B

Similar documents
6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

W 1983 W ± Z cm 10 cm 50 MeV TAC - ADC ADC [ (µs)] = [] (2.08 ± 0.36) 10 6 s 3 χ µ + µ 8 = (1.20 ± 0.1) 10 5 (Ge

E 1 GeV E 10 GeV 1 2, X X , GeV 10 GeV 1 GeV GeV π

Fermi ( )

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

Mott散乱によるParity対称性の破れを検証


スーパーカミオカンデにおける 高エネルギーニュートリノ研究

25 3 4

23 1 Section ( ) ( ) ( 46 ) , 238( 235,238 U) 232( 232 Th) 40( 40 K, % ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4

untitled

B


Solar Flare neutrino for Super Novae Conference

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H


総研大恒星進化概要.dvi

The Physics of Atmospheres CAPTER :

( ) ,


Microsoft PowerPoint - okamura.ppt[読み取り専用]

nsg02-13/ky045059301600033210

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

Drift Chamber

Muon Muon Muon lif

Bethe-Bloch Bethe-Bloch (stopping range) Bethe-Bloch FNAL (Fermi National Accelerator Laboratory) - (SciBooNE ) SciBooNE Bethe-Bloch FNAL - (SciBooNE

A

pdf

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

1 Tokyo Daily Rainfall (mm) Days (mm)

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

BESS Introduction Detector BESS (BESS-TeVspectrometer) Experimetns Data analysis (1) (2) Results Summary

2.1: n = N/V ( ) k F = ( 3π 2 N ) 1/3 = ( 3π 2 n ) 1/3 V (2.5) [ ] a = h2 2m k2 F h2 2ma (1 27 ) (1 8 ) erg, (2.6) /k B 1 11 / K

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

(高エネルギー) 広がったTEVガンマ線源VER J のX線観測による放射機構の研究

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

( ) Note Ω m = 1 Ω m : ( ) r-process α 1: 2 32T h(t 1/2 = y) 2 38U(t 1/2 = y) 2 35U(t 1/2 = 7.038

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

Note.tex 2008/09/19( )

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a

プログラム


(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

201711grade1ouyou.pdf

放射線化学, 92, 39 (2011)

BH BH BH BH Typeset by FoilTEX 2

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

vol5-honma (LSR: Local Standard of Rest) 2.1 LSR R 0 LSR Θ 0 (Galactic Constant) 1985 (IAU: International Astronomical Union) R 0 =8.5

E 1/2 3/ () +3/2 +3/ () +1/2 +1/ / E [1] B (3.2) F E 4.1 y x E = (E x,, ) j y 4.1 E int = (, E y, ) j y = (Hall ef


H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

From Evans Application Notes

基礎数学I

_0212_68<5A66><4EBA><79D1>_<6821><4E86><FF08><30C8><30F3><30DC><306A><3057><FF09>.pdf

LHC ALICE (QGP) QGP QGP QGP QGP ω ϕ J/ψ ALICE s = ev + J/ψ

I

Akira MIZUTA(KEK) AM, Nagataki, Aoi (ApJ, , 2011) AM + (in prep)

PDF

TOP URL 1

cm λ λ = h/p p ( ) λ = cm E pc [ev] 2.2 quark lepton u d c s t b e 1 3e electric charge e color charge red blue green qq

gr09.dvi

日本内科学会雑誌第98巻第4号

日本内科学会雑誌第97巻第7号


SFN

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

Z[i] Z[i] π 4,1 (x) π 4,3 (x) 1 x (x ) 2 log x π m,a (x) 1 x ϕ(m) log x 1.1 ( ). π(x) x (a, m) = 1 π m,a (x) x modm a 1 π m,a (x) 1 ϕ(m) π(x)

rcnp01may-2

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

7-1yamazaki.pptx

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

本文/目次(裏白)

TOP URL 1

30

LLG-R8.Nisus.pdf

数学の基礎訓練I

untitled

イメージング分光によるMeVガンマ線天文学の展望


: 8.2: A group (i.e. a very small cluster) of galaxies superimposed on a x-ray image from the ROSAT satellite

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

Ando_JournalClub_160708


スライド 1


Λ (Λ ) Λ (Ge) Hyperball γ ΛN J-PARC Λ dead time J-PARC flash ADC 1 dead time ( ) 1 µsec 3


untitled

基礎から学ぶトラヒック理論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

1/2 ( ) 1 * 1 2/3 *2 up charm top -1/3 down strange bottom 6 (ν e, ν µ, ν τ ) -1 (e) (µ) (τ) 6 ( 2 ) 6 6 I II III u d ν e e c s ν µ µ t b ν τ τ (2a) (

