UWB a) Accuracy of Relative Distance Measurement with Ultra Wideband System Yuichiro SHIMIZU a) and Yukitoshi SANADA (Ultra Wideband; UWB) UWB GHz DLL

Similar documents
untitled

main.dvi

P361

main.dvi

2005 1

5b_08.dvi

2007/8 Vol. J90 D No. 8 Stauffer [7] 2 2 I 1 I 2 2 (I 1(x),I 2(x)) 2 [13] I 2 = CI 1 (C >0) (I 1,I 2) (I 1,I 2) Field Monitoring Server

SICE東北支部研究集会資料(2012年)

10_08.dvi

untitled

デジタル通信を支える無線技術

高速データ変換

1

impulse_response.dvi

Doctor Thesis Template

IPSJ SIG Technical Report 1, Instrument Separation in Reverberant Environments Using Crystal Microphone Arrays Nobutaka ITO, 1, 2 Yu KITANO, 1

untitled

IPSJ SIG Technical Report Vol.2009-DPS-141 No.20 Vol.2009-GN-73 No.20 Vol.2009-EIP-46 No /11/27 1. MIERUKEN 1 2 MIERUKEN MIERUKEN MIERUKEN: Spe

keisoku01.dvi

news

[FX18]シリーズカタログ

BIT -2-

AC Modeling and Control of AC Motors Seiji Kondo, Member 1. q q (1) PM (a) N d q Dept. of E&E, Nagaoka Unive

36 581/2 2012

( ) ( ) ( ) ( ) ( )

Microsoft PowerPoint - 山形大高野send ppt [互換モード]

untitled

CWContinuous Wave CW XCT(Computed Tomography) MRI Magnetic Resonance Imaging)PET(Positron Emission Tomography) XCT 2

1

WLAN WLAN AP WLAN WLAN WLAN AP- WLAN SINR WLAN WLAN CE WLAN WLAN WLAN CE 2 3 WLAN 4 WLAN 2. WLAN [10] AP CE [11] AP CE CE [12] CE AP AP AP WLAN WLAN A

CDMA (high-compaciton multicarrier codedivision multiple access: HC/MC-CDMA),., HC/MC-CDMA,., 32.,, 64. HC/MC-CDMA, HC-MCM, i

1 s(t) ( ) f c : A cos(2πf c t + ϕ) (AM, Amplitude Modulation) (FM, Frequency Modulation) (PM, Phase Modulation) 2

[1] [2] 2.4 GHz AN [3] IEEE AN 2.4 GHz AN 2 AN AN CSMA/CA AN AN 2. AN 3. AN AN 2.4 GHz AN AN AN AN AN IEEE 2.11g GHz 2.4 GHz

LED a) A New LED Array Acquisition Method Focusing on Time-Gradient and Space- Gradient Values for Road to Vehicle Visible Light Communication Syunsuk

Microsoft Word - _Kazuki_09年7月RCS_papr_final.doc

THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE {s-kasihr, wakamiya,

2.2 (a) = 1, M = 9, p i 1 = p i = p i+1 = 0 (b) = 1, M = 9, p i 1 = 0, p i = 1, p i+1 = 1 1: M 2 M 2 w i [j] w i [j] = 1 j= w i w i = (w i [ ],, w i [

A Study of Adaptive Array Implimentation for mobile comunication in cellular system GD133

LMV851/LMV852/LMV854 8 MHz Low Power CMOS, EMI Hardened Operational Amplifi(jp)

Input image Initialize variables Loop for period of oscillation Update height map Make shade image Change property of image Output image Change time L

2005年度卒業論文

THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE. UWB UWB

„´™Ÿ/’£flö

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

& Vol.5 No (Oct. 2015) TV 1,2,a) , Augmented TV TV AR Augmented Reality 3DCG TV Estimation of TV Screen Position and Ro

pp d 2 * Hz Hz 3 10 db Wind-induced noise, Noise reduction, Microphone array, Beamforming 1

,., ping - RTT,., [2],RTT TCP [3] [4] Android.Android,.,,. LAN ACK. [5].. 3., 1.,. 3 AI.,,Amazon, (NN),, 1..NN,, (RNN) RNN

Fig. 2 Signal plane divided into cell of DWT Fig. 1 Schematic diagram for the monitoring system

LM7171 高速、高出力電流、電圧帰還型オペアンプ

AD_Vol42_No1_J1

LAN LAN GPS(Global Positioning System) GPS LAN GPS GPS GPS LAN LAN 10m AP AP AP AP i


