main.dvi

Similar documents
main.dvi

FDTD(Finite Difference Time Domain) Maxwell FDTD FDTD FDTD (FFT) FDTD CP(Contour-Path)-FDTD i

U.C. Berkeley SPICE Simulation Program with Integrated Circuit Emphasis 1) SPICE SPICE netli


DC-DC Control Circuit for Single Inductor Dual Output DC-DC Converter with Charge Pump (AKM AKM Kenji TAKAHASHI Hajime YOKOO Shunsuke MIWA Hiroyuki IW

UWB a) Accuracy of Relative Distance Measurement with Ultra Wideband System Yuichiro SHIMIZU a) and Yukitoshi SANADA (Ultra Wideband; UWB) UWB GHz DLL

P361

2005 1

Microsoft PowerPoint - 山形大高野send ppt [互換モード]

Doctor Thesis Template

デジタルICの電源ノイズ対策・デカップリング


untitled

untitled

L L L L C C C C (a) (b) (c) 4.4 (a) (b) (a) RG59/U 6.2mm ( ) 73Ω web page (c) 4 4 dx 4 J V dx dj Ydx Zdx dv Z,Y dv = JZdx, dj = VYdx (4.8) d 2 J dx 2

5b_08.dvi

JIS Z803: (substitution method) 3 LCR LCR GPIB

1

1 7 ω ω ω 7.1 0, ( ) Q, 7.2 ( Q ) 7.1 ω Z = R +jx Z 1/ Z 7.2 ω 7.2 Abs. admittance (x10-3 S) RLC Series Circuit Y R = 20 Ω L = 100

EQUIVALENT TRANSFORMATION TECHNIQUE FOR ISLANDING DETECTION METHODS OF SYNCHRONOUS GENERATOR -REACTIVE POWER PERTURBATION METHODS USING AVR OR SVC- Ju

Unidirectional Measurement Current-Shunt Monitor with Dual Comparators (Rev. B

LD

地中レーダによる地下計測

uPC2711TB,uPC2712TB DS

ohpr.dvi

xx/xx Vol. Jxx A No. xx 1 Fig. 1 PAL(Panoramic Annular Lens) PAL(Panoramic Annular Lens) PAL (2) PAL PAL 2 PAL 3 2 PAL 1 PAL 3 PAL PAL 2. 1 PAL

1

プリント

ISO & ISO の概要

[FX11]シリーズカタログ

AN8934FA

ゼロからはじめる電磁界シミュレーション 高周波回路の動作を理解する4つのステップ The Beginner s Electromagnetic Simulations Four Steps for Understanding the Behavior of High-Frequency Circui

LMC6022 Low Power CMOS Dual Operational Amplifier (jp)

main.dvi

Triple 2:1 High-Speed Video Multiplexer (Rev. C

uPC2745TB,uPC2746TB DS

B1 Ver ( ), SPICE.,,,,. * : student : jikken. [ ] ( TarouOsaka). (, ) 1 SPICE ( SPICE. *1 OrCAD

untitled

LM358

GD152

OPA277/2277/4277 (2000.1)

untitled

JFE.dvi

DS90LV011A 3V LVDS 1 回路入り高速差動出力ドライバ

DS90LV V or 5V LVDS Driver/Receiver (jp)


uPC2709T DS

AD_Vol42_No1_J1

Distributeur : JBG-METAFIX

スライド 1

mbed祭りMar2016_プルアップ.key

uPC2745TB,uPC2746TB DS

A Study of Adaptive Array Implimentation for mobile comunication in cellular system GD133

DS90LV047A

16-Bit, Serial Input Multiplying Digital-to-Analog Converter (Rev. B

( ) : 1997

Input image Initialize variables Loop for period of oscillation Update height map Make shade image Change property of image Output image Change time L

音響問題における差分法を用いたインパルス応答解析予測手法の検討 (非線形波動現象の数理と応用)

スライド 1

A Study of Small Built-in Antenna for Hand held Terminal

LM2940

2007/8 Vol. J90 D No. 8 Stauffer [7] 2 2 I 1 I 2 2 (I 1(x),I 2(x)) 2 [13] I 2 = CI 1 (C >0) (I 1,I 2) (I 1,I 2) Field Monitoring Server

pc725v0nszxf_j

Quantitative Relationship between SAR and Temperature Rise inside Eyeball in a Realistic Human Head Model for 1.5 GHz-Microwave Exposure Kiyofumi Taka

