ohp_06nov_tohoku.dvi

Similar documents
1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

数学演習:微分方程式

08-Note2-web

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

ver.1 / c /(13)

DVIOUT

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

2 1 x 1.1: v mg x (t) = v(t) mv (t) = mg 0 x(0) = x 0 v(0) = v 0 x(t) = x 0 + v 0 t 1 2 gt2 v(t) = v 0 gt t x = x 0 + v2 0 2g v2 2g 1.1 (x, v) θ

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

( ) ( )

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)


18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

,.,. 2, R 2, ( )., I R. c : I R 2, : (1) c C -, (2) t I, c (t) (0, 0). c(i). c (t)., c(t) = (x(t), y(t)) c (t) = (x (t), y (t)) : (1)


5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)


I y = f(x) a I a x I x = a + x 1 f(x) f(a) x a = f(a + x) f(a) x (11.1) x a x 0 f(x) f(a) f(a + x) f(a) lim = lim x a x a x 0 x (11.2) f(x) x

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

pdf

第1章 微分方程式と近似解法

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

LCR e ix LC AM m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x (k > 0) k x = x(t)

v_-3_+2_1.eps

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 -

meiji_resume_1.PDF

1 8, : 8.1 1, 2 z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = n i=1 a ii x 2 i + i<j 2a ij x i x j = ( x, A x), f =

1 X X A, B X = A B A B A B X 1.1 R R I I a, b(a < b) I a x b = x I 1.2 R A 1.3 X : (1)X (2)X X (3)X A, B X = A B A B = 1.4 f : X Y X Y ( ) A Y A Y A f

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(


°ÌÁê¿ô³ØII

r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t


Fubini

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

x ( ) x dx = ax

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a

2.2 ( y = y(x ( (x 0, y 0 y (x 0 (y 0 = y(x 0 y = y(x ( y (x 0 = F (x 0, y(x 0 = F (x 0, y 0 (x 0, y 0 ( (x 0, y 0 F (x 0, y 0 xy (x, y (, F (x, y ( (

m d2 x = kx αẋ α > 0 (3.5 dt2 ( de dt = d dt ( 1 2 mẋ kx2 = mẍẋ + kxẋ = (mẍ + kxẋ = αẋẋ = αẋ 2 < 0 (3.6 Joule Joule 1843 Joule ( A B (> A ( 3-2

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

() (, y) E(, y) () E(, y) (3) q ( ) () E(, y) = k q q (, y) () E(, y) = k r r (3).3 [.7 ] f y = f y () f(, y) = y () f(, y) = tan y y ( ) () f y = f y

29

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

TOP URL 1


1 nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

時間遅れをもつ常微分方程式の基礎理論入門 (マクロ経済動学の非線形数理)

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

日本内科学会雑誌第102巻第4号

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

Chap9.dvi

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1.

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

TOP URL 1

Note.tex 2008/09/19( )



III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

function2.pdf

201711grade1ouyou.pdf

³ÎΨÏÀ

B [ 0.1 ] x > 0 x 6= 1 f(x) µ 1 1 xn 1 + sin sin x 1 x 1 f(x) := lim. n x n (1) lim inf f(x) (2) lim sup f(x) x 1 0 x 1 0 (

: , 2.0, 3.0, 2.0, (%) ( 2.

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0,

2011de.dvi

I 1


i

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta

4 4 θ X θ P θ 4. 0, 405 P 0 X 405 X P 4. () 60 () 45 () 40 (4) 765 (5) 40 B 60 0 P = 90, = ( ) = X


N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y

dy + P (x)y = Q(x) (1) dx dy dx = P (x)y + Q(x) P (x), Q(x) dy y dx Q(x) 0 homogeneous dy dx = P (x)y 1 y dy = P (x) dx log y = P (x) dx + C y = C exp

TCSE4~5

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

1 y(t)m b k u(t) ẋ = [ 0 1 k m b m x + [ 0 1 m u, x = [ ẏ y (1) y b k m u

mugensho.dvi


φ s i = m j=1 f x j ξ j s i (1)? φ i = φ s i f j = f x j x ji = ξ j s i (1) φ 1 φ 2. φ n = m j=1 f jx j1 m j=1 f jx j2. m

1 1 x y = y(x) y, y,..., y (n) : n y F (x, y, y,..., y (n) ) = 0 n F (x, y, y ) = 0 1 y(x) y y = G(x, y) y, y y + p(x)y = q(x) 1 p(x) q(

Transcription:

2006 11 28

1. (1) ẋ = ax = x(t) =Ce at C C>0 a<0 x(t) (t ) a>0 x(t) 0(t )!! 1 0.8 0.6 0.4 0.2 2 4 6 8 10-0.2 (1) a =2 C =1

1. (1) τ>0 (2) ẋ(t) = ax(t τ) 4 2 2 4 6 8 10-2 -4 (2) a =2 τ =1!!

