卒業研究報告 題 目 Hamiltonian 指導教員 山本哲也教授 報告者 汐月康則 平成 14 年 2 月 5 日 1

Similar documents
高知工科大学電子 光システム工学科

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

Note.tex 2008/09/19( )

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

1 1 u m (t) u m () exp [ (cπm + (πm κ)t (5). u m (), U(x, ) f(x) m,, (4) U(x, t) Re u k () u m () [ u k () exp(πkx), u k () exp(πkx). f(x) exp[ πmxdx

QMI_10.dvi

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

untitled

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

TOP URL 1

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

I ( ) 2019

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

30

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H


. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

4/15 No.

02-量子力学の復習

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4


1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

( ) ,


医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

IA

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

τ τ

量子力学 問題

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence


H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =

Gmech08.dvi

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

Radiation from moving charges#1 Liénard-Wiechert potential Yuji Chinone 1 Maxwell Maxwell MKS E (x, t) + B (x, t) t = 0 (1) B (x, t) = 0 (2) B (x, t)

PDF

19 /

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz

日本内科学会雑誌第102巻第4号

eto-vol1.dvi


I

第1章 微分方程式と近似解法

Mott散乱によるParity対称性の破れを検証


t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

基礎数学I

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j


1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

pdf

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

陦ィ邏・2

Gmech08.dvi

数学の基礎訓練I

Untitled

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d )


( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

液晶の物理1:連続体理論(弾性,粘性)

( ) ( )

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

Ł\”ƒ-2005

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

第90回日本感染症学会学術講演会抄録(I)

CH, CH2, CH3êLèkä¥éÛó¶.pdf

l µ l µ l 0 (1, x r, y r, z r ) 1 r (1, x r, y r, z r ) l µ g µν η µν 2ml µ l ν 1 2m r 2mx r 2 2my r 2 2mz r 2 2mx r 2 1 2mx2 2mxy 2mxz 2my r 2mz 2 r

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP

5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E

2011de.dvi

ssp2_fixed.dvi

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

08-Note2-web

QMII_10.dvi

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

吸収分光.PDF

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

振動と波動

B ver B

Transcription:

卒業研究報告 題 目 Hamiltonian 指導教員 山本哲也教授 報告者 汐月康則 平成 4 年 月 5 日

.....4.....4......6.. 6.. 6....4. 8.5. 9.6....7... 3..... 3.... 3.... 3.3...4 3.4...5 3.5...5 3.5....6 3.5.... 3.5...... 3.5...... 3 3.5.3..4 3.5.4..5

4......6 4.....6 4...8 4.3..3 5.. 3 6..33 7.. 34 8....35 3

... Newton Newton Newton Newton Newton 4

.. 3. Schrodinger 3... 5

. 5 37 78 5........... 9 9 8 W 9 95 3 6

95 97 9 95 965 97 7 nm nm.3. C = O C = C C = O CH CH C = O C = O 7

C = O C = O H O.4..5..5. 8

.5. 9

.5..5. hν.55, hν.6..7..5. hν hν 3

3. 3. 3.. + Ze 3.. m m m Hg m eg H e qq' 4πε r

ε Α m 3.. 3.. 3..

3.. 3.3. 3

3.3. 3.3. 3.3. 3.4. M a M b M M r r a r a r b r b + 3.4... 3.4.. 3.4. 4

e H = M ava + M bvb + 4ε R a r b e e + mν + + 4 ε r 4 ε e e + mν + + 4 ε r 4 ε a r b e +, 4ε r 3.4.. 3.5., 3.5. 5

3.5. 3.5. 3.5. F = k ( R Re) = kx 3.5.. Hooke s lawforce constant m d R dt = k ( R Re) 3.5.. d R dt = d x dt m d dt x + kx = 3.5..3 x t ) = c sin ω t c cos ω t 3.5..4 ( + 6