LAN Micro AVS LAN i

WMN Wi-Fi MBCR i

2830 IEEE802.11n LAN RSSI throughput 4) 5) IEEE802.11b/g/a LAN LAN IEEE802.11n OFDM Orthogonal Frequency Division Multiplexing MIMO Multi Input Multi

28 Horizontal angle correction using straight line detection in an equirectangular image

LT 低コスト、シャットダウン機能付き デュアルおよびトリプル300MHz 電流帰還アンプ

高周波同軸コネクタ

VHDL-AMS Department of Electrical Engineering, Doshisha University, Tatara, Kyotanabe, Kyoto, Japan TOYOTA Motor Corporation, Susono, Shizuok

AN2492FH

14 2 5

LM150/LM350A/LM350 3A 可変型レギュレータ

?????????????????NMOS?250mA????????????????

LM6172 デュアル高速低消費電力、低歪み電圧帰還アンプ

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

[FX18]シリーズカタログ

SICE東北支部研究集会資料(2012年)

untitled

TSP信号を用いた音響系評価の研究

高速度スイッチングダイオード

1 2 2 (Dielecrics) Maxwell ( ) D H

AN8032

General Purpose, Low Voltage, Rail-to-Rail Output Operational Amplifiers 324 V LM LMV321( )/LMV358( )/LMV324( ) General Purpose, Low Voltage, Rail-to-


LMC6082 Precision CMOS Dual Operational Amplifier (jp)


1 u t = au (finite difference) u t = au Von Neumann

LM Watt Stereo Class D Audio Pwr Amp w/Stereo Headphone Amplifier (jp)

it-ken_open.key

MAX4886 DS.J

. Fig. AC bus k k V I S Fig. 4. Fig. 3. The position of two lines The equivalent circuit model of line impedance Z(k) = V I S () Fig f [Hz], c[m

untitled

Sonnet 13.56MHzRFID , 13.56MHzRFID Sonnet Sonnet Sonnet

LM7171 高速、高出力電流、電圧帰還型オペアンプ


PowerPoint Presentation

LT 高信号レベル・アップコンバーティング・ミキサ

Transcription:

FDTD S A Study on FDTD Analysis based on S-Parameter 18 2 7 04GD168

FDTD FDTD S S FDTD S S S S FDTD FDTD i

1 1 1.1 FDTD.................................... 1 1.2 FDTD..................... 3 2 S 5 2.1 FDTD S.............. 5 2.2 FDTD S............... 10 2.2.1............................. 10 2.2.2.............. 11 2.2.3............... 13 2.2.4.............. 15 2.2.5............... 18 2.2.6..................... 19 2.3............................. 21 2.3.1.............. 21 2.3.2............. 24 2.3.3 S.... 26 2.3.4..... 30 2.3.5..................... 31 3 S FDTD 32 3.1 50ΩMSL S............... 32 3.1.1 S.................... 33 3.1.2.............................. 34 3.1.3.......................... 37 3.1.4........................ 39 3.2 S..................... 41 3.2.1 50ΩMSL.............. 41 ii

3.2.2 LPF................................... 42 3.2.3 BPF............................. 44 4 49 50 51 53 iii

1 1.1 FDTD (FDTD : Finite Difference Time Domain) [1],[2] FDTD FDTD FDTD 3 2 FDTD 1 FDTD 1

2

1.2 FDTD FDTD FDTD FDTD [3] [4] [3] [4] FDTD SPICE(Simulation Program with Integrated Circuit Emphasis) SPICE FDTD [5] TDCM(Time-Domain Characteristic Models) TDCM [6],[7],[8] [8] (a)s (b) (c) 3

S S FDTD [8] S S FDTD 2 S S S 3 S FDTD 4 4

2 S FDTD S S S 2.1 FDTD S 2.1 S S Z 0 (MSL : Microstrip Line) V 1in V 2in S V 11 V 22 V 21 V 12 V 1view V 2view R MSL (Z 0 ) V 1in V 11 +V 12 V 21 +V 22 V 2in MSL(Z 0 =R) MSL V 1view R R V 2view GND 2.1: S 5

