* 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) *

Similar documents
多体問題

0406_total.pdf

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

総研大恒星進化概要.dvi

反D中間子と核子のエキゾチックな 束縛状態と散乱状態の解析

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

TOP URL 1

4/15 No.

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

02-量子力学の復習

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x

19 /

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論


DVIOUT-fujin

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

1: Sheldon L. Glashow (Ouroboros) [1] 1 v(r) u(r, r ) ( e 2 / r r ) H 2 [2] H = ( dr ψ σ + (r) 1 2 ) σ 2m r 2 + v(r) µ ψ σ (r) + 1 dr dr ψ σ + (r)ψ +

遍歴電子磁性とスピン揺らぎ理論 - 京都大学大学院理学研究科 集中講義

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

( ) ) AGD 2) 7) 1

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

: , 2.0, 3.0, 2.0, (%) ( 2.

DaisukeSatow.key

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1



QMI_09.dvi

QMI_10.dvi

H.Haken Synergetics 2nd (1978)

Aharonov-Bohm(AB) S 0 1/ 2 1/ 2 S t = 1/ 2 1/2 1/2 1/, (12.1) 2 1/2 1/2 *1 AB ( ) 0 e iθ AB S AB = e iθ, AB 0 θ 2π ϕ = e ϕ (ϕ ) ϕ

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

all.dvi

30

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

note4.dvi

量子力学 問題

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

Hilbert, von Neuman [1, p.86] kt 2 1 [1, 2] 2 2

2000年度『数学展望 I』講義録

u = u(t, x 1,..., x d ) : R R d C λ i = 1 := x 2 1 x 2 d d Euclid Laplace Schrödinger N := {1, 2, 3,... } Z := {..., 3, 2, 1,, 1, 2, 3

TOP URL 1

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

ʪ¼Á¤Î¥È¥Ý¥í¥¸¥«¥ë¸½¾Ý (2016ǯ¥Î¡¼¥Ù¥ë¾Þ¤Ë´ØÏ¢¤·¤Æ)

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

Onsager SOLUTION OF THE EIGENWERT PROBLEM (O-29) V = e H A e H B λ max Z 2 Onsager (O-77) (O-82) (O-83) Kramers-Wannier 1 1 Ons

OHO.dvi

A 99% MS-Free Presentation

Black-Scholes [1] Nelson [2] Schrödinger 1 Black Scholes [1] Black-Scholes Nelson [2][3][4] Schrödinger Nelson Parisi Wu [5] Nelson Parisi-W

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2

³ÎΨÏÀ

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

TOP URL 1

1 2 LDA Local Density Approximation 2 LDA 1 LDA LDA N N N H = N [ 2 j + V ion (r j ) ] + 1 e 2 2 r j r k j j k (3) V ion V ion (r) = I Z I e 2 r

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1)

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論

基礎数学I


II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

最新耐震構造解析 ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 3 版 1 刷発行時のものです.

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C602E646F63>

構造と連続体の力学基礎

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

d (i) (ii) 1 Georges[2] Maier [3] [1] ω = 0 1

Z: Q: R: C: sin 6 5 ζ a, b

液晶の物理1:連続体理論(弾性,粘性)

eto-vol1.dvi

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

QMI13a.dvi

( ) ,

201711grade1ouyou.pdf

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

TOP URL 1

main.dvi


2016 ǯ¥Î¡¼¥Ù¥ëʪÍý³Ø¾Þ²òÀ⥻¥ß¥Ê¡¼ Kosterlitz-Thouless ž°Ü¤È Haldane ͽÁÛ

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

untitled

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i


β

Transcription:

* 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) *1 2004 1

1 ( ) ( ) 1.1 140 MeV 1.2 ( ) ( ) 1.3 2.6 10 8 s 7.6 10 17 s? Λ 2.5 10 10 s 6 10 24 s

1.4 ( m ω) ψ(x) = f(x) exp( x 2 /2b 2 ) f(x) b 2 /mω (oscillator length) H(x/b) f(x) H(ξ) E = (n + 1/2) ω 1.5 Ψ(r) = ψ nx (x)ψ ny (y)ψ nz (z) (ω x = ω y = ω z ) 1.6 a (H = T +V ) n n T n = n V n n = (n x, n y, n z ) b n r 2 n c N = n x + n y + n z N max 2 A r 2 = A k=1 r2 k 1.7 e r2 /2b 2 1.8 Schrödinger N = 2n + l Laguerre R nl (r) r l L l+1/2 n ((r/b) 2 ) s, p, s + d, p + f,

2 0 ˆV ext ( (response) ) (single-particle excitation) (collective excitation) ( ) (elementary excitation) (coherent) 0 n Ω n (random-phase approximation) (normal mode of excitation) n = Ω n 0. (1) H = h sp + V res = ɛ µ c µc µ + 1 4 µ V µνρσ c µc νc σ c ρ. (2) c µ µ ( ) h sp (Hartree-Fock ) (shell model) V res A µνρσ

A 0 = c 1 c 2 c A 0, (3) 0 1-1 (1p1h) Ω ph = c pc h, (4) 2p2h Ω pp hh = c pc p c h c h, (5) np-nh n n 1p1h ( ph = Ω ph 0 ) 1p1h (ɛ = ɛ p ɛ h = const.) 1p1h (v 0 ) h sp ph = ɛ ph, (6) p h V res ph = v 0, (7) (3) 1p1h { ph } E = ɛ + (N ph 1)v 0 (8) ɛ v 0 N ph 1p1h (8) col ph col = ph C ph ph, (9) C ph 1/N ph N ph C ph v 0 ɛ(1p1h ) v 0 ( ) ( )