ω = k m 3.5..5 3.5..5 ( ) ω = k m harmonicallyamplitude phase angle 3.5.3.5. d x m = k( x x R e ) 3.5..6 dt d x m = k( x x R e ) 3.5..7 dt 3.5. 7

x x > Re m m 3.5..6 3.5..7 m m d dt ( m x + m x ) = 3.5..8 center of mass coordinate X m x + m x = 3.5..9 M M = mx + m x M d X dt = 3.5.. 3.5.. 3.5. relative coordinate x = x x Re 3.5.. 3.5..6 m 3.5..7 m d dt x d x dt = k m ( x x l ) ( x x l ) k m 3.5.. 8

m + m = m + m m m = µ 3.5.. x = x x Re d x µ + kx = 3.5...3 dt reduced mass3.5..3 3.5..33.5..33.5..3 3.5. 3.5. ( ) ω = k µ x x 3.4.. H = M ava + M bvb H = µ V H = µ V + e + mν + + 4 ε R 4 ε ra 4 ε rb + m ν e + 4 ε r a e e + 4 ε r b e e + 4 ε r e + 4εr 3.5..4 3.5..4 9

3.5..5 3.5. 3.5.. Morse potential3.5.. V ( R) = D( e a( R Re) ) 3.5.. x = R Re V ( R) ax = D( e ) 3.5.. () 3.5..

3.5.. 3.5.. 3.5.. Re) ( ) ( ) ( = R a e D R V H pm J D 74. Re.93,, 7.6 9 = = = α ) ( ) ( ax e D R V =

{ } = dv ax ax V ( ) = = Da( e e ) dx x= x= 3.5..3 d V dx x= = ax ax { Da( αe e )} = Da x= 3.5..4 x = V ( x) = Dα x + k = Da 3.5..5 k( R Re) 3.5..

3.5.. 3.5.. k( R Re) / 3 dv d V d V V ( R) = V (Re) + 3 R dr R = Re! dr 3! dr 3 ( R Re ) + ( R Re ) + ( Re ) + R = Re R = Re 3.5..4 ( dv dr) R= Re dv dr // 3 3 d V dr ( d V dr ) R= Re ( ) R= Re V γ 6 3 ( x) = k( R Re) + ( R Re) + = 3 kx + γx + 6 3.5..5 3

3.5.3.34 3.5.3. Schro dinger 3.5.4 Η = µ V + kx 3.5.3 3.4 planck s constant 3.5.3. h 8π µ x + kx ψ = Eψ 3.5.3. E n = ( n + ) h ν 343.5.3. 4

ψ n ξ = N n exp( ) H n ( ξ ) 3.5.3.3 ν = k π µ 3.5.3.4 ( ξ ) H n n N 3.5.4 4 4.5.4. 34 3.5.4. 5

E E = hν 3.5.4. hν 4. 4. 3.5..5 Da 6

4.. 4.. 4.35.94 Α.74 Α 7

4.. 4.. 4.76.85 Α.74 Α 4..74 Α 4.. 4..4..4...994 8

4.. 4.. 9

4..(4..).99984 4.. 4.3 3.5.3. E n = ( n + ) h ν 34 E = hν 3.5.4. h = 6.63 34 ν k = 3.5.3.4 π µ k = Dα 3.5..5 m + m = m + m m m = 3.5.. µ = µ mm m + m m = m =.67 4 m 4 µ =.84 3

E E J ( ev ) 9.6 h ν Hz k µ D + D α Α m kj mol ( kcal ) = 4.9( kj ) ( H ) = 69.7( kj mol) = 7.( ev ) 9 ( ev ) =.6 ( J ) = 96.49( kj mol) = 3.6( kcal mol) ε = 8.85 C Jm E =.( ev ) E n =.4( ev ) E n 3

~ 4.3. 4.3. 5. 3

..4.4 6. 33

7. 34

8. 分光学への招待光が招く新しい計測技術尾崎幸洋 電子構造論による化学の探求田崎健三 量子化学波動方程式の理解井上晴夫 PHYSICAL CHEMISTRY Donald A.McQuarrie John D.Simon 量子物理学大野公一 記憶力すぐ効果のでるトレーニング保坂榮之助 35