008) (Vink et al. 2001; Pulse et al. 2008)

MMS > 100 M WNL H H He He+H He (Xs(H) < 0.4) Wolf-Rayet WO O,C WC O,C WNE He O,C (Ns(He) < Ns(C+O)) (Ns(N) < Ns(C), Ns(He) > Ns(C+O)) (Xs(H) < 10-5, Ns(N) > Ns(C))

Mass Fraction 10 0 10-1 10-2 10-3 10-4 10-5 10 0 10-1 10-2 WNL 1H 4He 12C Total mass WNLWC WO WNE 1H 4He 12C 100 16O 90 80 70 60 50 40 140 16O 120 100 Mtotal / M Case A MMS = 100 M tms-c = 3.19 Myr WNL WNE WC WO 10-3 80 10-4 10-5 10 6 Time (Year) 10 4 Total mass 10 2 10 0 10-2 60 40 MMS = 140 M tms-c = 2.86 Myr

Mass Fraction at Center 10 0 10-1 10-2 10-3 10-4 10-5 10 0 10-1 10-2 10-3 10-4 10-5 WNLWC WO 1H 4He 12C WNLWC WO 1H 4He 12C 10 6 Time (Year) 10 4 Total mass Total mass 10 2 16O 16O 10 0 10-2 200 180 160 140 120 100 80 60 40 300 250 200 150 100 50 Mtotal / M Case A MMS = 200 M tms-c = 2.61 Myr MMS = 300 M tms-c = 2.51 Myr WNL WNE WC WO

Mass Fraction He MMS = 200 M M = 91.9 M WNL 10 0 10-1 10-2 10-3 10-4 4He 12C 16O 1H 14N 20Ne Mass Fraction 0 20 40 60 80 100 M MS / M MMS = 200 M M = 67.8 M WO 10 0 10-1 10-2 10-3 10-4 12C 4He 16O 20Ne 0 10 20 30 40 50 60 70 80 M MS / M

Mass Fraction MMS = 200 M MMS = 300 M Mf = 59.0 M WO Mf = 71.6 M WO 10 0 10-1 10-2 10-3 10-4 12C 16O 4He 20Ne Mass Fraction 10 0 10-1 10-2 10-3 10-4 16O 12C 20Ne 4He 10-5 0 20 40 60 80 100 M MS / M 10-5 0 20 40 60 80 100 M MS / M

Mass Fraction MMS = 100 M MMS = 140 M Mf = 40.8 M WNE Mf = 53.1 M WO 10 0 10-1 10-2 10-3 10-4 16O 4He 20Ne 12C 14N Mass Fraction 10 0 10-1 10-2 10-3 10-4 16O 20Ne 12C 4He 10-5 0 10 20 30 40 50 60 M MS / M 10-5 0 10 20 30 40 50 60 M MS / M

M f / M MMS Mf 160 120 80 40 0 Case A Case C Case A Case B 100 200 300 400 500 M MS / M WN WC (He-rich) WC WO Mf ~ 41-103 M : WO MMS Mf

CO core MMS CO core MCO 150 M CO / M 100 50 0 Case C Case A Case B 100 200 300 400 500 M MS / M WN WC (He-rich) WC WO SN 2007bi

Pair-Instability 56 Ni Pair-Instability (Heger & Woosley 2002) III He Z0=0 M( 56 Ni) / M 10 1 10 0 10-1 10-2 60 70 80 90 100 110 120 130 M CO / M SN 2007bi 56 Ni (Gal-Yam et al. 2009) PISN MCO ~ 95-105 M Umeda & Nomoto (2002)

56 Ni III (Umeda & Nomoto 2008) 56 Ni M( 56 Ni) / M 10 8 E51 = 30 6 E51 = 20 4 2 E51 = 10 E51 = 1 0 0 10 20 30 40 50 M CO / M E51 = Eexp/(10 51 ergs) SN 2007bi 56 Ni (Gal-Yam et al. 2009) MCO > 35 M ~ MCO > 60 M PISN (Heger & Woosley 2002) CCSN: MCO ~ 35-60 M

CO core M CO / M MMS CO core MCO 150 100 50 0 PISN Case B Case C Case A CCSN 100 200 300 400 500 PISN CCSN PISN CCSN M MS / M MMS ~ 515-575 M (MMS ~ 310-350 M for Case C) MMS ~ 100-280 M (MMS ~ 110-500 M for Case B) (MMS ~ 100-170 M for Case C) M( 56 Ni) = 3-10 M (Gal-Yam et al. 2009) MCO ~ 95-105 M MCO ~ 35-60 M (Umeda & Nomoto 2002, 2008; Heger & Woosley 2002)

He Type Ic He He?

He Type Ic He He? He 56 Ni 56 Co γ He I line (5876A ) (Lucy 1991) He 56 Ni (e.g. Woosley & Eastman 1997) Type Ic He

He M(He) / M 8 6 4 2 0 Z0 = 0.004 Z0 = 0.008 Z0 = 0.02 20 40 60 80 100 120 M MS / M Wellstein & Langer (1999); Yoon et al. (2010) WN WC He Georgy et al. (2009) type : : WN : WC,WO binary Type Ib, Ic M(He) < 0.5 M Type Ic ( > 0.98 M Ib) M(He) < 0.5-1.5 M Type Ic WC,WO M(He) < 0.6 M M(He) < 0.6-1.5 M Type Ic

He M(He) / M He SN 2007bi 3.5 3 2.5 2 1.5 1 0.5 0 CCSN 100 200 300 400 500 M MS / M Case C Case A Case B PISN M(He) < 0.5-1.5 M Ic M(He) < 0.5 M SN 2007bi M(He) < 1.5 M CO core SN 2007bi WC, WO Ic

rpi/cc : SN 2007bi PISN, CCSN Salpeter IMF ( MMS -2.35 ) Case PISN (M ) CCSN (M ) rpi/cc A 515-575 110-280 0.024 B - 110-500 0 C 310-350 135-170 0.19 M(He) < 1.5 M XS(He) < 0.5 *M(He) < 0.5 M PISN IMF SN2007bi

100 M < MMS < 500 M, Z0 = 0.2 Z PISN, CCSN Type Ic SN 2007bi MMS Case PISN (M ) CCSN (M ) rpi/cc A B C M(He) < 0.5 M ( - ) 515-575 ( - ) - ( - ) 310-350 M(He) < 1.5 M XS(He) < 0.5 (110-120) 110-280 0.024 (110-115) 110-500 0 ( - ) 135-170 0.19 SN2007bi (CCSN)