S FDTD FDTD S (S t ) S (S f ) (2.1) S t (k) = 1 N N 1 i=0 S f (i)e j 2πik N (2.1) FDTD (Δt) (Δt) (2.2) Courant Δt c 1 ( 1 Δx )2 +( 1 Δy )2 +( 1 Δz )2 (2.2) c Δx Δy Δz (2.3) FDTD (Δt) (f max ) GHz S FDTD Δt=1.0[ps] 20,000 (2.3) (2.4) S f=0 500[GHz] Δf=50[MHz] f=0 500[GHz] S Δt = 1 2 f max (2.3) Δf = 1 T (2.4) FDTD S S FDTD (2.5) S 1 (V 1in ) S 1 (V 11 ) 2 (V 21 ) V i1 [n] = S i1 [n] V 1in [n] (i =1, 2) n = S i1 [n k +1]V 1in [k] (2.5) k=1 6

(2.6) (V 1in ) 1 1 (V 1view ) V 11 V 12 V 1in [n] V 1view [n 1] V 11 [n 1] V 12 [n 1] (2.6) 2 V 12 V 22 V i2 [n] = S i2 [n] V 2in [n] (i =1, 2) n = S i2 [n k +1]V 2in [k] (2.7) k=1 V 2in [n] V 2view [n 1] V 21 [n 1] V 22 [n 1] (2.8) 50Ω 2.2 MSL MSL (Z 0 ) V 11 + V 12 MSL V 1in (t) R V 1view 2.2: S 7

R 2.3 S S FDTD Voltage [V] 0.4 0.3 0.2 0.1 Pulse wave Observe wave Unabsorbed Pulse wave 0 0 500 1000 1500 Timestep [Step] 2.3: S FDTD ( 2.4) Extended part S FDTD 8

FDTD Initialize E, H Update E S-parameter Calculation of an incident wave Convolution Generation of the reflection wave and the transmission wave Extended part Calculation of the observing wave Update H 2.4: S 9

2.2 FDTD S FDTD (Δt) (f max ) GHz 2.1 2.1 0 10[GHz] 10 500[GHz] 2.1: f=0 10[GHz] f=0 500[GHz] Δt = 1.0[ps] Δf = 200[MHz] Δf = 50[MHz] idft N = 20000[Steps] N = 50[Steps] N = 20000[Steps] T = 20000[ps] 2.2.1 (a) (b) 1 (c) N+1 N (d) 10

3 1 ( 1 ) (e) 3 2 ( 1 2 ) 3 3 S 2.2.2 2.1 0 10[GHz] (Δf) 50[MHz] Δf 200[MHz] 4 3 3 (Δf=50[MHz]) 2.5 S (S11) real data 200 Δf=500[MHz] 20 2.6 11

1 0.8 S11 0.6 0.4 0.2 linear hermite spline real data 0 0 2 4 6 8 10 Frequency [GHz] 2.5: 0.001 0.0005 Error 0 linear hermite spline 0 2 4 6 8 10 Frequency [GHz] 2.6: 12

2.2: 2.19 10 4 3.55 10 5 1.09 10 6 2.2 3 2.2.3 f=0 10[GHz] Δf = 200[MHz] 50 2.3: (0 10GHz) data 1 data 2 data 3 200 10 20 50 Δf[MHz] 50 1000 500 200 3 2.2.2 2.7 S (S11) real data 200 Δf=500[MHz] 20 2.8 13

1 0.8 S11 0.6 0.4 0.2 0 data 1 data 2 data 3 real data 0 2 4 6 8 10 Frequency [GHz] 2.7: 0.0002 Error 0-0.0002 data 1 data 2 data 3-0.0004 0 2 4 6 8 10 Frequency [GHz] 2.8: 14

2.4: data 1(Δf=1000[MHz]) data 2(Δf=500[MHz]) data 3(Δf=200[MHz]) 1.05 10 4 4.35 10 5 1.09 10 6 2.4 3 data 1 20 2.2.4 2.1 10 500[GHz] 3 3 ( 0 500[GHz] Δf=50[MHz]) ( 2.9) (f max ) S S11 1 S21 0 15