(1) θ a = 5(cm) θ c = 4(cm) b = 3(cm) (2) ABC A A BC AD 10cm BC B D C 99 (1) A B 10m O AOB 37 sin 37 = cos 37 = tan 37

Transcription:

B09170 5 8

) ( ) π 0-1 s -1 sr -1 MeV HI Emissivity (3rd quadrant) -3-4 Abdo et al. 009 (6 months, P6V3_DIFFUSE) Local arm interarm Perseus arm and beyond Emissivity (MeV E -5-6 3 4 Energy (MeV) 5 1:

1 4 1.1..................................... 4 1.................................. 4 6.1.......................................... 6.1.1................................ 6.1............................... 7.......................................... 9.3...................................3.1 π 0......................................3...................................... 11.3.3................................ 1 3 Fermi 15 3.1 LAT....................................... 15 3................................. 18 3..1............................. 18 3.3 (Maximum likelihood)............................. 0 4 (The Third Galactic Quadrant) 4.1...................................... 4.......................................... 3 4..1............................. 4 4.3......................................... 7 4.3.1...................... 7 4.4........................................... 9 4.4.1........................... 9 4.4............................ 3 5 35 1

1................ 1.1 [1]................. 7. [].................... 8.3 π 0....................................4.................................. 11.5.............................. 1.6 π o Fermi [5]... 14 3.1 LAT [6].................................. 15 3. [6]............................... 16 3.3 Front Back [7].................... 17 3.4 Front Back [7]................... 18 4.1 Fermi [11]................... 4................................... 3 4.3 Fermi............ 4 4.4 Local arm H I (cm )........................... 5 4.5 Local arm W WCO (K km s 1 )....................... 5 4.6 E(B V ) res (mag)............................... 6 4.7 TS=00 3 ( ) TS=400 5 ( )......................................... 7 4.8 q HI,1 ( ) q HI, ( ) q HI,3 4 ( ) q DG ( ) q IC ( ).............................. 8 4.9 ( ) ( )....... 9 4. ( ) ( )............. 9 4.11 q HI,1 q HI,3 4......................... 30 4.1 1.6 GeV E 18.1 GeV q HI,1 ( ) q HI, ( ) q HI,3 4 ( )................... 31 4.13.................... 3

4.14 ( )................................... 33 4.15 50 MeV - GeV.............................. 33 4.16-0 GeV................................ 34 3

1 1.1 0 GeV 0 GeV 0 GeV- 0 TeV H.E.S.S.(High Energy Stereoscopic System) 50 GeV- 30 TeV MAGIC(Major Atmospheric Gamma-ray Imaging Cherenkov Telescope) 0 GeV 1960 OSO-3 1970 SAS- COS-B 1990 CGRO EGRET 008 Fermi LAT Fermi LAT EGRET Fermi 1. v - N(v) e mv kt m k T 4

π 0 5

.1 1 191 1919 V.F..1.1.1.7 3. 15.5 ev 3 knee 18.5 ev ankle 15 ev knee 15 ev knee 19 ev 19 ev ankle 6

.1: [1] (.3 ).1. ρ cr 1 evcm 3 7

.: [] 8

E cr V 67 68 cm 3 E cr = ρ cr V 55 56 erg (.1) τ 7 (=3.16 14 s) E cr τ 41 erg s 1 (.) 51 erg 30 4 erg s 1 41 erg s 1 (.) [3]. H I 1 1 1/ 1 cm H I CO (.6 mm ) CMB(Cosmic Microwave Background radiation) 9

37 3000 K CMB.3.3.1 π 0 π π π 0 8.4 17 s (.3).3: π 0 π 0 140 MeV 70 MeV

( ) Eγ = p γ c ( 1 1 β π ) ( ) 1 β mπ c π β π 1 m π c π 0 E γ p γ E γ = p γ c m π c 1 β π E γ m πc 1 + β π (.4) 1 + β π 1 β π (.3) m π π β π π 70 MeV.6 π 0 1 GeV.3. (.4) [4].4: 1 E ( ) de = 4NZ r dt eαcḡ (.5) bremss 11