IMT-Advanced Testbed Development for IMT-Advanced Radio Experiments Toshinori SUZUKI, Noriaki MIYAZAKI, and Satoshi KONISHI IMT-Advanced 3 IMT-2000 IT


LTE移動通信システムのフィールドトライアル

THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE

PowerPoint Presentation

資料1-3

U.C. Berkeley SPICE Simulation Program with Integrated Circuit Emphasis 1) SPICE SPICE netli

DC-DC Control Circuit for Single Inductor Dual Output DC-DC Converter with Charge Pump (AKM AKM Kenji TAKAHASHI Hajime YOKOO Shunsuke MIWA Hiroyuki IW

1.indd

次世代モバイルネットワークの概要

スライド 1

Vol.55 No (Jan. 2014) saccess 6 saccess 7 saccess 2. [3] p.33 * B (A) (B) (C) (D) (E) (F) *1 [3], [4] Web PDF a m

RIBF

デジタルICの電源ノイズ対策・デカップリング

C O N T E N T S 1

(3.6 ) (4.6 ) 2. [3], [6], [12] [7] [2], [5], [11] [14] [9] [8] [10] (1) Voodoo 3 : 3 Voodoo[1] 3 ( 3D ) (2) : Voodoo 3D (3) : 3D (Welc

( ) : 1997

1 Kinect for Windows M = [X Y Z] T M = [X Y Z ] T f (u,v) w 3.2 [11] [7] u = f X +u Z 0 δ u (X,Y,Z ) (5) v = f Y Z +v 0 δ v (X,Y,Z ) (6) w = Z +

LMC7101/101Q Tiny Low Pwr Op Amp w/Rail-to-Rail Input and Output (jp)

EQUIVALENT TRANSFORMATION TECHNIQUE FOR ISLANDING DETECTION METHODS OF SYNCHRONOUS GENERATOR -REACTIVE POWER PERTURBATION METHODS USING AVR OR SVC- Ju


A Feasibility Study of Direct-Mapping-Type Parallel Processing Method to Solve Linear Equations in Load Flow Calculations Hiroaki Inayoshi, Non-member

RFID Radio Frequency IDentification RF IC 1JARL 3 1JARL 4 DSL RFIDUWB 2

ver.1 / c /(13)

IPSJ SIG Technical Report iphone iphone,,., OpenGl ES 2.0 GLSL(OpenGL Shading Language), iphone GPGPU(General-Purpose Computing on Graphics Proc

xx/xx Vol. Jxx A No. xx 1 Fig. 1 PAL(Panoramic Annular Lens) PAL(Panoramic Annular Lens) PAL (2) PAL PAL 2 PAL 3 2 PAL 1 PAL 3 PAL PAL 2. 1 PAL

A Navigation Algorithm for Avoidance of Moving and Stationary Obstacles for Mobile Robot Masaaki TOMITA*3 and Motoji YAMAMOTO Department of Production

H(ω) = ( G H (ω)g(ω) ) 1 G H (ω) (6) 2 H 11 (ω) H 1N (ω) H(ω)= (2) H M1 (ω) H MN (ω) [ X(ω)= X 1 (ω) X 2 (ω) X N (ω) ] T (3)

1

2.R R R R Pan-Tompkins(PT) [8] R 2 SQRS[9] PT Q R WQRS[10] Quad Level Vector(QLV)[11] QRS R Continuous Wavelet Transform(CWT)[12] Mexican hat 4

IEEE ZigBee 2.4GHz 250kbps O-QPSK DSSS Bluetooth IEEE GHz 3Mbps G-FSK FHSS PC LAN IEEE b 2.4GHz 11Mbps CCK DSSS LAN LAN IEE


4 1 7 Ver.1/ MIMO MIMO Multiple Input Multiple Output MIMO = = MIMO LAN IEEE802.11n MIMO Alamouti STBC Space Time Block Code

LM837 Low Noise Quad Operational Amplifier (jp)

thesis.dvi


V s d d 2 d n d n 2 n R 2 n V s q n 2 n Output q 2 q Decoder 2 R 2 2R 2R 2R 2R A R R R 2R A A n A n 2R R f R (a) 0 (b) 7.4 D-A (a) (b) FET n H ON p H

