( ) f a, b n f(b) = f(a) + f (a)(b a) + + f (n 1) (a) (n 1)! (b a)n 1 + R n, R n = b a f (n) (b t)n 1 (t) (n 1)! dt. : R n = b a f (n) (b t

Similar documents
- II

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p

2009 IA I 22, 23, 24, 25, 26, a h f(x) x x a h

9 5 ( α+ ) = (α + ) α (log ) = α d = α C d = log + C C 5. () d = 4 d = C = C = 3 + C 3 () d = d = C = C = 3 + C 3 =

A S hara/lectures/lectures-j.html ϵ-n 1 ϵ-n lim n a n = α n a n α 2 lim a n = 0 1 n a k n n k= ϵ

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

y = f(x) y = f( + h) f(), x = h dy dx f () f (derivtive) (differentition) (velocity) p(t) =(x(t),y(t),z(t)) ( dp dx dt = dt, dy dt, dz ) dt f () > f x

Chap11.dvi

(1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9

x i [, b], (i 0, 1, 2,, n),, [, b], [, b] [x 0, x 1 ] [x 1, x 2 ] [x n 1, x n ] ( 2 ). x 0 x 1 x 2 x 3 x n 1 x n b 2: [, b].,, (1) x 0, x 1, x 2,, x n

chapter4.PDF

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

O f(x) x = A = lim h f( + h) f() h A (differentil coefficient) f f () y = f(x) y = f( + h) f(), x = h dy dx f () f (derivtive) (differentition) * t (v

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

body.dvi


f(x) x = A = h f( + h) f() h A (differentil coefficient) f(x) f () y = f(x) y = f( + h) f(), x = h dy dx f () f (derivtive) (differentition) * t (velo

DVIOUT

[] x < T f(x), x < T f(x), < x < f(x) f(x) f(x) f(x + nt ) = f(x) x < T, n =, 1,, 1, (1.3) f(x) T x 2 f(x) T 2T x 3 f(x), f() = f(t ), f(x), f() f(t )

1 1 3 ABCD ABD AC BD E E BD 1 : 2 (1) AB = AD =, AB AD = (2) AE = AB + (3) A F AD AE 2 = AF = AB + AD AF AE = t AC = t AE AC FC = t = (4) ABD ABCD 1 1

(, ) (, ) S = 2 = [, ] ( ) 2 ( ) 2 2 ( ) 3 2 ( ) 4 2 ( ) k 2,,, k =, 2, 3, 4 S 4 S 4 = ( ) 2 + ( ) ( ) (

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

2000年度『数学展望 I』講義録

J. Bernoulli 694 Riccti dy dx + ψy + φy + χ = (ψ, φ, χ x ) Leibniz Riccti 73 Leibniz Bessel ( )Bessel. 738 J. Bernoulli. 764 Novi Comm. Acd. Petrop. L

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 -


r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

2011de.dvi

‚å™J‚å−w“LŁñfi~P01†`08

04.dvi

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

untitled

1 θ i (1) A B θ ( ) A = B = sin 3θ = sin θ (A B sin 2 θ) ( ) 1 2 π 3 < = θ < = 2 π 3 Ax Bx3 = 1 2 θ = π sin θ (2) a b c θ sin 5θ = sin θ f(sin 2 θ) 2

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

III ϵ-n ϵ-n lim n a n = α n a n α 1 lim a n = 0 1 n a k n n k= ϵ-n 1.1


Z[i] Z[i] π 4,1 (x) π 4,3 (x) 1 x (x ) 2 log x π m,a (x) 1 x ϕ(m) log x 1.1 ( ). π(x) x (a, m) = 1 π m,a (x) x modm a 1 π m,a (x) 1 ϕ(m) π(x)

= π2 6, ( ) = π 4, ( ). 1 ( ( 5) ) ( 9 1 ( ( ) ) (

Z: Q: R: C: sin 6 5 ζ a, b

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

.. F x) = x ft)dt ), fx) : PDF : probbility density function) F x) : CDF : cumultive distribution function F x) x.2 ) T = µ p), T : ) p : x p p = F x