1 1 0.8 0.8 S-parameter 0.6 0.4 0.2 S11 S21 S-parameter 0.6 0.4 0.2 S11 S21 0 0 100 200 300 400 500 Frequency [GHz] 0 0.01 0.1 1 10 100 1000 Frequency [GHz] (a) (b) 2.9: 1 S11 0.9 0.8 linear hermite spline real data 0.7 0 100 200 300 400 500 Frequency [GHz] 2.10: 16

2.10 S (S11) real data 20,000 Δf=1.25[GHz] 400 2.11 0.02 0 Error -0.02-0.04 linear hermite spline -0.06 0 100 200 300 400 500 Frequency [GHz] 2.11: 2.5: 0.0249 0.0103 0.0031 2.5 3 17

2.2.5 f=0 10[GHz] 2.6: data 1 data 2 data 3 f max [GHz] 500 5 10 20 3 2.2.2 1 S11 0.9 0.8 data 1 data 2 data 3 real data 0.7 0 20 40 60 80 100 Frequency [GHz] 2.12: 2.10 S (S11) real data 200 Δf=500[MHz] 20 18

0.02 0 Error -0.02-0.04 data 1 data 2 data 3-0.06 0 20 40 60 80 100 Frequency [GHz] 2.13: 2.13 2.7: data 1(f max =5[GHz]) data 2(f max =10[GHz]) data 3(f max =20[GHz]) 0.0076 0.0031 0.0011 2.7 S 2.2.6 S FDTD 3 19

FDTD S FDTD S LPF FDTD FDTD S FDTD S 20

2.3 S ( 2.3) [1] [9] S (2.6) (2.8) 20 20 20 4 40 [cell] MSL MSL PML 8layer Feed Ob1 R z y GND PML 8layer x 2.14: 2.14 (Δx Δy Δz) = (0.5mm 0.55mm 0.533mm) Δt (2.2) Courant 1.0ps 8Δy 3Δz MSL 0mm 30GHz 8 PML(Perfectly Matched Layer) 2.3.1 2.2 50Ω 21

E n Z = 1 ΔtΔz 2RɛΔxΔy 1+ ΔtΔz 2RɛΔxΔy E n 1 Z + Δt ɛ 1+ ΔtΔz ( H n 1 2 ) (2.9) 2RɛΔxΔy (2.9) 4 ( (2.10) (2.11)) V L = E Z Δz (2.10) di V L = L 0 dt V (2.11) 4 1 4 V i L 0 =1/, V = L 0 L i i=1 i=1 L i ( 2.15 2.16) 50Ω MSL Feed V 1in (t) P 2 P 3 P1 1 P 4 2.15: 22

L I L -V V L N 2.16: 2.17 (Method 1) (Method 2) 2.14 (Ob1) 2.18 2.18 (Input Voltage) (Reflection Voltage) 0 S-parameter [db] -10-20 -30-40 Method 2 Method 1-50 0 2 4 6 8 10 Frequency [GHz] 2.17: 23

0.03 Input Voltage Voltage [V] 0.02 0.01 0 Method 1-0.01 Reflection Voltage Method 2 0 200 400 600 Timestep [Step] 2.18: 2.3.2 MSL 50Ω 50Ω [10] MSL MSL 48Ω 51Ω 2.19 (Method 1) (Method 2) 2.14 Ob1 2.20 48Ω [10] 24

S-parameter [db] -20-30 -40-50 -60 Method 2 Method 1 after before 0 2 4 6 8 10 Frequency [GHz] 2.19: 0.006 Voltage [V] 0.004 0.002 0-0.002-0.004 R=50 R=48 0 200 400 600 Timestep [Step] 2.20: 25

2.3.3 S MSL MSL [11] MSL via0 2.21 via-4 via4 MSL Current via -4-3 -2-1 0 1 2 3 4 2.21: 2.22 2.23 5GHz via0 5GHz 2 26

0 Current [A] -0.0002-0.0004-0.0006-0.0008 via0 via1, via-1 via2, via-2 via3, via-3 via4, via-4 100 200 300 400 Timestep[Time] 2.22: Normalization 2 1.5 1-4 -2 0 2 4 via 2.23: 5GHz 27

0 S-parameter [db] -20-40 -60 Frequency [GHz] via-4 - via4 via-3 - via3 via-2 - via2 via-1 - via1 via0 0 2 4 6 8 10 2.24: 2.24 (via-4 via4) 7 via-3 - via3 MSL 2.25 MSL 2.26 3 MSL MSL 28