2). 3) 4) 1.2 NICTNICT DCRA Dihedral Corner Reflector micro-arraysdcra DCRA DCRA DCRA 3D DCRA PC USB PC PC ON / OFF Velleman K8055 K8055 K8055

318 T. SICE Vol.52 No.6 June 2016 (a) (b) (c) (a) (c) ) 11) (1) (2) 1 5) 6) 7), 8) 5) 20 11) (1

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1)

GD152

インターリーブADCでのタイミングスキュー影響のデジタル補正技術

日歯雑誌(H22・7月号)HP用/p06‐16 クリニカル① 田崎

NewsLetter-No2

LMC6022 Low Power CMOS Dual Operational Amplifier (jp)

[1] [3]. SQL SELECT GENERATE< media >< T F E > GENERATE. < media > HTML PDF < T F E > Target Form Expression ( ), 3.. (,). : Name, Tel name tel


cp57_h1_0312_n

Transcription:

UWB a) Accuracy of Relative Distance Measurement with Ultra Wideband System Yuichiro SHIMIZU a) and Yukitoshi SANADA (Ultra Wideband; UWB) UWB GHz DLL UWB (DLL) UWB DLL 1. UWB FCC (Federal Communications Commission) 2002 2 UWB [1] FCC 20 500 MHz UWB [1] UWB FCC 3.1 GHz 10.6 GHz UWB UWB UWB UWB Sanada Lab., Dept. Elec. Engn., Keio University, 3 14 1 Hiyoshi, Kohoku-ku, Yokohama-shi, 223 8522 Japan a) E-mail: yuro@snd.elec.keio.ac.jp UWB 1ns [2] UWB [6], [7] UWB DLL UWB UWB 1310 A Vol. J86 A No. 12 pp. 1310 1319 2003 12

UWB 2. 2. 1 UWB UWB [3] UWB AWGN 2. 2 UWB 1 DLL DLL UWB ω cor(t) r(i, j, t) x(i) x(i) ˆb(i) ˆτ(n) 2 1 bit M Biphase c j ω tr T f [2], [8] r (i, j, t) =Ab ic jω rec (t τ (Mi+ j) T f )+n(t) (1) A b i i c j j ω rec t τ M T f n(t) UWB τ [8] 2 Fig. 2 Frame of the transmit signal. 3 Fig. 3 Received pulse. 1 Fig. 1 Block diagram of the system. 4 Fig. 4 Template signal. 1311

2003/12 Vol. J86 A No. 12 5 Fig. 5 Samples of template signal. 1312

UWB 2 ω rec(t) { [ ] t 2 } ( [ ] t 2 ) = 1 4π exp 2π t n t n (2) t n 3 ω rec(t) 0 ω rec(t) 1.0 10 6 Norm. Time 200 ps τ ω cor(t) =ω rec (t + δ) ω rec (t δ) (3) δ 4 5 δ δ =0.0 δ =0.5 0.05 δ 0.4 x(i) = M 1 j=0 r(i, j, t)c jω cor (t (Mi+ j) T f τ) dt. (4) x(i) i 6 τ τ1 τ2 DLL 2. 3 τ 6 Fig. 6 Correlate. 0 ˆτ i=n i=n N+1 ˆτ(n) =k x(i)ˆb i (5) N k 6 ˆb i 2. 4 [4], [5] 3. 3. 1 ˆτ 100000 1000 AWGN δ ɛ N Bi-phase 1 2 200 ps 1313

2003/12 Vol. J86 A No. 12 1 Table 1 Assumption of simulation. 100000 1000 AWGN ɛ =0.0 1.0 10 3 δ =0.05 0.40 N =1 100 2 Table 2 Mapping of normalized tracking jitter variance. 1.0 10 2 6.00 mm 1.0 10 3 1.90 mm 1.0 10 4 0.60 mm 1.0 10 5 0.19 mm 1.0 10 6 0.06 mm 7 (δ =0.15) Fig. 7 Normalized tracking jitter variance. (Clock) 3 Table 3 Mapping of normalized mean time. 1.0 10 1 1 µs 1.0 10 2 10 µs 1.0 10 3 100 µs 1.0 10 4 1ms 1.0 10 5 10 ms 3 3. 2 3. 6 3. 7 3. 2 7 ɛ E b /N 0 E b /N 0 E b /N 0 E b /N 0 E b /N 0 8 E b /N 0 ɛ 8 (δ =0.15) Fig. 8 Normalized tracking clock jitter variance. (E b /N 0) 3. 3 9 δ δ =0.05 δ =0.15 δ δ =0.33 E b /N 0 10 5 δ 0.33 10 2 1314