< 1 > (1) f 0 (a) =6a ; g 0 (a) =6a 2 (2) y = f(x) x = 1 f( 1) = 3 ( 1) 2 =3 ; f 0 ( 1) = 6 ( 1) = 6 ; ( 1; 3) 6 x =1 f(1) = 3 ; f 0 (1) = 6 ; (1; 3)

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x

0 S S 1 P MSM0 MSM0 MSM0 3 MSM03 0 MSM00 0 MSM0 MSM BP MSB0 MSB0 MSB0 MSB03 MSB00 MSB0 MSB FFPFB MSF0 MSF0 MSF0 MSF03 MSF00 MSF0 MSF C MSC0 MSC0 MSC0

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

Riemann-Stieltjes Poland S. Lojasiewicz [1] An introduction to the theory of real functions, John Wiley & Sons, Ltd., Chichester, 1988.,,,,. Riemann-S

スライド タイトルなし

< C93878CBB926E8C9F93A289EF8E9197BF2E786264>

1 R n (x (k) = (x (k) 1,, x(k) n )) k 1 lim k,l x(k) x (l) = 0 (x (k) ) 1.1. (i) R n U U, r > 0, r () U (ii) R n F F F (iii) R n S S S = { R n ; r > 0

6. Euler x

入試の軌跡

1.1 ft t 2 ft = t 2 ft+ t = t+ t d t 2 t + t 2 t 2 = lim t 0 t = lim t 0 = lim t 0 t 2 + 2t t + t 2 t 2 t + t 2 t 2t t + t 2 t 2t + t = lim t 0

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

0.6 A = ( 0 ),. () A. () x n+ = x n+ + x n (n ) {x n }, x, x., (x, x ) = (0, ) e, (x, x ) = (, 0) e, {x n }, T, e, e T A. (3) A n {x n }, (x, x ) = (,

( ) a, b c a 2 + b 2 = c : 2 2 = p q, p, q 2q 2 = p 2. p 2 p q 2 p, q (QED)

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2

2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n

ft. ft τfτdτ = e t.5.. fx = x [ π, π] n sinnx n n=. π a π a, x [ π, π] x = a n cosnx cosna + 4 n=. 3, x [ π, π] x 3 π x = n sinnx. n=.6 f, t gt n 3 n

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

,.,, L p L p loc,, 3., L p L p loc, Lp L p loc.,.,,.,.,.,, L p, 1 p, L p,. d 1, R d d. E R d. (E, M E, µ)., L p = L p (E). 1 p, E f(x), f(x) p d


[ ] x f(x) F = f(x) F(x) f(x) f(x) f(x)dx A p.2/29

FX ) 2

FX自己アフリエイトマニュアル


meiji_resume_1.PDF


( ) 2.1. C. (1) x 4 dx = 1 5 x5 + C 1 (2) x dx = x 2 dx = x 1 + C = 1 2 x + C xdx (3) = x dx = 3 x C (4) (x + 1) 3 dx = (x 3 + 3x 2 + 3x +




プログラム

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

December 28, 2018

(1) 1 y = 2 = = b (2) 2 y = 2 = 2 = 2 + h B h h h< h 2 h

Trapezoidal Rule θ = 1/ x n x n 1 t = 1 [f(t n 1, x n 1 ) + f(t n, x n )] (6) 1. dx dt = f(t, x), x(t 0) = x 0 (7) t [t 0, t 1 ] f t [t 0, t 1 ], x x

201711grade1ouyou.pdf

IA September 25, 2017 ( ) I = [a, b], f (x) I = (a 0 = a < a 1 < < a m = b) I ( ) (partition) S (, f (x)) = w (I k ) I k a k a k 1 S (, f (x)) = I k 2

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

7-12.dvi

C 2 2.1? 3x 2 + 2x + 5 = 0 (1) 1

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

( z = x 3 y + y ( z = cos(x y ( 8 ( s8.7 y = xe x ( 8 ( s83.8 ( ( + xdx ( cos 3 xdx t = sin x ( 8 ( s84 ( 8 ( s85. C : y = x + 4, l : y = x + a,

17 ( ) II III A B C(100 ) 1, 2, 6, 7 II A B (100 ) 2, 5, 6 II A B (80 ) 8 10 I II III A B C(80 ) 1 a 1 = 1 2 a n+1 = a n + 2n + 1 (n = 1,