N Z r e α r e.8 15 m α 1/137 ḡ ḡ 1 E N(ϵ) N(ϵ)dϵ = AN dϵ ϵ (ϵ E e) (.6) ϵ A A 1 m 3 s 1 N e (E) = κe p I bremss (ϵ) = ϵ AN ϵ κe p de = ANκ p 1 ϵ p (.7).6 π 0 ( ).3.3 (.5) U rad [4].5: ( ) de = 4 dt IC 3 σ T cγ U rad (.8) 1

σ T c γ E e = m e c γ(m e ) E e K = 4 3 hν 0γ ν 0 ( ) ( ) hν0 Ee K 0.5 GeV (.9) 1 ev GeV GeV 1 ev 500 MeV E e E e + de e dn e Ee p de e 1 E e E p e de e (.) K E e K E e E e K 1/, de e K 1/ dk (.11) (.) K p 1 dk (.1) I IC (K) K p+1 dk (.13) p p+1 GeV 3 π 0.6 [3] 13

.6: π o Fermi [5] 14

3 Fermi Fermi Fermi LAT(Large Area Telescope) GBM(Gamma-ray Burst Monitor) LAT 1990 EGRET EGRET 3.1 LAT Fermi LAT LAT (TKR) (CAL) ACD(Anti-coincidence Detector) (3.1) LAT 3.1: LAT [6] 4 4 16 18 15

1 (Front) (0.095 mm) 4 (Back) (0.7 mm) (3.) 3.: [6] CsI (3.1) 16

ACD ACD 99.97 LAT 3 LAT (3.3) LAT MeV 300 GeV 1 GeV EGRET 1500 cm 4 1 GeV LAT (3.4) LAT 1 GeV 1 deg Fermi 1 GeV MeV deg Front( ) 3.3: Front Back [7] 17

3.4: Front Back [7] 3. Fermi 6 5 Fermi raw data FITS(Flexible Image Transport System) Fermi FITS FT1 FT 3.1 FT1 3..1 FT1 3. Fermi 008 8 011 8 48 FT1 1 4 4 1 Transient class 18

ENERGY MeV RA degrees DEC degrees L degrees B degrees THETA degrees LAT PHI degrees LAT ZENITH ANGLE degrees EARTH AZIMUTH ANGLE degrees TIME seconds EVENT ID - RUN ID - LAT ID RECON VERSION - CALIB VERSION - EVENT CLASS 1-4 CONVERSION TYPE 0 or 1 Front=0,Back=1 LIVETIME seconds LAT livetime DIFRSP0 - P7SOURCE DIFRSP1 - P7SOURCE DIFRSP - P7CLEAN DIFRSP3 - P7CLEAN 3.1: FT1 [8] 19

Source class 3 Clean class 4 Ultraclean class Clean class Zenith Angle Zenith Angle Fermi Zenith Angle 0 [9] Rocking Angle Fermi Rocking Angle 50 Rocking Angle Rocking Angle 5 008/8/4-01/8/4 (MET : 39557417-365800000) 50 MeV - 0 GeV Source Class Clean Class 3 Zenith Angle < 0 [deg] Rocking Angle < 5 [deg] P7CLEAN V6 Science Tools ST-09-6-0 3.: 3.3 (Maximum likelihood) L x 1, x,, x n (n ) θ f(x θ) n L(θ x 1, x,, x n ) = f(x 1 θ)f(x θ)f(x 3 θ) f(x n θ) = f(x i θ) i=1 0

[] L L dl dθ = 0 L θ logl(θ x 1, x,, x n ) = θ n logf(x i θ) TS(Test Statistic) ( ) TS TS = (logl logl 0 ) L L 0 n TS n χ χ n 1 χ n 1 TSσ i=1 1

第 4 章 銀河面放射 (The Third Galactic Quadrant) の解析 Fermi 衛星のデータ解析を行う際に Fermi 衛星用解析ツール Science Tools を用いた こ れは Fermi チームによって開発された イベントセレクションから最尤法を用いたモデルフィッ ティングまでの一連の解析を行うことができる解析ソフトである 本研究の解析に用いた Science Tools のバージョンは ST-09-6-0 レスポンスは P7CLEAN V6 である 効率的に解析を行うた めに python や C-shell などのスクリプト言語を駆使して Science Tools を動かした 4.1 解析する領域 図 4.1 に Fermi 衛星で観測した全天マップを示す 黄色の枠で囲んだ領域が今回解析した領 域である 具体的には銀経 l 50 銀緯 15 b 0 である 図 4.1: Fermi 衛星の観測による全天ガンマ線マップ [11] この領域は The third Galactic quadrant と呼ばれる領域の一部である これは天の川銀河を 90 ずつの 4 つの象限 に区切ったものの 3 象限目 (180 l 70 ) に位置することを意味す る この領域には Local arm という太陽系が属する渦状腕と Perseus arm というペルセウス座の 近くに位置する渦状腕があり また本研究ではその間にある星間ガスの少ない領域のことを inter

arm ( 4. ) 4. 1 cm H I 0 18 [1].7 Fermi (0 MeV ) 4.: 4. 4.3 Fermi 4.1 ( l, -6 b -15 ) Orion-Monoceros ( 0 ) ( ) 3