MSL Feed V 1in (t) 2.25: S-parameter [db] 0-10 -20-30 -40 step nomal -50 0 2 4 6 8 10 Frequency [GHz] 2.26: 29

2.3.4 S S V 11 + V 12 V 21 + V 22 V 1view + V 2view 4 (2.6) (2.8) V 1in [n] V 1view [n 1] V 11 [n 5] V 12 [n 5] (2.12) V 2in [n] V 2view [n 1] V 21 [n 5] V 22 [n 5] (2.13) ( 2.27) S 0.1 Voltage [V] 0.05 0-0.05 before after 0 200 400 600 Timestep [Step] 2.27: 30

2.3.5 MSL S S 31

3 S FDTD S FDTD FDTD FDTD 3.1 50ΩMSL S 50Ω MSL S FDTD Ob1 Ob2 ( 3.1) FDTD Ob1 ( 3.2) Ob1 1 Ob2 MSL MSL PML 8layer Feed Ob1 z y Ob2 GND PML 8layer x 3.1: 32

MSL MSL PML 8layer Feed Ob1 z R y Ob2 GND PML 8layer x 3.2: 3.1.1 S S S S Anritsu 37347C 3680V ( 3.3) ( 3.4) S S FDTD S 33

3.3: 3.4: 3.1.2 50Ω MSL S ( 3.5) S 34

FDTD (AWR MicroWave-Office) FDTD S 50Ω MSL Inductor or Capacitor 3.5: (Δx Δy Δz) = (1.0mm 1.05mm 0.533mm) Δt (2.2) Courant 1.0ps 50Ω 4Δy 3Δz MSL 0mm 30GHz 5 PML(Perfectly Matched Layer) 1 2 MSL 48 3 2 = 72Ω Δt 0.5ps 20000 S 500GHz (Δf) 50MHz Δf 50MHz 10GHz S 3.6 3.7 FDTD S 35

0 S11 S21[dB] -10-20 -30-40 S11 S21 FDTD Simulator -50 0 2 4 6 8 10 Frequency [GHz] 3.6: S11 S21[dB] 0-10 -20-30 -40-50 S21 S11 FDTD Simulator 0 2 4 6 8 10 Frequency [GHz] 3.7: 36

3.1.3 1SV280 S 50Ω MSL ( 3.8) 50Ω MSL Varactor diode 3.8: S FDTD S S FDTD [12] 0V 10V S FDTD FDTD S FDTD 3.1.2 3.9 3.10 FDTD S 37

0 S11 S21[dB] -10-20 -30-40 -50 S11 S21 FDTD Simulator 0 1 2 3 4 5 6 Frequency [GHz] 3.9: Bias=0V 0 S11 S21[dB] -10-20 -30-40 -50 S11 S21 FDTD Simulator 0 1 2 3 4 5 6 Frequency [GHz] 3.10: Bias=10V 38

3.1.4 FDTD S 50Ω MSL 2 LC ( 3.11) 50Ω MSL Capacitor Inductor 3.11: LC S 2.1 S S FDTD S 2 FDTD FDTD S FDTD 3.1.2 3.12 FDTD S 39

0 S11 S21[dB] -10-20 -30-40 -50 S11 S21 FDTD Simulator 0 1 2 3 4 5 6 Frequency [GHz] 3.12: LC 40

3.2 S 50Ω MSL S FDTD S FDTD 3.2.1 50ΩMSL 50ΩMSL S 50ΩMSL ( 3.13) Capacitor 3.13: 50ΩMSL 50ΩMSL 2 2 S FDTD FDTD 50ΩMSL S FDTD 3.1.2 3.14 FDTD 50ΩMSL S 41

S11 S21[dB] 0-10 -20-30 -40-50 S11 S21 FDTD Simulator 0 2 4 6 8 10 Frequency [GHz] 3.14: 50ΩMSL 3.2.2 LPF S LPF(Low- Pass-Filter) FDTD FDTD 3.1 3.1: LPF FDTD 150*80*41cell Δx =0.5mm Δy =0.55mm Δz =0.32mm 40000steps Δt =0.5ps PML5 42