.. ( )T p T = p p = T () T x T N P (X < x T ) N = ( T ) N (2) ) N ( P (X x T ) N = T (3) T N P T N P 0

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π

(1) (2) (3) (4) 1

Chap9.dvi

1 I

di-problem.dvi

F-09C


表紙/宮副 森 森 森 柴田 芦塚

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta

IS-LM (interest) 100 (net rate of interest) (rate of interest) ( ) = 100 (2.1) (gross rate of interest) ( ) = 100 (2.2)

/ 2 n n n n x 1,..., x n 1 n 2 n R n n ndimensional Euclidean space R n vector point R n set space R n R n x = x 1 x n y = y 1 y n distance dx,

1

広報さっぽろ 2016年8月号 厚別区

Transcription:

5 1 1.1 ) f, b n fb) = f) + f )b ) + + f n 1) ) n 1)! b )n 1 + R n, R n = f n) b t)n 1 t) n 1)! dt. : R n = f n) b t)n 1 t) n 1)! dt ] b b b t)n 1 + n 1)! = f n 1) b )n 1 ) + R n 1. n 1)! R n = [f n 1) t) f n 1) b t)n t) n )! dt R n R n 1 = f n 1) ) R 1 = b )n 1. n 1)! f t)dt = fb) f). R n = R n R n 1 ) + R n 1 R n ) + + R R 1 ) + R 1 = f n 1) b )n 1 ) n 1)! f n ) b )n ) f b ) ) f) + fb), n )! 1! fb) 1

.1 ) f, b n φt) n φ n) )fb) f)) = b ){φ n 1) 1)f b) φ n 1) )f )} b ) {φ n ) 1)f ) b) φ n ) )f ) )} + + 1) n 1 b ) n {φ1)f n) b) φ)f n) )} + R n+1 R n+1 = 1) n b ) n+1 φt)f n+1) + tb ))dt : R n+1 R n+1 = 1) n b ) n+1 { [ φt) f n) + tb )) b = 1) n b ) n φ1)f n) b) φ)f n) )) + S n ] 1 S n = 1) n 1 b ) n φ t) f n) + tb )) dt b = 1) n 1 b ) [ n 1 φ t)f n 1) + tb )) ] 1 } φ t) f n) + tb )) dt b + 1) n b ) n 1 φ t)f n 1) + tb ))dt = 1) n 1 b ) n 1 φ 1)f n 1) b) φ )f n 1) )) + S n 1 S n 1 S n S 1 S k = 1) k 1 b ) k 1 φ n+1 k) 1)f k 1) b) φ n+1 k) )f k 1) )) + S k 1 S 1 S 1 = b ) φ n) t)f + tb ))dt φ n φ n) φ n) ) = φ n) 1)) S 1 = φ n) )fb) f)). k = 1,,, n + 1) R n+1 =R n+1 S n ) + S n S n 1 ) + + S S 1 ) + S 1 = 1) n b ) n φ1)f n) b) φ)f n) )) + 1) n 1 b ) n 1 φ 1)f n 1) b) φ )f n 1) )) + + φ n) )fb) f))

3 ) u R n+1 = 1) n b ) n φ f n+1) u)du 3.1) b u = + tb ) du = b )dt u b t 1 3.1) ) + tb ) 1) n b ) n φ f n+1) + tb ))b )dt b = 1) n b ) n+1 φt)f n+1) + tb ))dt = R n+1 φt) = t 1) n.1 φ k) t) = n!fb) f)) = b ) 3.1) n! n k)! t 1)n k k n) { f b) n! ) } { f ) b ) f b) n! } 1!! f ) + + 1) n 1 b ) n { f n) b) 1) n f n) ) + R n+1 } fb) = f) + b ) f ) 1! + + b ) n f n) ) n! R n+1 = 1) n b ) n = b t) n f n+1) t)dt + b ) f )! + R n+1 3.) n! ) n t b 1 f n+1) t)dt n! R n+1 n! = b t) n f n+1) t)dt n! 3.) 3