1. (2) A. (2) 0 <aτ< π 2 B. (2) aτ > 1 e (2) λ = ae λτ A B

1. A B 0 1/e ¼/2 a =

1. Mackey-Glass (3) ẋ(t) = ax(t) + bx(t τ) 1+x(t τ) m τ 0 1.2 0.8 1 0.6 0.4 0.2 50 100 150 200 (3) a =2 b =3.54 m =10 τ =1

2-1. DF by Pyragas (4) ẋ = f(x) f :Ω R n, Ω R n, f: C 1 (4) ω x (t) Pyragas DF (5) ẋ(t) =f(x(t)) K(x(t) x(t ω)) K x (t)

2-1. DF by Pyragas Rossler DF ẋ = dy ez (6) ẏ = hx + fy k(y(t) y(t τ)) ż = b + gz(x c) d = e = h = g = 1, f = b = 0.2, c = 5.7 Ex. 1: k =0( ) = chaotic Ex. 2: k =0.2, τ=5.9 = periodic (T 5.88867) Ex. 3: k =0.2, τ=11.75 = periodic (T 11.7536) Ex. 4: k =0.2, τ =17.5 = chaotic

2-1. DF by Pyragas (6) k =0 0 t 2000

2-1. DF by Pyragas (6) k =0.2, τ =5.9 0 t 1000

2-1. DF by Pyragas (6) k =0.2, τ =11.75 0 t 1000

2-1. DF by Pyragas (6) k =0.2, τ =17.5 0 t 2000

2-2. DF by Atay (7) ẍ + ω 2 x + εg(x, ẋ, ε) =0 ω, ε g : R 3 R C 2 ε g(0, 0,ε)=0 Atay DF (8) ẍ + ω 2 x + εg(x, ẋ, ε) =εf(x(t τ)) f : R R

2-2. DF by Atay van der Pol DF (9) ẍ + ε(x 2 1)ẋ + x = εkx(t τ) C. k sin τ<1 ε (9) x(t) =2 1 k sin τ cos (1 ε ) 2 k cos τ t + O(ε 2 )

2-2. DF by Atay A := 2 1 k sin τ k = 0 or sin τ =0= A =2 A 2 τ k sin τ 0 k = 1 (A/2)2 sin τ

2-2. DF by Atay 2 1 20 40 60 80 100-1 -2 (8) ε =0.1 k =0 2

2-2. DF by Atay 3 2 1 20 40 60 80 100-1 -2-3 (9) ε =0.1 τ =1 k = 1 (3/2)2 sin 1 3 1.48549

2-2. DF by Atay 1.5 1 0.5 20 40 60 80 100 120 140-0.5-1 -1.5 (9) ε =0.1 τ =1 k = 1 (1.5/2)2 sin 1 1.5 0.519923

2-3. Atay (10) ẍ +sinx =0 x A A T T =4 π 2 0 dψ 1 sin 2 (A/2) sin 2 ψ =2π ( 1+ 1 16 A2 + )

2-3. Atay DF (11) ẍ +sinx = 1 6 { k1 x(t τ)+k 2 x(t τ) 3} 1. k 2 sin τ > 0 k 1 k 2 < 0 (11) x(t) 4k 1 3k 2 cos ( 12k2 12k 2 k 1 ) t sin x x x 3 /6 ε = 1 6 Attay

1 A k 1 + 34 k 2A 2 «sin τ =0 2-3. Atay T 2π» 1+ 1 6 j 3 8 A2 + 1 2 k 1 + 34 k 2A 2 «A 2 = 4k 1 /(3k 2 ) 1 T 2π 1 k «1 12k 2 ff cos τ (1/6) 2 0.0277778

2-3. Atay 1.5 1 0.5 20 40 60 80 100-0.5-1 -1.5 (11) k 1 =6k 2 (2π 7)/π 1.36902 k 2 =1 t 1 = 390.199, t 2 = 397.297 = 7.09779 x(0) = 0.1, ẋ(0) = 0 x(0) = 0.2, ẋ(0) = 0 t = 390 7.0977897916112624 7.097789791656169 10

2-4. 2- by Sasaki & Miyazaki (12) ẋ(t) = αx(t) + f(x(t τ)) α f (13) ẋ(t) = αx(t) + 1 2 {f(x(t τ)) + f(x(t 1))} 2

2-4. 2- by Sasaki & Miyazaki f f(u) := { c u [0,b] 0 u (b, ) f u c 0 b u

2-4. 2- by Sasaki & Miyazaki Mackey-Glass (3) ẋ(t) = ax(t) + bx(t τ) 1+x(t τ) m f f(u) = bu, (b =3.54, m = 10) 1+um f u 2.5 2 1.5 1 0.5 0.5 1 1.5 2 u

2-4. 2- by Sasaki & Miyazaki D (Heiden & Mackey). γ := c/α > b (13) T 1 A 1 T 1 = 1 α log (γeα + b γ)(γe α b) b(γ b), A 1 = γ(1 e α ). 1.5 1.25 1 0.75 0.5 0.25 5 10 15 20 (13) α =1/2 b = c = τ =1

2-4. 2- by Sasaki & Miyazaki 1. 0 <τ<1 2b(e α 1)/(e α + e ατ 2) γ 2b(e α 1)/(e α e ατ ) (13) T 2 T 2 = 1 α α e (γ +e ατ + b γ)(γ eα +e ατ b) 2 2 log, b(γ b) α log 2 A 2 A 2 = γ(1 e ατ ).

2-4. 2- by Sasaki & Miyazaki C 1 τ <1 T 1 = 1 α log (γeα + b γ)(γe α b) b(γ b) T 2 = 1 e (γ α +e ατ 2 + b γ)(γ eα +e ατ 2 b) log α b(γ b) A 1 = γ(1 e α ), A 2 = γ(1 e ατ ). T 1 >T 2, A 1 >A 2 2 =?

References [1] Atay, F. M., Delayed-feedback control of oscillations in non-linear planar systems, Int. J. Control, (2002), 75, 297 304. [2] Pyragas, K., Continuous control of chaos by self-controlling feedback, Phys. Lett. A, 170 (1992), 421 428.