Ω col = ph C ph Ω ph (10) 1p1h (9) 1p1h N ph C ph 1p1h (Ω col )2 0 1/N ph 2.1 1p1h { ph } (2) (6) (7) 2 1 Q V res = κq Q, (11) (separable interaction) 1 1p1h ph Q 0 = q 0 p h Q ph = p h p h Q ph = 0 v 0 = κq0 2 col Q 0 2 = N ph q0, 2 (12) 1p1h ph Q 0 2 N ph 1 Q

1p1h Tamm-Dancoff 2.2 (12) Tamm-Dancoff 1p1h 0 (3) (ground-state correlation) Tamm-Dancoff (energy weighted sum rule) (self-consistent) (RPA) Tamm-Dancoff RPA 3 (8) v 0 ( ) N ph v 0 (11) κ (RPA) Ω col 0 0 Ω col 0 (condensation) (2) V res h sp V res h sp RPA

( ) Hartree-Fock(HF) HF 2 + 1p1h 2 + 2 + ( ) 0 Q 20 = d 3 r ˆψ (r)r 2 Y 20 ˆψ(r) = µ r 2 Y 20 ν c µc ν (13) µν q = 0 Q 20 0 = 0 (14) ( 1(b)) q (order parameter) HF Hartree-Fock-Bogoliubov(HFB) HF+BCS ( ) Bohr Mottelson Pairing-plus-quadrupole interaction HF HF

(a) V(q) (b) V(q) q q 1 q ( ). (a). q = 0. (b). q 0. Brückner-Hartree-Fock Ψ V Φ G V Ψ = G Φ (15) G HF Ψ Φ ( ) { Φ } Ψ Brückner-Hartree-Fock

Negele Skyrme-Hartree-Fock (Ring-Schuck ) ( ) ( Skyrme force Gogny force ) Hartree-Fock(-Bogoliubov) Strutinsky shell correction Nilsson Woods-Saxon HF ( Ring-Schuck ) Ẽ E sh E = Ẽ + E sh (16) Ẽ E sh (16) Ẽ E sh Ẽ E sh (shell structure) (shell energy) E sh

shell correction 0 0 h sp -Goldstone ( ) - 0 +, 2 +, 4 +, 180 (R) K = 0 ( Bohr-Mottelson ) 3.1 V (x, y, z) = Cr 2 + Dr 4 (C, D > 0) a m (r, θ, φ) V (r = r 0 ) (2 ) r = r 0 b x, y z V (x, y, z) x = y = 0 z = r 0 (x, y, z) = (0, 0, r 0 ) m (x, y, z r 0 ) 2 Schrödinger Morinaga Gugelot ( γ ) Coulomb

(16) Ẽ E sh 60 70 2:1 (superdeformed state) 90 3:1 hyperdeformed band ( ) ( 2000 ) 3.2 152 Dy I = 68 J 85 2 MeV 1 4 (13) P = d 3 r ˆψ (r) ˆψ (r) (J π = 0 + p-p h-h ) ( ) BCS Ψ = Φ 0 P Φ 0 = 0 (17) ( 1 Ψ ) B = µ C µc µc µ

(gauge angle) ( ) ( ) Ψ = /g g BCS BCS ϕ = µ>0(u µ + e iϕ v µ c µc µ) 0 (18) (u 2 µ + v 2 µ = 1) φ(r) ( ) ( ) sin kf r r φ(r) = BCS ψ (r)ψ (0) BCS K 0 k F r ξ 0 π (K 0 (x) 2 Bessel ) ξ 0 = v F /π (coherence length) k F = 1.35 fm 1 = 1 MeV ξ 0 17 fm (mesoscopic system) 4.1 BCS (18) u µ, v µ ϕ BCS ϕ = exp(iϕ ˆN/2) BCS ϕ=0 (19) ˆN/2 4.2 Bogoliubov a µ = u µ c µ v µ c µ, a µ = u µ c µ + v µ c µ, (quasi-particle) {a µ, a ν } = 0, {a µ, a ν} = δ µν, BCS ϕ BCS ϕ Π k a k 0,

a µ BCS = 0 BCS (quasi-particle vacuum) HF BCS (u p = v h = 1, u h = v p = 0) BCS HF 1p1h Ω ph = c pc h 2 Ω µν = a µa ν H = k E ka k a k E k 2 (QRPA) QRPA ( -Goldstone ) 0 ( = 0) 1971 backbending Garrett backbending ω bb j ω bb 1.67 / j (20) ( ) ω de/di Inglis ( x ) H H ω rot J x (21)

H ω rot (21) H = h sp + V pair HFB 2 H routhian ω rot = 0 1 MeV 1 MeV 2 2 2 (ω 1 = ω bb ) 2 j + (j 1) ω rot (j + (j 1)) 2 2 backbending ω bb ω bb (j 1/2) (20) ω rot ω bb ω bb gapless superconductivity (dynamical pairing correlation) BCS 1 (22)

2 routhian 164 Er ω 1 ω bb ( ) ( ) Ψ 1 (pairing vibration) 5

QRPA QRPA

6 1. P. Ring and P. Schuck, The Nuclear Many-Body Problem, Springer-Verlag (1980). 2. A. Bohr and B.R. Mottelson, Nuclear Structure Vol.1 & 2, World Scientific (1998). 3. J.-P. Blaizot and G. Ripka, Quantum Theory of Finite Systems, MIT Press (1986). 4. (2002). 5. (1997). 6. (1978). 7. 2000 http://www.nt.phys.kyushu-u.ac.jp/shimizu/download/natsuk.ps.gz 1 4 5 8. G. Do Dang, A. Klein, N.R. Walet, Phys. Rep. 335, 93 (2000).