4 4.1 ) fx), gx) [, b] < b) gx) > gx) = fx)gx)dx = fc) gx)dx < c < b gx) = 1 fx)dx = fc)b ) : fx) [, b] M, m gx) [, b] m gx) > m fx) M mgx) fx)gx) Mgx) gx)dx fx)gx)dx M gx)dx > m fx)gx)dx gx)dx fx)gx)dx gx)dx gx)dx gx)dx M 4.1) = fc) c < c < b) fx)gx)dx = fc) gx)dx 4.1 4

R n = f n) b t)n 1 t) n 1)! dt = b c)n 1 b ) f n c) n 1)! < c < b) 5 R n+1 = 1) n b ) n+1 φt)f n+1) + tb ))dt = 1) n b ) n+1 φc)f n+1) + cb )) < c < 1) φt) = t m t 1) m n = m) φ n) )fb) f)) = b ){φ n 1) 1)f b) φ n 1) )f )} b ) {φ n ) 1)f ) b) φ n ) )f ) )} + + 1) n k 1 b ) n k {φ k) 1)f n k) b) φ k) )f n k) )} + + 1) n 1 b ) n {φ1)f n) b) φ)f n) )} + R n+1 φ k) ) φ k) 1) ) k fg) k) = f k) g + kf k 1) g + + f k j) g j) + + fg k) j { ft) = t m gt) = t 1) m f k) t) = { m! k = m) k m) g k) t) = mm 1) m k + 1)t 1) m k) 1) m k m t = ) k φ k) ) = fg) k) ) = f m) )g k m) ) m ) k m!) = 1) m k m m k)! t = 1 φ k) 1) = fg) k) 1) = ) k m!) m m k)! 5

) m k m fg) k) ) = fg) k) 1) = fb) = f) + m k=1 φ m) )fb) f)) = m)!fb) f)) ) φ 1) k 1 b ) k m k 1) φ m ) f k) b) φm k ) φ m ) f k) ) k=1 + R m+1 m)! m k m φ m k) ) = φ m k) = m ) m k)! k fb) = f) + f k) ) 1) k f k) b))b ) k + R m+1 m)! m m)! R m+1 m)! = 1)m b )m+1 m)! t m t 1) m f m+1) + tb ))dt { gt) = t m t 1) m F t) = f m+1) + tb )) 4.1 { m gt) m gt) R m+1 m)! = 1 m)! b )m+1 f m+1) + cb )) t m t 1) m dt m [ t t m t 1) m m+1 dt = t 1)m m + 1 ] 1 t m t 1) m dt m m + 1 tm+1 t 1) m 1 dt = m t m+1 t 1) m 1 dt m + 1 mm 1) 1 = t m+ t 1) m dt m + 1)m + ). = 1) m 1 mm 1)m ) 3 m + 1)m + ) m 1)m = 1) m mm 1)m ) 3 m + 1)m + ) m)m + 1) t m dt 6

m! R m+1 = 1) m m!) m + 1)! m)! = 1)m b ) m+1 f m+1) + cb )) < c < 1) m)!m + 1)! 5.1 f, b n fb) = f) + m k=1 m k)! m)! ) k f k) ) 1) k f k) b))b ) k + R m+1 m m)! R m+1 = 1)m b ) m+1 f m+1) + cb ))dt < c < 1) m + 1)! 6, 3 φt) = t m t 1) m n = m) m = 1 φt) = tt 1) 5.1 R 3 fb) f) = 1 b )f b) + f )) + R 3 fb) = f) + 1 b )f b) + f )) + R 3 6.1) R 3 = b ) 3 t t)f 3) + tb ))dt 6.1) f) = p+1 fb) = b p+1 p) b p+1 1 1 + p b p+1 = p+1 + b )p + 1)bp + p ) ) p + 1)bp p + 1)bp = + R 3 + p+1 1 p + 1 b p+1 p 1) + p + 1)b p = p + 1)b p + p 1) p+1 R 3 ) + R 3 b = p + 1)bp + p 1) p+1 R 3 + p 1)b p + p + 1) p p 1)b p + p + 1) 6.) p 7