4.3: Fermi 4..1 H I 1 cm [13] 1 cm T s T s = 50 K CO.6 mm W CO (K km s 1 ) E(B V ) res CO E(B V ) ( ) N(H I ) W CO E(B V ) res N(H I ) W CO 4.4-6 4

4.4: Local arm H I (cm ) 4.5: Local arm W WCO (K km s 1 ) 5

4.6: E(B V ) res (mag) Galprop Fermi 4.3 NASA [14] I γ (l, b)(s 1 cm sr 1 MeV 1 ) I γ = q HI,1 N(H I,1 ) + q HI, N(H I, ) + q HI,3 4 N(H I,3 4 ) + q CO,1 W CO,1 + q CO, W CO, + q CO,3 W CO,3 + q EBV E(B V ) res + q IC I IC + I SO + j P S j (4.1) q HI,i (s 1 sr 1 MeV 1 ) q CO,j (s 1 cm sr 1 MeV 1 (K km s 1 ) 1 ) q EBV (s 1 cm sr 1 MeV 1 mag 1 ) 1 W CO E(B V ) res I SO (s 1 cm 1 sr 1 MeV 1 ) 6

PS N(H I,1 ) N(H I,3 4 ) W CO,1 W CO,3 H I CO 1 Local arm inter arm 3 3-4 Perseus arm 4.3 4.3.1 4. TS=00 3 TS=400 5 ( 4.7 ) 1 GeV TS=00 (4 ) TS=0 (7 ) TS=00 TS=0 q HI q EBV q IC 4.8 4.7: TS=00 3 ( ) TS=400 5 ( ) 7

-1 s -1 sr -1 MeV Emissivity (MeV E ) ) HI Emissivity Local arm -3-4 TS00 TS0-1 s -1 sr -1 MeV -5 Emissivity (MeV E ) HI Emissivity Interarm -3-4 TS00 TS0-5 -6 3 Energy (MeV) 4-6 3 Energy (MeV) 4-1 s -1 sr -1 MeV Emissivity (MeV ) HI Emissivity Perseus arm -3-4 TS00 TS0-1 s -1 sr -1 MeV -5 Emissivity (MeV ) Dark gas Emissivity - TS00 TS0-3 E E -4-6 3 Energy (MeV) 4 3 Energy (MeV) 4-1 E s -1 sr -1 MeV Emissivity (MeV IC normalization TS00 TS0 1-1 3 Energy (MeV) 4 4.8: q HI,1 ( ) q HI, ( ) q HI,3 4 ( ) q DG ( ) q IC ( ) q HI,1 q HI, q HI,3 q DG q IC TS Front 300 MeV TS=0 19 8

4.9- ( ) 0 4. 0 σ = 1 TS=0 Count Map Count Map 0 50 0 50 15 00 15 00 Galactic Latitude [deg] 5 0-5 150 0 Galactic Latitude [deg] 5 0-5 150 0-50 - 50-15 -50-45 -40-35 -30-5 -0-15 - Negative Galactic Longitude [deg] 0-15 -50-45 -40-35 -30-5 -0-15 - Negative Galactic Longitude [deg] 0 4.9: ( ) ( ) Residual: (data-model)/ model 0 3 Residual: (data-model)/ model 900 Galactic Latitude [deg] 15 5 0-5 - 1 0-1 - 800 700 600 500 400 300 00 0-15 -50-45 -40-35 -30-5 -0-15 - Negative Galactic Longitude [deg] -3 0-3 - -1 0 1 3 4.: ( ) ( ) 4.4 4.4.1 π 0 9

1 GeV 0 GeV 4.11 q HI,1 q HI,3 4 4.1 1.6 GeV E 18.1 GeV ) -1 s -1 sr -1 MeV HI Emissivity (3rd quadrant) -3-4 Abdo et al. 009 (6 months, P6V3_DIFFUSE) Local arm interarm Perseus arm and beyond Emissivity (MeV -5 E -6 3 4 Energy (MeV) 5 4.11: q HI,1 q HI,3 4 30