UWB 9 (ɛ =0.0) Fig. 9 Normalized tracking jitter variance. (Template) 11 (ɛ =0.0) Fig. 11 Normalized tracking template jitter variance. (E b /N 0) 10 δ (ɛ =0.0) Fig. 10 The curve appeared when δ is too large. (Template) 10 E b /N 0 δ =0.33 18 db 2 10 ˆτ 0 E b /N 0 δ =0.33 18 db ˆτ 0 E b /N 0 12 (δ =0.15) Fig. 12 Normalized mean time to lose lock. (Clock) 11 E b /N 0 δ δ δ E b /N 0 δ =0.4 E b /N 0 3. 4 12 ɛ 13 E b /N 0 ɛ 1315

2003/12 Vol. J86 A No. 12 13 (δ =0.15) Fig. 13 Normalized mean time to clock lose lock. (E b /N 0) 15 (ɛ =0.0) Fig. 15 Normalized mean time to template lose lock. (E b /N 0) 14 (ɛ =0.0) Fig. 14 Normalized mean time to lose lock. (Template) 16 Fig. 16 Normalized tracking jitter variance. (feedback loop)(δ =0.15,ɛ =1.0 10 3 ) 8 E b /N 0 3. 5 14 δ 15 E b /N 0 δ δ 15 δ =0.15 δ =0.05 5 δ (5) k δ 11 1316

UWB 17 Fig. 17 Normalized tracking jitter variance. (feedback loop)(δ =0.15,N =25) 19 (δ =0.15 ) Fig. 19 Normalized tracking jitter variance. (Clock, demodulation) 18 (δ =0.15, 0 db) Fig. 18 Performance gain of feedback loop samples. 3. 6 16 N N =10 1 N = 100 2 7 E b /N 0 17 N =25 ɛ E b /N 0 7 20 (ɛ =0.0 ) Fig. 20 Normalized tracking jitter variance. (Template, demodulation) 18 ɛ N (5) ˆτ 1317

2003/12 Vol. J86 A No. 12 20 9 E b /N 0 21 12 22 14 21 (δ =0.15 ) Fig. 21 Normalized mean time to lose lock. (Clock, demodulation) E b /N 0 (5) ˆτ 4. UWB 22 Fig. 22 (ɛ =0.0 ) Normalized mean time to lose lock. (Template, demodulation) 3. 7 19 22 7 b i =1 19 ɛ 20 δ 21 ɛ 22 δ 19 7 E b /N 0 [1] UWB (UWBST2002) 1318

UWB SST2002-19, July 2002 [2] M.Z. Win and R.A. Scholtz, Ultra-wide bandwidth time-hopping spread-spectrum impulse radio for wireless multiple-access communications, IEEE Trans. Commun., vol.48, no.4, pp.679 689, April 2000. [3] R.A. Scholtz and M.Z. Win, On the robustness of ultra-wide bandwidth signals in dense multipath environments, IEEE Commun. Lett., vol.2, no.2, pp.51 53, Feb. 1998. [4] Y. Deval, A. Fakhfakh, H. Levi, and N. Milet-Lewis, Study and behavioural simulation of phase noise and jitter in oscillators, IEEE Int. Symp. Circuits Syst., vol.5, pp.323 326, 2001. [5] F. Herzel and B. Razavi, Oscillator jitter due to supply and substrate noise, IEEE Proc. Custom Integrated Circuits Conference, pp.489 492, May 1998. [6] R.E. Ziemer and R.L. Peterson, Digital Communications and Spread Spectrum Systems, Macmillan Publishing Company, 1985. [7] M. Sawahashi, F. Adachi, and H. Yamamoto, Coherent delay-locked code tracking loop using timemultiplexed pilot for DS-CDMA mobile radio, IEICE Trans. Commun., vol.e81-b, no.7, pp.1426 1432, July 1998. [8] F. Ramirez-Mireles, On the performance of ultrawide-band signals in Gaussian noise and dense multipath, IEEE Trans. Veh. Technol., vol.50, no.1, pp.244 249, Jan. 2001. [9] UWB 2003 A-5-27, March 2003. 15 4 3 7 10 8 25 4 9 12 13 9 WPMC2001 Best Paper Award IEEE 15 1319