1) b =, p = 6.) = 6 + 3 + 3 + R 3 + 3 R 3 n+1 = 6 n + n 3 + 3 n 1 = 1 { n } 61) + 1)3 = = 7 + 31) 5 = 1.4 67/5) + 7/5)3 3 = = 1.41413198 + 37/5) 4 = 1.41413563 = 1.4141356 4 8 ) 3 1) b = 3, p = 6.) 3 = 9 + 3 3 + 3 + R 3 3 + 3 R 3 n+1 = 9 n + n 3 3 + 3 n 1 = 1 { n } 3 91) + 1)3 = = 1 3 + 31) 6 = 1.666666666 91/6) + 1/6)3 3 = = 1.736143 3 + 31/6) 4 = 1.73588 3 = 1.73588 4 9 8

7 e e e lim 1 + 1 n = e.71) n n) : n = 1 + 1 ) n nk ) n! = n n k)!k! n = 1 + n 1 n nn 1) 1 ) nn 1)n ) 1 ) 3 + + +! n 3! n nn 1) 1 1 n + n! n) = 1 + 1 + 1 1 ) 1 n! + 1 1 ) 1 1 n n) 3! + + 1 1 ) 1 ) 1 n 1 ) 1 n n n n! n+1 = 1 + 1 + + 1 1 1 1 n + 1 n + 1 ) 1! + 1 1 ) 1 n + 1 ) ) 1 1 n n + 1 n + 1 n + 1 ) ) 1 3! + 1 n + 1)! 7.1) 1 k! n+1 n+1 1 n + 1)! n < n+1 { n } 7.1) 1 1 ), 1 ),, 1 k ) n n n n < 1 + 1 + 1! + 1 3! + + 1 n! 1! = 1 1 3! = 1 1 ) 3 <, 1 n! = 1 1 ) n 1 3 n < n < 1 + 1 + 1 1 ) 1 + + + ) n 1 + = 1 + 1 1 1 = 3 9

n < 3 { n } { n } n < 3 n 1 + n) 1 n = e < 3 lim n φt) = t m t 1) m n = m) e 1) m = φt) = t t 1) 5.1 fb) = f) + 1 4 {b )1f b) + 1f )) b ) f b) f ))} + R 5 4 7.) R 5 R 5 = b )5 t t 1) f 5) + tb ))dt 7.) fx) = e x = e b b = 1 e b = e + 1 4 {b1eb + 1e ) b e b e )} + R 5 4 e b = 1 + 6b + b 1 6b + b + R 5 4 1b + b e = 1 + 6 + 1 1 6 + 1 + R 5 4 1 + = 19 7 + R 5 14 =.71485714 + R 5 14 R 5 = t t 1) e t dt < t < 1 e t < e R 5 < e t t 1) dt = e 3 e < 3 R 5 < 1 1 R 5 14 < 1 1 14 < 1 1

) m = 3 φt) = t 3 t 1) 3 5.1 fb) = f) + 1 7 {b )36f b) + 36f )) b ) 7f b) 7f )) +b ) 3 6f b) + 6f ))} + R 7 7 7.3) R 7 R 7 = b )7 t 3 t 1) 3 f 7) + tb ))dt 7.3) fx) = e x = e b = e + 1 7 {b36eb + 36e ) b 7e b 7e ) + b 3 6e b + 6e )} + R 7 7 e b b = 1 e b = 7 + 36b + 7b + 6b 3 7 36b + 7b 6b 3 + R 7 7 36b + 7b 6b 3 7 + 36 + 7 + 6 e = 7 36 + 7 6 + R 7 7 36 + 7 6 = 1158 46 + R 7 46 =.71839859 + R 7 46 R 7 = t 3 t 1) 3 e t dt < t < 1 e t < e R 7 < e t 3 t 1) 3 dt = e 1 14 = e 14 e < 3 R 7 < 3 14 R 7 46 < 3 14 46 < 1 4 4 11

[1] E. W. Cheney nd T. H. Southrd, A survey of methods for rtionl pproximtion, with prticulr reference to new method bsed on formul of Drboux, SIAM Rev. 5 1963) 19 31. [] P. M. Hummel nd C. L. Seebeck, A generliztion of Tylor s expnsion, Amer. Mth. Monthly 56 1949) 43 47. [3] 3 1978. [4] H. S. Wll, A modifiction of Newton s method, Amer. Mth. Monthly 55 1948), 9 94. [5] E. T. Whittker nd G. N. Wtson, A Course of Modern Anlysis: 4th edition, Cmbridge University Press, 197. 1