Local arm χ / ndf 6.56 / 7-3 p0 1.6e- ± 6.436e-3 p1-0.6338 ± 0.05066 inter arm χ / ndf 9.737 / 6-3 p0 4.73e- ±.117e- p1-0.7938 ± 0.0576 ) -1 sr -1 MeV s -1-4 ) -1 sr -1 MeV s -1-4 Emissivity (MeV E -5 Emissivity (MeV E -5-6 4 Energy (MeV) Perseus arm χ / ndf 17.03 / 6-3 p0 7.571e- ±.819e- p1-0.89 ± 0.04797-6 4 Energy (MeV) ) -1 sr -1 MeV s -1-4 Emissivity (MeV E -5-6 4 Energy (MeV) 4.1: 1.6 GeV E 18.1 GeV q HI,1 ( ) q HI, ( ) q HI,3 4 ( ) E 4.1 Local arm inter arm Perseus arm 3.7 5 ( 4.13) 50 K T S q HI,1 q HI, q HI,3 4.63 ± 0.05.79 ± 0.06.83 ± 0.05 4.1: 31

4.13: 4.4..3.3 p p+1 4.14 50 MeV - GeV - 0 GeV ( 4.15,16) 1.86±0.0(50 MeV - GeV).70±0.11( - 0 GeV) p + 1 = 1.86 ± 0.0 p =.7 ± 0.04 (4.) p + 1 =.70 ± 0.11 p = 4.40 ± 0. (4.3) 4..7.3.3 3

- -1 sr -1 MeV ) s -1 cm - -3 Flux (MeV E -4-5 data HI Isotropic isotrop_1year_p76r_clean_v0.txt E(B-V) res H (traced by W ) CO IC (free) PS 3 Energy (MeV) 4 4.14: ( ) IC χ / ndf 7.7 / 8 p0 0.0003339 ± 3.931e-05 p1 0.1388 ± 0.004 ) -1 sr -1 MeV s -1 Emissivity (MeV E -3-4 -5 Energy (MeV) 3 4.15: 50 MeV - GeV 50 MeV- GeV 1.86 ± 0.0.7 ± 0.04-0 GeV.70 ± 0.11 4.40 ± 0. 4.: 33

IC χ / ndf 5.088 / 5 p0 0.1688 ± 0.1516 p1-0.701 ± 0.111 ) -1 sr -1 MeV s -1 Emissivity (MeV E -3-4 -5 Energy (MeV) 4 4.16: - 0 GeV 34

5 Fermi π 0 1 GeV 1 GeV 00 MeV Front 35

[1] III 008 [] S.P.Swordy. 001, The Energy Spectra and Anisotropies of Cosmic Rays, SpaceScienceRev. 99,85 [3] 004 [4] M.S.Longair. 1990, HighEnergyAstropysics, [5] A.A.Abdo et al. 009, Fermi Large Area Telescope Measurements of the Diffuse Gamma- Ray Emission at Intermediate Galactic Latitudes, P hrvl 3, 11 [6] W.B.Atwood et al. 009, The Large Area Telescope on the Fermi Gammma-ray Space Telescope Mission, ApJ 697, 71 [7] Fermi LAT Peromance http://www.slac.stanford.edu/exp/glast/groups/canda/lat_ Performance.htm [8] LAT Data Files http://fermi.gsfc.nasa.gov/ssc/data/analysis/documentation/ Cicerone/Cicerone_Data/LAT_Data_Columns.html#PhotonFile [9] 008 γ γ [] W.R.Leo., T echniquesf orn uclearandp articlep hysicsexperiment [11] Fermi two-year all-sky map http://www.nasa.gov/mission_pages/glast/news/ gamma-ray-ce\nsus.html [1] M.Ackermann et al. 011, CONSTRAINTS ON THE COSMIC-RAY DENSITY GRADI- ENT BEYOND THE SOLAR CIRCLE FROM F ERMI γ -RAY OBSERVATIONS OF THE THIRD GALACTIC QUADRANT, ApJ76 81 36

[13] P.M.W.Kalberla. 005, The Leiden/Argentine/Bonn(LAB) Survey of Galactic HI maketitlefinal data release of thecombined LDS and IAR surveys with improved stray-radiation corrections, A&A 440,775 [14] http://fermi.gsfc.nasa.gov/ssc/data/access/lat/ BackgroundModels.html 37