S (48 7 2 = 168Ω) FDTD Δt 0.5ps 40000 S 1000GHz (Δf) 50MHz HK1608 6GHz ɛ r =2.56 1.6[mm] tanδ =0.001 R4737 LPF 3.15 LPF 3.16 Chip Inductor 20.9mm Port1 Port2 51.4mm 3.15: LPF 3.16: LPF 43

S FDTD 3.17 S FDTD FDTD S FDTD S11 S21[dB] 0-10 -20-30 -40 S21 S11 FDTD Simulator Meas. -50 0 1 2 3 4 5 6 Frequency [GHz] 3.17: LPF 3.2.3 BPF BPF(Band-Pass-Filter) FDTD [13] BPF 3 2 ( 3.18) C L 0V 15V C s 0V 3V 44

Port1 Cin Cout Port2 C s MSL C MSL 1 l1 l2 CL l 1 =4.4[mm], l 2 =34.1[mm], C 1 =5.0[pF ], C in = C out =1.0[pF ] 3.18: BPF FDTD 3.2 3.2: BPF FDTD 165*60*35cell Δx =0.5mm Δy =0.55mm Δz =0.32mm 40000steps Δt =0.5ps PML5 S (48 7 2 = 168Ω) FDTD Δt 0.5ps 40000 S 1000GHz (Δf) 50MHz UMK1608 1SV280 S 6GHz 45

10GHz R4737 BPF 3.19 BPF 3.20 Chip Capacitor (S-parameter) Port1 Port2 16.5mm Varactor Diode (S-parameter) Through-hole Through-hole 87.3mm 3.19: BPF 3.20: BPF 46

S FDTD 3.21 3.22 S FDTD S FDTD S S11 S21[dB] 0-10 -20-30 -40-50 S21 S11 Frequency [GHz] FDTD Simulator Meas. 0.5 1 1.5 2 2.5 3.21: BPF 47

S11 S21[dB] 0-10 -20-30 S21 S11-40 -50 FDTD Simulator Meas. 0.5 1 1.5 2 2.5 Frequency [GHz] 3.22: BPF 48

4 S FDTD FDTD S GHz S MSL S FDTD FDTD 49

FDTD 50

[1], FDTD,, 1998. [2], FD-TD, ( 17/18 ). [3] W.Sui, D.A.Christensen and C.H.Durney, Extending the Two-Dimensional FDTD Method to Hybrid Electromagnetic Systems with Active and Passive Lumped Elements, IEEE Trans. Microwave Theo. Tech., vol.40, no.4, pp.724-730, 1992 [4] V.A.Thomas, M.E.Jones, M.J.Picket-May, A.Taflove and E.Harrigan, The Use of SPICE Lumped Circuits as Sub-grid Models for FDTD Analysis, IEEE Microwave Guided Wave Lett., vol.3, pp.333-335, 1993 [5] Q.Chu, Y.Lau and F.Chang, Transient Analysis of Microwave Active Circuits Based on Time-Domain Characteristic Models, IEEE Trans. Microwave Theo. Tech., vol.46, no.8, pp.1097-1104, 1998 [6],, FDTD,, EMCJ97-96, pp.29-35, Jan. 1998 [7] X. Ye, and J. L. Drewniak, Incorporating Two-Port Networks with S-Parameters into FDTD, IEEE Microwave and Wireless Components Lett., vol.11, pp.77-79, 2001 [8],,, S FDTD, Trans.IEICE, Vol.J85-B, No.9, pp.1526-1534, Sept. 2002 [9],,,, FDTD,, C-2-89, March 2004. [10],,,, FDTD,, EMCJ2003-4 51

[11],,,, FDTD,, EMCJ2003-8, pp.47-52, April 2003. [12],,,, FDTD,, B-1-111, Sept. 2005. [13],,,, λ/2 BPF,, MW2001-90, pp.125-132, Oct. 2001. [14],,, 1996 52

Takashi Hibino, Hiroyuki Arai, Frequency Tunable Dual-Band Filter with Fixed Attenuation Poles, 2004 Asia Pacific Microwave Conference, Delhi, India, Dec. 2004. Takashi Hibino, Naobumi Michishita, Hiroyuki Arai, Improved Implement of S- Parameter for the FDTD Method, 2005 International Symposium on Antennas and Propagation, Seoul, Korea, Aug. 2005. 2 C-2-76 Sept 2004. S FDTD B-1-110 Sept 2005. S FDTD B-1-190 March 2005. 53